Sequence and Genetic Mechanism of Nano-Micron Spinel Exsolution from Panzhihua V-Ti Magnetite Deposit
-
摘要: 钛磁铁矿内部尖晶石出溶体的成分组成和形成机制对估算磁铁矿固溶体的成分以计算铁钛氧化物的氧逸度-温度具有重要意义.为了探究攀枝花钒钛磁铁矿中尖晶石的成因及形成机制,运用岩相观察和各种微区原位观测手段,系统研究了各类尖晶石的矿物学特征.尖晶石的粒度在纳微米之间,有3种类型:第1种为钛磁铁矿晶界处不规则的大颗粒尖晶石,Mg#为60~70;第2种为钛磁铁矿颗粒内部的粒状尖晶石,Mg#为71~77;第3种为沿钛磁铁矿(100)方向定向分布的尖晶石片晶,Mg#为75~77.3类尖晶石分别与磁铁矿主晶具有相同的取向关系:{111}Mag//{111}Spl,{110}Mag//{110}Spl和{100}Mag//{100}Spl.3类尖晶石均是磁铁矿主晶的出溶体,钛磁铁矿晶界处及其内部的粒状尖晶石的形成与某些晶体缺陷关系密切,是在降温过程中较早出溶的产物,尖晶石片晶在两者之后以旋节分解出溶形成.Abstract: Detailed characterization and formation mechanism of the spinel exsolution in titanomagnetite is crucial for reconstructing the composition of magnetite solid solution precursor and for application to the Fe-Ti oxide oxythermometer. The chemical composition, topographic characteristics and crystallographic relationships of spinel exsolution were studied systematically to probe into its sequence and genetic mechanism through petrographic observation and the integrated use of in-situ microanalysis methods. The results show that there are three output forms of the spinel exsolution. One spinel exsolution is on the edge of the titanomagnetite with Mg# range from 60-70. Another is granular spinel exsolution distributing dispersedly with big particle-size, with Mg# range from 71-77. The third spinel exsolution is present as lamellae parallelling to the {100} of the titanomagnetite with Mg# range from 75-77. Three different types of spinel exsolution are all the magnesia-alumina spinel and have close-packed oxygen planes and directions parallel to those in the host magnetite with {111}Mag//{111}Spl, {110}Mag//{110}Spl and {100}Mag//{100}Spl respectively. Analysis suggests that three different types of spinel exsolution are all the product of the magnetite solid solution in the process of slow cooling with different sequence and genetic significance. The granular spinel exsolution in the titanomagnetite and the spinel exsolution on the edge of the titanomagnetite are related to some crystallographic defects in titanomagnetite and exsolved at the early stages of exsolution. The spinel lamellae exsolved in the way of spinodal decomposition parallelling to {l00}.
-
Key words:
- Panzhihua /
- nano-micron /
- spinel exsolution /
- sequence /
- genetic mechanism
-
0. 引言
自然界广泛存在各种类型的固溶体,固溶体矿物在后期的地质作用中经常会发生出溶作用,形成粒度在纳微米级别的出溶矿物.这种纳-微米出溶矿物作为成矿活动的遗迹,不仅仅是矿物内部结构的自组织现象,而且承载着其所处地质环境变化过程的信息.出溶体生长发育各个阶段中结构、形貌和化学组成的特征均能够很好地反映和推演其所存在岩石的形成、演化历史(Sautter et al., 1991;罗照华等,2001;刘良等, 2003, 2005;刘祥文等, 2005; Mccallum et al., 2006; Sun et al., 2007;朱永峰和Massonne, 2007;朱永峰和徐新,2007; Yamamoto et al., 2009;夏斌等,2013;Airiyants et al., 2014;Xu et al., 2015;毛晨等,2016;徐海军等,2016),并对岩体冷却速率的计算具有重要意义(Mccallum et al., 2006).
