Sequence and Genetic Mechanism of Nano-Micron Spinel Exsolution from Panzhihua V-Ti Magnetite Deposit
-
摘要: 钛磁铁矿内部尖晶石出溶体的成分组成和形成机制对估算磁铁矿固溶体的成分以计算铁钛氧化物的氧逸度-温度具有重要意义.为了探究攀枝花钒钛磁铁矿中尖晶石的成因及形成机制,运用岩相观察和各种微区原位观测手段,系统研究了各类尖晶石的矿物学特征.尖晶石的粒度在纳微米之间,有3种类型:第1种为钛磁铁矿晶界处不规则的大颗粒尖晶石,Mg#为60~70;第2种为钛磁铁矿颗粒内部的粒状尖晶石,Mg#为71~77;第3种为沿钛磁铁矿(100)方向定向分布的尖晶石片晶,Mg#为75~77.3类尖晶石分别与磁铁矿主晶具有相同的取向关系:{111}Mag//{111}Spl,{110}Mag//{110}Spl和{100}Mag//{100}Spl.3类尖晶石均是磁铁矿主晶的出溶体,钛磁铁矿晶界处及其内部的粒状尖晶石的形成与某些晶体缺陷关系密切,是在降温过程中较早出溶的产物,尖晶石片晶在两者之后以旋节分解出溶形成.Abstract: Detailed characterization and formation mechanism of the spinel exsolution in titanomagnetite is crucial for reconstructing the composition of magnetite solid solution precursor and for application to the Fe-Ti oxide oxythermometer. The chemical composition, topographic characteristics and crystallographic relationships of spinel exsolution were studied systematically to probe into its sequence and genetic mechanism through petrographic observation and the integrated use of in-situ microanalysis methods. The results show that there are three output forms of the spinel exsolution. One spinel exsolution is on the edge of the titanomagnetite with Mg# range from 60-70. Another is granular spinel exsolution distributing dispersedly with big particle-size, with Mg# range from 71-77. The third spinel exsolution is present as lamellae parallelling to the {100} of the titanomagnetite with Mg# range from 75-77. Three different types of spinel exsolution are all the magnesia-alumina spinel and have close-packed oxygen planes and directions parallel to those in the host magnetite with {111}Mag//{111}Spl, {110}Mag//{110}Spl and {100}Mag//{100}Spl respectively. Analysis suggests that three different types of spinel exsolution are all the product of the magnetite solid solution in the process of slow cooling with different sequence and genetic significance. The granular spinel exsolution in the titanomagnetite and the spinel exsolution on the edge of the titanomagnetite are related to some crystallographic defects in titanomagnetite and exsolved at the early stages of exsolution. The spinel lamellae exsolved in the way of spinodal decomposition parallelling to {l00}.
-
Key words:
- Panzhihua /
- nano-micron /
- spinel exsolution /
- sequence /
- genetic mechanism
-
图 1 中国西南攀枝花-西昌地区区域地质图及峨眉山大火成岩省分布
Fig. 1. Generalized geological map of the Pan-Xi area, Emeishan large igneous province, SW China showing the distribution of mafic-ultramafic intrusions that host Fe-Ti oxide mineralization
表 1 钛磁铁矿内部粒状尖晶石出溶体电子探针分析数据
Table 1. The EPMA data of the spinel exsolutions in the titanomagnetite
矿物(%) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Na2O 0.04 0.03 0.04 0.03 0.02 0.04 0.05 0.05 0.05 0.056 0.00 0.01 0.01 0.00 0.02 MgO 21.31 21.53 20.76 21.36 21.11 21.30 21.78 21.54 21.18 21.52 18.66 23.43 21.63 22.09 19.35 Al2O3 65.83 65.72 64.54 65.66 65.36 65.52 66.47 66.60 66.22 66.78 58.18 60.57 63.82 63.66 61.30 SiO2 0.18 0.13 0.15 0.011 0.17 0.14 0.10 0.13 0.14 0.04 0.54 0.67 0.17 0.29 0.01 BaO 0.07 0.04 0.00 0.02 0.03 0.04 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 FeO 12.09 10.91 13.50 12.52 12.68 12.03 11.89 11.35 13.15 11.36 18.59 14.79 14.32 14.72 17.72 MnO 0.08 0.06 0.07 0.01 0.08 0.06 0.05 0.02 0.07 0.04 0.06 0.06 0.05 0.08 0.03 NiO 0.00 0.05 0.00 0.03 0.05 0.00 0.00 0.03 0.00 0.00 0.04 0.00 0.00 0.00 0.00 TiO2 0.66 0.44 0.24 0.18 0.21 0.25 0.32 0.38 0.26 0.47 0.06 0.34 0.13 0.00 0.00 Cr2O3 0.09 0.07 0.08 0.07 0.08 0.06 0.08 0.06 0.07 0.11 0.13 0.14 0.09 0.06 0.09 V2O5 0.13 0.07 0.04 0.01 0.05 0.03 0.11 0.08 0.12 0.13 0.10 0.06 0.06 0.04 0.07 Total 100.49 