在铁钛氧化物矿物内部同样广泛发育各种类型、各种规模的出溶交生现象.由于铁钛氧化物是构成矿体的主要矿物,因而对其出溶现象的研究,在国内外均得到广泛重视.前人对各类天然和实验合成的Fe-Ti氧化物中的出溶体进行过大量的矿物学和地球物理学研究(Buddington and Lindsley, 1964;Lindsley,1991; Lattard et al., 2005; Evans et al., 2006; 梁凤华等,2006;Sauerzapf et al., 2008; Wenk et al., 2011; Tan et al., 2016),并提出其中岩浆岩钛磁铁矿中的钛铁矿和钛铁晶石等出溶体对估算岩体温度和氧逸度具有重要意义(Spencer and Lindsley, 1981; Tathavadkar et al., 2001;Karipi et al., 2007; Jha et al., 2013),并且认为这些显微出溶结构对其赋存岩石的天然剩磁(NRM)具有重要影响(Graham,1953;Buddington and Lindsley, 1964; Strangway et al., 1968;Andersen and Lindsley, 1988; Harrison and Putnis, 1995,1996;Larson et al., 2010);而钛铁矿中的磁铁矿出溶体的形成对理解铁钛氧化物在亚固相的阳离子重新分配和钛铁矿具有的强烈的NRM方面具有重要的意义(Price,1981;Nord and Lawson, 1989;Robinson et al., 2002, 2004; Mcenroe et al., 2010; Tan et al., 2016).
除已被广泛研究的钛铁晶石和钛铁矿,钛磁铁矿中还发育有丰富的纳-微米粒度的尖晶石,其中定向排列明显的针楔状细粒尖晶石通常被认为是磁铁矿固溶体在降温过程中的旋节分解产生的出溶体(李朝晖和彭志忠,1988;李文臣,1992;Krasnova and Krezer, 1995;Harrison and Putnis, 1997;Howarth et al., 2013;Liu et al., 2015).尖晶石出溶体的形貌、数量、粒度以及成分特征强烈受控于其生成环境的物化条件,对矿床的形成环境和热演化历史具有重要的标示意义,其显微出溶结构对钛磁铁矿的磁性具重要影响(Harrison and Putnis, 1997;张志彬等, 2015, 2016).
攀枝花钒钛磁铁矿是世界上著名的典型岩浆矿床,其主要成矿矿物钒钛磁铁矿中见有大量的尖晶石,其形貌丰富多样、结构类型较为复杂,除定向排列明显的针楔状细粒尖晶石外,还见有多种类型的尖晶石.目前对各类尖晶石尚缺乏较系统的研究,其成因也没有确切的定论(Gruenewaldt et al., 1985; Speczik et al., 1988;桑祖南等,2003;邢长明等,2012; Howarth et al., 2013).
本次研究在系统观测尖晶石的矿物学特征基础上,对其进行深入研究,旨在通过电子探针、场发射扫描电镜对钛磁铁矿中的各类尖晶石成分特征进行详细分析,并通过电子背散射衍射(EBSD)揭示尖晶石出溶体和主晶磁铁矿晶格的关系,探究攀枝花钒钛磁铁矿中各类尖晶石的成因及形成顺序,揭示尖晶石出溶体内部的组成变化与其出溶环境温度和氧逸度的密切关系,为研究矿床的形成演化过程提供矿物学依据.
1. 区域地质和矿床地质概况
攀枝花钒钛磁铁矿矿床处于峨眉山大火成岩省中部攀枝花断裂带上.区内主要为NS向断裂构造,地壳活动和岩浆活动频繁而又强烈,火山岩和侵入岩均较发育,火山岩主要为二叠纪峨眉山玄武岩,侵入岩以酸性侵入岩类最为发育.区域地质特征如图 1.
攀枝花钒钛磁铁矿矿床产于辉长岩体中,自东北向西南分为朱家包包、兰家火山、尖山、倒马坎、公山、纳拉箐6个矿区(图 2).含矿岩体内部层状构造明显,不同成分矿物构成的浅色岩和暗色岩相互更叠交替,钒钛磁铁矿体位于层状岩体的底部,与辉长岩有明显的接触界线.攀枝花岩体自上而下共划分为上部岩相带、中部岩相带、下部岩相带和边缘带这4个岩相带以及Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ、Ⅶ、Ⅷ、Ⅸ9个矿体,其中下部含矿带含矿性好,品位高,矿体厚,延伸大,其中的Ⅴ、Ⅵ、Ⅷ、Ⅸ矿体为主要矿体.本次研究样品取自于兰家火山矿段的Ⅴ矿体、Ⅵ矿体和Ⅷ矿体.
2. 样品及分析测试手段
尖晶石出溶体形貌和粒度观察,在东北大学研究院分析测试中心完成.仪器为德国蔡司公司Ultra Plus型场发射扫描电镜,主要技术指标:分辨率:0.8 nm/15 kV,1.6 nm/1 kV;加速电压:20 V~30 kV;Schottky型场发射(热场)电子源;放大倍数:12倍~100万倍;二次电子像;多种背散射电子像;全数字化计算机控制并行手控系统;电磁/静电式透镜会聚系统.配备有电制冷X射线能谱仪(EDS)和电子背散射衍射系统(EBSD).
EBSD测试在中国地质大学(武汉)场发射扫描电镜实验室完成.仪器为德国蔡司公司Quanta 450 FEG型场发射扫描电镜,将样品的XZ面定向薄片经过精细抛光后置于20 kV的扫描电镜电子束电压下,电流172 μA,样品台倾角为70 ℃,工作距离为25 mm.利用EBSD系统确定磁铁矿和尖晶石颗粒的电子背散射衍射花样,标明衍射点的指数,进行矿物的优选方位测定,所有分析均自动完成.
尖晶石出溶体的定量成分分析在中国地质科学院矿产资源研究所电子探针实验室完成,仪器为日本岛津公司的JXA8230型电子探针,主要技术指标:加速电压20 kV,束流2×10-8 A,束斑5 μm.
3. 分析结果
3.1 矿石特征
本次研究样品取自于兰家火山矿段Ⅴ矿体、Ⅵ矿体和Ⅷ矿体,手标本显示为灰白色至灰黑色,记为PZH-Ⅴ-1~13,PZH-Ⅵ-1~12,PZH-Ⅷ-1~18.Ⅴ矿体和Ⅵ矿体主要由中-稀疏浸染状矿石、星散浸染状矿石与辉长岩组成(图 3a, 3b),以海绵陨铁结构为主(图 3e, 3f);从Ⅷ矿体底部到顶部,铁钛氧化物含量逐渐减少,硅酸盐脉石矿物及金属硫化物含量逐渐增加.其中Ⅷ矿体底部样品具有稠密浸染状、致密块状构造(图 3c, 3d),以粒状镶嵌结构为主,偶见海绵陨铁结构,向上逐渐过渡为稀疏-星散浸染状矿石,以海绵陨铁结构为主(图 3g).
矿石矿物主要有钛磁铁矿、磁铁矿、钛铁矿和尖晶石等金属氧化物,还有磁黄铁矿、黄铁矿和黄铜矿等金属硫化物.脉石矿物主要为硅酸盐矿物,以及少量磷酸盐、碳酸盐矿物.其中,辉石和斜长石为自形或半自形.
3.2 形貌特征
攀枝花钒钛磁铁矿矿石中含有多种类型的尖晶石,其中钛磁铁矿颗粒内部定向分布明显的尖晶石片晶被广泛地认为是磁铁矿固溶体后期出溶的产物.本次研究通过系统的矿物学观察发现,除上述尖晶石出溶体,在钛磁铁矿内部及颗粒边缘处还分布有大量其他类型的尖晶石.
3.2.1 钛磁铁矿内部尖晶石
观测结果表明,形态复杂且粒度较大的粒状尖晶石与定向排列的尖晶石片晶同见于钛磁铁矿内部(图 4a),粒状尖晶石粒度较大(3~80 μm),呈多角星状或自形程度很高的粒状体(图 4b, 4c),其核部常见有极细粒的硫化物(图 4d),而周围多有尖晶石较少的“空白区”.