99.06 99.43 100.01 99.86 99.48 100.86 100.25 101.28 100.53 96.40 100.06 100.27 100.96 99.60 Na apfu 0.002 0.001 0.002 0.001 0.001 0.002 0.002 0.001 0.002 0.003 0.000 0.000 0.000 0.000 0.001 Mg 0.791 0.807 0.786 0.795 0.789 0.797 0.803 0.798 0.781 0.795 0.463 0.581 0.537 0.548 0.481 Al 1.932 1.946 1.932 1.933 1.931 1.937 1.936 1.950 1.931 1.951 1.141 1.188 1.252 1.249 1.203 Si 0.004 0.003 0.004 0.003 0.004 0.004 0.003 0.003 0.004 0.001 0.009 0.011 0.003 0.005 0.000 Ba 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Fe2+ 0.235 0.202 0.218 0.207 0.223 0.206 0.204 0.209 0.225 0.212 0.281 0.154 0.204 0.189 0.284 Fe3+ 0.017 0.027 0.066 0.054 0.043 0.046 0.042 0.027 0.047 0.024 0.133 0.156 0.095 0.117 0.096 Mn 0.002 0.001 0.001 0.000 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 Ni 0.000 0.001 0.000 0.001 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.001 Ti 0.012 0.008 0.005 0.003 0.004 0.005 0.006 0.007 0.005 0.009 0.001 0.004 0.002 0.000 0.014 Cr 0.002 0.001 0.002 0.002 0.002 0.001 0.002 0.001 0.001 0.002 0.002 0.002 0.001 0.001 0.001 V 0.004 0.001 0.001 0.000 0.002 0.000 0.002 0.001 0.002 0.002 0.001 0.001 0.001 0.000 0.001 Mg# 75.23 76.86 71.07 73.38 73.31 74.30 75.06 76.18 72.55 76.28 60.67 69.29 69.91 69.19 63.33 DIA(μm) - - 43.0 47.8 38.5 27.0 16.0 20.0 32.0 10.6 - - - - - 注:尖晶石定量成分分析在中国地质科学院矿产资源研究所电子探针实验室完成.1~2测点为定向分布尖晶石片晶的成分数据;3~10测点为钛磁铁矿内部粒状尖晶石成分数据;11~13测点为钛磁铁矿颗粒边缘的大颗粒尖晶石成分数据;14~15测点为“鸟眼状”尖晶石的成分数据. -
[1] Airiyants, E.V., Zhmodik, S.M., Ivanov, P.O., et al., 2014.Mineral Inclusions in Fe-Pt Solid Solution from the Alluvial Ore Occurrences of the Anabar Basin (Northeastern Siberian Platform).Russian Geology & Geophysics, 55(8):945-958. http://linkinghub.elsevier.com/retrieve/pii/S1068797114001394 [2] Andersen, D.J., Lindsley, D.H., 1988.Internally Consistent Solution Models for Fe-Mg-Mn-Ti Oxides:Fe-Ti Oxides.American Mineralogist, 73:714-726. https://www.researchgate.net/publication/292765474_Internally_consistent_solution_models_for_Fe-Mg-Mn-Ti_oxides_Fe-Mg-_Ti_oxides_and_olivine [3] Buddington, A.F., Lindsley, D.H., 1964.Iron-Titanium Oxide Minerals and Synthetic Equivalents.Journal of Petrology, 5(2):310-357. doi: 10.1093/petrology/5.2.310 [4] Chopin, C., 2003.Ultrahigh-Pressure Metamorphism:Tracing Continental Crust into the Mantle.Earth and Planetary Science Letters, 212(1):1-14. https://www.deepdyve.com/lp/elsevier/ultrahigh-pressure-metamorphism-tracing-continental-crust-into-the-294eCeLoAd [5] Evans, B.W., Scaillet, B., Kuehner, S.M., 2006.Experimental Determination of Coexisting Iron-Titanium Oxides in the Systems FeTiAlO, FeTiAlMgO, FeTiAlMnO, and FeTiAlMgMnO at 800 and 900℃, 1-4 kbar, and Relatively High Oxygen Fugacity.Contributions to Mineralogy and Petrology, 152(2):149-167. doi: 10.1007/s00410-006-0098-z [6] Farver, J., Yund, R., 2000.Silicon Diffusion in a Natural Quartz Aggregate:Constraints on Solution-Transfer Diffusion Creep.Tectonophysics, 325(3):193-205. https://www.deepdyve.com/lp/elsevier/silicon-diffusion-in-a-natural-quartz-aggregate-constraints-on-0QpE75Yuo8 [7] Fleet, M.E., 1985.Orientation of Phase and Domain Boundaries in Crystalline Solids.American Mineralogist, 70(1-2):130-133. http://www.researchgate.net/publication/282494937_Orientation_of_phase_and_domain_boundaries_in_crystalline_solids [8] Graham, J.W., 1953.Changes of Ferromagnetic Minerals and Their Bearing on Magnetic Properties of Rocks.Journal of Geophysical Research:Atmospheres, 58(2):243-260. doi: 10.1029/JZ058i002p00243 [9] Green, H.W., Dobrzhinetskaya, L., Bozhilov, K.N., 2000.Mineralogical and Experimental Evidence for Very Deep Exhumation from Subduction Zones.Journal of Geodynamics, 30(1):61-76. http://www.academia.edu/1586210/Mineralogical_and_experimental_evidence_for_very_deep_exhumation_from_subduction_zones [10] Gruenewaldt, G.V., Klemm, D.D., Henckel, J., et al., 1985.Exsolution Features in Titanomagnetites from Massive Magnetite Layers and Their Host Rocks of the Upper Zone, Eastern Bushveld Complex.Economic Geology, 80(4):1049-1061. doi: 10.2113/gsecongeo.80.4.1049 [11] Harriuson, R.J., Putnis, A., 1995.Magnetic Properties of the Magnetite-Spinel Solid Solution:Saturation Magnetization and Cation Distributions.American Mineralogist, 80(3-4):213-221. doi: 10.2138/am-1995-3-402 [12] Harrison, R.J., Putnis, A., 1996.Magnetic Properties of the Magnetite-Spinel Solid Solution:Curie Temperatures, Magnetic Susceptibilities, and Cation Ordering.American Mineralogist, 81(3-4):375-384. doi: 10.2138/am-1996-3-412 [13] Harrison, R.J., Putnis, A., 1997.Interaction between Exsolution Microstructures and Magnetic Properties of the Magnetite-Spinel Solid Solution.American Mineralogist, 82(1-2):131-142. doi: 10.2138/am-1997-1-215 [14] He, D., Liu, Y., Tong, X., et al., 2013.Multiple Exsolutions in a Rare Clinopyroxene Megacryst from the Hannuoba Basalt, North China:Implications for Subducted Slab-Related Crustal Thickening and Recycling.Lithos, 177(3):136-147. http://adsabs.harvard.edu/abs/2013Litho.177..136H [15] Howarth, G.H., Prevec, S.A., Zhou, M.F., 2013.Timing of Ti-Magnetite Crystallisation and Silicate Disequilibrium in the Panzhihua Mafic Layered Intrusion:Implications for Ore-Forming Processes.Lithos, 170-171(6):73-89. http://www.sciencedirect.com/science/article/pii/S002449371300087X [16] Jha, A., Lahiri, A., Kumari, E.J., 2013.Beneficiation of Titaniferous Ores by Selective Separation of Iron Oxide, Impurities and Rare Earth Oxides for the Production of High Grade Synthetic Rutile.Mineral Processing & Extractive Metallurgy, 117(3):157-165. doi: 10.1179/174328508X292964 [17] Jie, W.Q., 2010.Principle and Technology of Crystal Growth.Science Press, Beijing, 634-637 (in Chinese). [18] Karipi, S., Tsikouras, B., Hatzipanagiotou, K., et al., 2007.Petrogenetic Significance of Spinel-Group Minerals from the Ultramafic Rocks of the Iti and Kallidromon Ophiolites (Central Greece).Lithos, 99(1):136-149. http://linkinghub.elsevier.com/retrieve/pii/S0024493707001156 [19] Kazmerski, L.L., Ireland, P.J., Ciszek, T.F., 1980.Evidence for the Segregation of Impurities to Grain Boundaries in Multigrained Silicon Using Auger Electron Spectroscopy and Secondary Ion Mass Spectroscopy.Applied Physics Letters, 36(4):323-325. doi: 10.1063/1.91479 [20] Krasnova, N.I., Krezer, Y.L., 1995.New Data on the Nature of Fine and Ultrafine Lamellae in Titanomagnetite.European Journal of Mineralogy, (6):1361-1372. https://www.researchgate.net/profile/Tomas_Petrov2/publication/261551920_New_data_on_the_nature_of_fine_and_ultrafine_lamellae_in_titanomagnetite/links/0a85e534989515ee88000000.pdf [21] Larson, E., Ozima, M., Ozima, M., et al., 2010.Stability of Remanent Magnetization of Igneous Rocks.Geophysical Journal of the Royal Astronomical Society, 17(3):263-292. http://gji.oxfordjournals.org/content/17/3/263.abstract [22] Lattard, D., Sauerzapf, U., Kasemann, M., 2005.New Calibration Data for the Fe-Ti Oxide Thermo-Oxybarometers from Experiments in the Fe-Ti-O System at 1 bar, 1 000-1 300℃ and a Large Range of Oxygen Fugacities.Contributions to Mineralogy and Petrology, 149:735-754. doi: 10.1007/s00410-005-0679-2 [23] Li, Z.H., Peng, Z.Z., 1988.Microstructure of Fe-Ti Oxide Minerals in Panxi District, Sichuan.Earth Science, 13(1):17-23 (in Chinese with English abstract). https://www.deepdyve.com/lp/elsevier/petrogenesis-and-metallogenesis-of-the-taihe-gabbroic-intrusion-WCimQC9vb0 [24] Li, J.P., Kornprobst, J., Provost, A., 1995.Spinel as a Chemical Indicator during Partial Melting and Subsolidus Equilibration of Mantle Peridotite:Experimental Study and Application in Natural Rocks.Acta Geologica Sinica, 69(2):169-184 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DZXW199504006.htm [25] Li, W.C., 1992.The Geology and Its Genesis of the Panzhihua Fe-V-Ti Deposit.Geology and Prospecting, (10):18-21 (in Chinese). http://linkinghub.elsevier.com/retrieve/pii/S1674987113000327 [26] Li, Z., Zhang, Y., Esling, C., et al., 2011.Determination of the Orientation Relationship between Austenite and 5M Modulated Martensite in Ni-Mn-Ga Alloys.Acta Materialia, 44(6):1222-1226. https://www.researchgate.net/profile/Zongbin_Li/publication/264623054_Determination_of_the_orientation_relationship_between_austenite_and_5M_modulated_martensite_in_Ni-Mn-Ga_alloys/links/53e97ce50cf2dc24b3cabc74.pdf?inViewer=true&disableCoverPage=true&origin=publication_detail [27] Liang, F.H., Zeng, L.S., Xu, Z.Q., et al., 2006.Nature and Significance of Haematite-Limenite Solid Solution in 540-600 m Eclogite of Chinese Continental Scientific Drilling Main Borehole:Implications for the Exhumantion of the CCSD Eclogites.Acta Petrologica Sinica, 22(7):1905-1914 (in Chinese with English abstract). [28] Lindsley, D.H., 1991.Experimental Studies of Oxide Minerals.Reviews in Mineralogy and Geochemistry, 25(1):69-106. https://www.researchgate.net/profile/Stephanie_Rossano/publication/226062336_Experimental_and_theoretical_study_of_the_structural_environment_of_magnesium_in_minerals_and_silicate_glasses_using_X-ray_absorption_near-edge_structure/links/02e7e51c9828f09df7000000.pdf [29] Liou, J.G., Zhang, R.Y., Ernst, W.G., 2007.Very High-Pressure Orogenic Garnet Peridotites.Proceedings of the National Academy of Sciences of the United States of America, 104(22):9116-9121. doi: 10.1073/pnas.0607300104 [30] Liu, L., Chen, D.L., Zhang, A.D., et al., 2005.Ultrahigh Pressure Gneissic Potassium Pomegranate Pyroxenite of Altyn Tagh (>7 GPa), the Evidence from Garnet Exsolve Monoclinic Pyroxene.Science China Earth Sciences, 35(2):105-114 (in Chinese). https://www.deepdyve.com/lp/elsevier/ultrahigh-pressure-minerals-and-metamorphic-terranes-the-view-from-TpCeRD05ZK [31] Liu, L., Sun, Y., Luo, J.H., et al., 2003.UHP Metamorphism of Gneisses of Alkin Inglezza.Science China Earth Sciences, 35(12):1184-1192 (in Chinese). [32] Liu, L., Yang, J.X., Zhang, J.F., et al., 2009.The Research Progress, Problems and Challenges of the Microscopic Exsolution Structure of the Minerals in the UHP Rocks.Bulletin of Minerology, Petrology and Geochemistry, 27(Suppl.1):1387-1400 (in Chinese with English abstract). https://www.researchgate.net/profile/Chao_Wang177/publication/225632088_Exsolution_microstructures_in_ultrahigh-pressure_rocks_Progress_controversies_and_challenges/links/563cac9408aec6f17dd7b585.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail [33] Liu, P.P., Zhou, M.F., Chen, W, T., et al., 2015.In-Situ LA-ICP-MS Trace Elemental Analyses of Magnetite:Fe-Ti-(V) Oxide-Bearing Mafic-Ultramafic Layered Intrusions of the Emeishan Large Igneous Province, SW China.Ore Geology Reviews, 65:853-871. doi: 10.1016/j.oregeorev.2014.09.002 [34] Liu, X.W., Jin, Z.M., Qu, J., et al., 2005.The Ilmenite and Chromite Magnetite Exsolution of Olivine in Garnet Wehrlite.Science China Earth Sciences, 35(10):949-956 (in Chinese). doi: 10.1360/03yd0590.pdf [35] Luo, Z.H., Su, S.G., Liu, C., 2001.Pyroxene Exsolution in Diopside Pyroxenite in Dayishan Basalt and Its Geological Significance.Geoscience, 15(2):184-188 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200102013.htm [36] Mao, C., Lü, X.B., Chen, C., et al., 2016.Characteristics and Metallogenic Significance of Melt-Fluid Inclusions of Shanshenfu Granite in the Hongyan Area, Inner Mongolia.Earth Science, 41(1):139-152 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.011 [37] Mccallum, I.S., Domeneghetti, M.C., Schwartz, J.M., et al., 2006.Cooling History of Lunar Mg-Suite Gabbronorite 76255, Troctolite 76535 and Stillwater Pyroxenite SC-936:The Record in Exsolution and Ordering in Pyroxenes.Geochimica et Cosmochimica Acta, 70(24):6068-6078. doi: 10.1016/j.gca.2006.08.009 [38] Mcenroe, S.A., Harrison, R.J., Peter, R., et al., 2010.Nanoscale Hematite-Ilmenite Lamellae in Massive Ilmenite Rock:An Example of"Lamellar Magnetism"with Implications for Planetary Magnetic Anomalies.Geophysical Journal of the Royal Astronomical Society, 151(3):890-912. http://adsabs.harvard.edu/abs/2002GeoJI.151..890M [39] Milke, R., Wiedenbeck, M., Heinrich, W., 2001.Grain Boundary Diffusion of Si, Mg, and O in Enstatite Reaction Rims:A SIMS Study Using Isotopically Doped Reactants.Contributions to Mineralogy and Petrology, 142(1):15-26. doi: 10.1007/s004100100277 [40] Nagy, K.L., Giletti, B.J., 1986.Grain Boundary Diffusion of Oxygen in a Macroperthitic Feldspar.Geochimica et Cosmochimica Acta, 50(6):1151-1158. doi: 10.1016/0016-7037(86)90397-2 [41] Nord, G.L., Lawson, C.A., 1989.Order-Disorder Transition-Induced Twin Domains and Magnetic Properties in Ilmenite-Hematite.American Mineralogist, 74(1-2):160-176. http://www.researchgate.net/publication/285374647_Order-disorder_transition-induced_twin_domains_and_magnetic_properties_in_ilmenite-hematite [42] Pang, K.N., Zhou, M.F., Lindsley, D., et al., 2008.Origin of Fe-Ti Oxide Ores in Mafic Intrusions:Evidence from the Panzhihua Intrusion, SW China.Journal of Petrology, 49(2):295-313. https://www.researchgate.net/profile/John_Malpas/publication/239536302_Origin_of_Fe-Ti_Oxide_Ores_in_Mafic_Intrusions_Evidence_from_the_Panzhihua_Intrusion_SW_China/links/0deec528d5810e6f74000000.pdf?inViewer=true&disableCoverPage=true&origin=publication_detail [43] Plimpton, S.J., Wolf, E.D., 1990.Effect of Interatomic Potential on Simulated Grain-Boundary and Bulk Diffusion:A Molecular-Dynamics Study.Physical Review B (Condensed Matter), 41(5):2712. doi: 10.1103/PhysRevB.41.2712 [44] Price, G.D., 1981.Subsolidus Phase Relations in the Titanomagnetite Solid Solution Series.American Mineralogist, 66:751-758. https://www.researchgate.net/publication/282561035_Subsolidus_Phase_Relations_in_the_Titanomagnetite_Solid_Solution_Series [45] Robinson, P., Harrison, R.J., Mcenroe, S.A., et al., 2002.Lamellar Magnetism in the Haematite-Ilmenite Series as an Explanation for Strong Remanent Magnetization.Nature, 418(6897):517-520. doi: 10.1038/nature00942 [46] Robinson, P., Harrison, R.J., Mcenroe, S.A., et al., 2004.Nature and Origin of Lamellar Magnetism in the Hematite-Ilmenite Series.American Mineralogist, 89:725-747. doi: 10.2138/am-2004-5-607 [47] Sang, Z.N., Xia, B., Zhou, Y.S., et al., 2003.Experimental Study on Liquid Immiscibility of Gol Ore-Bearing Gabbro.Science China Earth Sciences, 33(4):353-361 (in Chinese). https://www.deepdyve.com/lp/elsevier/the-role-of-vapor-in-the-transportation-of-tin-in-hydrothermal-systems-0erQ8lawCl [48] Sauerzapf, U., Lattard, D., Burchard, M., et al., 2008.The Titanomagnetite-Ilmenite Equilibrium:New Experimental Data and Thermo-Oxybarometric Application to the Crystallization of Basic to Intermediate Rocks.Journal of Petrology, 49(6):1161-1185. doi: 10.1093/petrology/egn021 [49] Sautter, V., Haggerty, S.E., Field, S., 1991.Ultradeep (>300 Kilometers) Ultramafic Xenoliths:Petrological Evidence from the Transition Zone.Science, 252(5007):827-830. doi: 10.1126/science.252.5007.827 [50] Schrott, A.G., Cohen, S.L., Dinger, T.R., et al., 1988.Photoemission Study of Grain Boundary Segregation in YBa2Cu3O7.AIP Conf.Proc.(United States), 165(1):349-357. https://www.researchgate.net/profile/SiuWai_Chan/publication/231819314_Grain_boundary_faceting_in_YBa2Cu3O7-_x_bicrystal_thin_films_on_SrTiO3_substrates/links/00b7d52c196db9082c000000/Grain-boundary-faceting-in-YBa2Cu3O7-x-bicrystal-thin-films-on-SrTiO3-substrates.pdf [51] Senkader, S., Jurkschat, K., Wilshaw, P.R., et al., 2000.A Study of Oxygen Dislocation Interactions in CZ-Si.Materials Science & Engineering B, 73(1):111-115. http://linkinghub.elsevier.com/retrieve/pii/S0921510799004456 [52] Speczik, S., Wiszniewska, J., Diedel, R., 1988.Minerals, Exsolution Features and Geochemistry of Fe-Ti Ores of the Suwaki District (North-East Poland).Mineralium Deposita, 23(3):200-210. doi: 10.1007/BF00204302 [53] Spencer, K.J., Lindsley, D.H., 1981.A Solution Model for Coexisting Iron Titanium Oxides.American Mineralogist, 66:1189-1201. http://petrology.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=gsammin&resid=66/11-12/1189 [54] Strangway, D.W., Larson, E.E., Goldstein, M., 1968.A Possible Cause of High Magnetic Stability in Volcanic Rocks.Journal of Geophysical Research, 73(12):3787-3795. doi: 10.1029/JB073i012p03787 [55] Sun, X.M., Tang, Q., Sun, W.D., et al., 2007.Monazite, Iron Oxide and Barite Exsolutions in Apatite Aggregates from CCSD Drillhole Eclogites and Their Geological Implications.Geochimica et Cosmochimica Acta, 71(11):2896-2905. doi: 10.1016/j.gca.2007.03.030 [56] Tan, W., He, H., Wang, C.Y., et al., 2016.Magnetite Exsolution in Ilmenite from the Fe-Ti Oxide Gabbro in the Xinjie Intrusion (SW China) and Sources of Unusually Strong Remnant Magnetization.American Mineralogist, 101(12):2759-2767. doi: 10.2138/am-2016-5688 [57] Tathavadkar, V.D., Jha, A., Antony, M.P., 2001.The Soda-Ash Roasting of Chromite Minerals:Kinetics Considerations.Metallurgical and Materials Transactions B, 32:593-602. doi: 10.1007/s11663-001-0115-6 [58] Toplis, M.J., Carroll, M.R., 1995.An Experimental Study of the Influence of Oxygen Fugacity on Fe-Ti Oxide Stability, Phase Relations, and Mineral-Melt Equilibria in Ferro-Basaltic Systems.Journal of Petrology, 36(5):1137-1170. doi: 10.1093/petrology/36.5.1137 [59] Wang, P., Pan, Z.L., Weng, L.B., et al., 1982.Systematic Mineralogy.Geological Publishing House, Beijing, 488-489 (in Chinese). [60] Wang, Y.G., Ye, H.Q., Ximen, L.L., et al., 1990.A HREM Study of the Exolution and Defects in Magnetite.Acta Mineralogica Sinica, 10(1):8-14 (in Chinese with English abstract). http://www.osti.gov/scitech/biblio/20015569-hrem-study-ultra-thin-titanium-films-high-resolution-electron-microscopy [61] Wenk, H.R., Chen, K., Smith, R., 2011.Morphology and Microstructure of Magnetite and Ilmenite Inclusions in Plagioclase from Adirondack Anorthositic Gneiss.American Mineralogist, 96(8-9):1316-1324. doi: 10.2138/am.2011.3760 [62] Xia, B., Liu, W.L., Zhou, G.Q., et al., 2013.Exsolutions in a Magnesian Eclogite and the Geologic Significance from Western Peng Lake, Tibet.Journal of Nanjing University (Natural Sciences), 49(3):356-386 (in Chinese with English abstract). https://doi.org/10.13232/j.cnki.jnju.2013.03.010 [63] Xing, C.M., Wang, Y., Zhang, M.J., 2012.Volatile and C-H-O Isotopic Compositions of Giant Fe-Ti-V Oxide Deposits in the Panxi Region and Their Implications for the Sources of Volatiles and the Origin of Fe-Ti Oxide Ores.Science China Earth Sciences, 42(11):1701-1715 (in Chinese). doi: 10.1007/s11430-012-4468-2 [64] Xu, H.J., Zhao, S.T., Wu, Y., 2016.Microstructure and Mechanism of Quartz Exsolution in Clinopyroxene.Earth Science, 41(6):948-970 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.080 [65] Xu, H.R., Zhang, J.F., Zong, K.Q., et al., 2015.Quartz Exsolution Topotaxy in Clinopyroxene from the UHP Eclogite of Weihai, China.Lithos, 226:17-30. https://doi.org/10.1016/j.lithos.2015.02.010 [66] Xu, Z., Zhao, L.C., 2004.Principle of Metal Solid-State Phase Changes.Science Press, Beijing, 14-16 (in Chinese). [67] Yamamoto, S., Komiya, T., Hirose, K., et al., 2009.Coesite and Clinopyroxene Exsolution Lamellae in Chromites:In-Situ Ultrahigh-Pressure Evidence from Podiform Chromitites in the Luobusa Ophiolite, Southern Tibet.Lithos, 109(3-4):314-322. https://doi.org/10.1016/j.lithos.2008.05.003 [68] Ye, K., Cong, B., Ye, D., 2000.The Possible Subduction of Continental Material to Depths Greater than 200 km.Nature, 407(6805):734. https://doi.org/10.1038/35037566 [69] Zhang, J.F., Xu, H.J., Liu, Q., et al., 2011.Pyroxene Exsolution Topotaxy in Majoritic Garnet from 250 to 300 km Depth.Journal of Metamorphic Geology, 29(7):741-751. doi: 10.1111/j.1525-1314.2011.00939.x [70] Zhang, R.Y., Liou, J.G., 1999.Exsolution Lamellae in Minerals from Ultrahigh-Pressure Rocks.International Geology Review, 41:981-993. https://doi.org/10.1080/00206819909465184 [71] Zhang, X.Q., Zhang, J.F., Song, X.Y., et al., 2011.Implications of Compositions of Plagioclase and Olivine on the Formation of the Panzhihua V-Ti Magnetite Deposit, Sichuan Province.Acta Petrologica Sinica, 27(12):3675-3688 (in Chinese with English abstract). http://www.oalib.com/paper/1474882 [72] Zhang, Z.B., Huang, F., Peng, Y.D., et al., 2015.The Mineralogical Characteristics and Spinel Exsolution from Panzhihua V-Ti Magnetite Deposit and Its Significance.Journal of Jilin University (Earth Science Edition), 45(Suppl.1):1510-1552 (in Chinese). [73] Zhang, Z. B., Huang, F., Wan, Q., et al., 2016. The Granular Sequence Characteristics and Genesis of Spinel Exsolution from Panzhihua V-Ti Magnetite Deposit. National Symposium on Mineral Science and Engineering, Beijing, 36-37 (in Chinese). [74] Zheng, W.Q., Deng, Y.F., Song, X.Y., et al., 2014.Composition and Genetic Significance of the Ilmenite of the Panzhihua Intrusion.Acta Petrologica Sinica, 30(5):1432-1442 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20140517 [75] Zhong, H., Zhu, W.G., 2006.Geochronology of Layered Mafic Intrusions from the Pan-Xi Area in the Emeishan Large Igneous Province, SW China.Mineralium Deposita, 41(6):599-606. https://doi.org/10.1007/s00126-006-0081-7 [76] Zhu, Y.F., Massonne, H.J., 2007.Pyrrhotite Exsoluiton Texture of Apatite in the Main Borehole of the Chinese Continental Scientific Dirlling (CCSD).Acta Petrologica Sinica, 23(12):3249-3254 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200712018.htm [77] Zhu, Y.F., Xu, X., 2007.Exsolution Texture of Two-Pyroxenes in Herzolite from Baijiangtan Opiolitic Mélange, Western Junggar, China.Acta Petrologica Sinica, 23(5):1075-1086 (in Chinese with English abstract). http://www.researchgate.net/publication/285864020_Exsolution_texture_of_two-pyroxenes_in_lherzolite_from_Baijiangtan_ophiolitic_melange_western_Junggar_China [78] 介万奇, 2010.晶体生长原理与技术.北京:科学出版社, 634-637. [79] 李朝晖, 彭志忠, 1988.攀西地区铁钛氧化物矿物的显微结构.地球科学, 13(1):17-23. http://mall.cnki.net/magazine/article/DQKX198801008.htm [80] 李建平, Kornprobst, J., Provost, A., 1995.尖晶石在地幔橄榄岩部分熔融和亚固相平衡过程中的化学指示——实验研究及在自然岩石中的应用.地质学报, 4(2):169-184. http://www.oalib.com/paper/4877605 [81] 李文臣, 1992.攀枝花钒钛磁铁矿矿床地质及其成因.地质与勘探, (10):18-21. https://www.researchgate.net/profile/Xiangkun_Zhu/publication/271520066_Fe_isotopic_characteristics_of_V-Ti_magnetite_deposit_in_Panzhihua_area_of_Sichuan_Province_and_their_genetic_implications/links/54cb126d0cf22f98631df376.pdf?origin=publication_detail [82] 梁凤华, 曾令森, 许志琴, 等, 2006.中国大陆科学钻探主孔540~600 m榴辉岩中赤铁矿-钛铁矿固溶体出溶结构的特征及对榴辉岩折返动力学过程的意义.岩石学报, 22(7):1905-1914. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201401005017.htm [83] 刘良, 陈丹玲, 张安达, 等, 2005.阿尔金超高压(>7 GPa)片麻状(含)钾长石榴辉石岩——石榴子石出溶单斜辉石的证据.中国科学:地球科学, 35(2):105-114. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200303041.htm [84] 刘良, 孙勇, 罗金海, 等, 2003.阿尔金英格利萨依花岗质片麻岩超高压变质.中国科学:地球科学, 35(12):1184-1192. http://www.cqvip.com/QK/98491X/200312/8859006.html [85] 刘良, 杨家喜, 章军锋, 等, 2009.超高压岩石中矿物显微出溶结构研究进展、面临问题与挑战.矿物岩石地球化学通报, 27(增刊1):1387-1400. http://mall.cnki.net/magazine/Article/KXTB200910011.htm [86] 刘祥文, 金振民, 曲晶, 等, 2005.石榴石异剥橄榄岩中橄榄石的钛铁矿和含铬钛磁铁矿出溶体.中国科学:地球科学, 35(10):949-956. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200510005 [87] 罗照华, 苏尚国, 刘翠, 2001.大椅山玄武岩中幔源透辉石岩的辉石出溶作用及其地质意义.现代地质, 15(2):184-188. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX198401007.htm [88] 毛晨, 吕新彪, 陈超, 等, 2016.内蒙古红彦镇地区山神府花岗岩熔融-流体包裹体特征及其成矿意义.地球科学, 41(1):139-152. http://www.earth-science.net/WebPage/Article.aspx?id=3227 [89] 桑祖南, 夏斌, 周永胜, 等, 2003.含矿辉长岩液态不混溶作用实验研究.中国科学:地球科学, 33(4):353-361. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200304008 [90] 王濮, 潘兆橹, 翁玲宝, 等, 1982.系统矿物学.北京:地质出版社, 488-489. [91] 王岩国, 叶恒强, 西门露露, 等, 1990.磁铁矿中出溶与缺陷结构的高分辨电镜研究.矿物学报, 10(1):8-14. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB199001001.htm [92] 夏斌, 刘维亮, 周国庆, 等, 2013.西藏蓬湖西镁质榴辉岩中的出溶物及其地质意义.南京大学学报(自然科学版), 49(3):356-386. http://d.old.wanfangdata.com.cn/Periodical/njdxxb201303007 [93] 邢长明, 王焰, 张铭杰, 2012.攀西地区超大型钒钛磁铁矿矿床挥发份组成及其C-H-O稳定同位素研究:对挥发份来源和矿石成因的约束.中国科学:地球科学, 42(11):1701-1715. http://earth.scichina.com:8080/sciD/CN/abstract/abstract509199.shtml [94] 徐海军, 赵素涛, 武云, 2016.单斜辉石中石英出溶体的显微结构和成因机制.地球科学, 41(6):948-970. http://www.earth-science.net/WebPage/Article.aspx?id=3310 [95] 徐洲, 赵连城, 2004.高等院校教材:金属固态相变原理.北京:科学出版社, 14-16. [96] 张晓琪, 张加飞, 宋谢炎, 等, 2011.斜长石和橄榄石成分对四川攀枝花钒钛磁铁矿床成因的指示意义.岩石学报, 27(12):3675-3688. http://mall.cnki.net/magazine/Article/YSXB201112015.htm [97] 张志彬, 黄菲, 彭艳东, 等, 2015.攀枝花钒钛磁铁矿中尖晶石出溶体的特征及其标示意义.吉林大学学报(地球科学版), 45(增刊1):1510-1552. https://t.docin.com/p-1688030067.html [98] 张志彬, 黄菲, 万泉, 等, 2016. 攀枝花钒钛磁铁矿中尖晶石出溶体的粒度序变特征及其成因分析. 北京: 全国矿物科学与工程学术研讨会, 36-37. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=9140978 [99] 郑文勤, 邓宇峰, 宋谢炎, 等, 2014.攀枝花岩体钛铁矿成分特征及其成因意义.岩石学报, 30(5):1432-1442. https://www.researchgate.net/profile/Yufeng_Deng/publication/286314943_Composition_and_genetic_significance_of_the_ilmenite_of_the_Panzhihua_intrusion/links/57d6a74208ae601b39abf141.pdf?origin=publication_list [100] 朱永峰, Massonne, H.J., 2007.中国大陆科学钻探主孔中磷灰石的磁黄铁矿出溶结构.岩石学报, 23(12):3249-3254. doi: 10.3969/j.issn.1000-0569.2007.12.017 [101] 朱永峰, 徐新, 2007.西准噶尔白碱滩二辉橄榄岩中两种辉石的出溶结构及其地质意义.岩石学报, 23(5):1075-1086. https://www.researchgate.net/profile/Yongfeng_Zhu/publication/278340576_Exsolution_texture_of_two-pyroxenes_in_Iherzolite_from_Baijiangtan_ophiolitic_melange_western_Junggar_China/links/56fe6eff08ae650a64f71c9e/Exsolution-texture-of-two-pyroxenes-in-Iherzolite-from-Baijiangtan-ophiolitic-melange-western-Junggar-China.pdf