3.2.2 钛磁铁矿边缘尖晶石
在钛磁铁矿粒间及与其他矿物的晶界处常见有不规则的大颗粒尖晶石.此类尖晶石常呈粒状分布在钛磁铁矿粒间或围绕钛磁铁矿边缘呈环礁状分布,当钛磁铁矿和钛铁矿紧密镶嵌共生时,尖晶石出溶体与钛磁铁矿晶形补生,分布在钛磁铁矿边缘部分,形成补自形晶结构(图 5a, 5b).尖晶石的粒度普遍较大,粒度在十几微米到几百微米之间.此种类型尖晶石常伴随着相邻钛磁铁矿内部尖晶石粒度环带现象的出现,与其相接的钛磁铁矿边缘的尖晶石含量较少,颗粒较小,以针楔状片晶为主.
此外,常见有尖晶石呈环带状包裹于硫化物或磁铁矿颗粒周围,形成特殊的“鸟眼状”结构;此类结构主要分布在铁钛氧化物的裂隙中,在钛磁铁矿内部的乳滴状硫化物周围也见有此类尖晶石出溶体(图 5c, 5d).钛磁铁矿裂隙中的尖晶石粒度较大,“鸟眼状”结构中心为硫化物,尖晶石呈环带状包裹在其周围,在硫化物和尖晶石之间常见有浸染状的铁钛氧化物,其粒度可达100~200 μm.钛磁铁矿内部包裹有乳滴状硫化物的“鸟眼状”结构尖晶石,其通常粒度较小,尖晶石和硫化物之间边界明显,两者之间未见有其他铁钛氧化物.
3.3 晶体取向关系
对含有尖晶石的2个不同晶粒的磁铁矿进行EBSD分析,其极射赤平投影结果显示,同一晶粒的磁铁矿具有相同的取向,主晶磁铁矿是单晶;同一晶粒钛磁铁矿中,形态复杂的大颗粒尖晶石与磁铁矿主晶以及小颗粒尖晶石片晶具有相同的晶体取向关系,结果显示尖晶石和磁铁矿主晶{111}Mag//{111}Spl,{110}Mag//{110}Spl和{100}Mag//{100}Spl(图 6a, 6b, 6c;图 7a, 7b);磁铁矿与其边缘不规则大颗粒尖晶石同样具有相同的晶体关系,结果显示尖晶石和磁铁矿主晶具有{111}Mag//{111}Spl,{110}Mag//{110}Spl和{100}Mag//{100}Spl关系(图 6a和6d).
3.4 成分分析
3.4.1 钛磁铁矿内部尖晶石
对钛磁铁矿内部尖晶石片晶及形态复杂且粒度较大的粒状尖晶石的分析结果显示,尖晶石片晶的Mg#(Mg#=100×Mg/(Mg+Fe); 将少量Fe3+换算为Fe2+)在75以上.粒状尖晶石的Mg#整体略低,为71~77,且随颗粒粒度增加Mg#有降低趋势,Fe2+/Fe3+为3~14,Cr含量极少,Cr#(Cr#=100×Cr/(Cr+Al))含量为0.1以下(表 1).因此,钛磁铁矿内部的尖晶石片晶及形态复杂且粒度较大的尖晶石均属于镁铝尖晶石.
表 1 钛磁铁矿内部粒状尖晶石出溶体电子探针分析数据Table Supplementary Table The EPMA data of the spinel exsolutions in the titanomagnetite矿物(%) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Na2O 0.04 0.03 0.04 0.03 0.02 0.04 0.05 0.05 0.05 0.056 0.00 0.01 0.01 0.00 0.02 MgO 21.31 21.53 20.76 21.36 21.11 21.30 21.78 21.54 21.18 21.52 18.66 23.43 21.63 22.09 19.35 Al2O3 65.83 65.72 64.54 65.66 65.36 65.52 66.47 66.60 66.22 66.78 58.18 60.57 63.82 63.66 61.30 SiO2 0.18 0.13 0.15 0.011 0.17 0.14 0.10 0.13 0.14 0.04 0.54 0.67 0.17 0.29 0.01 BaO 0.07 0.04 0.00 0.02 0.03 0.04 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 FeO 12.09 10.91 13.50 12.52 12.68 12.03 11.89 11.35 13.15 11.36 18.59 14.79 14.32 14.72 17.72 MnO 0.08 0.06 0.07 0.01 0.08 0.06 0.05 0.02 0.07 0.04 0.06 0.06 0.05 0.08 0.03 NiO 0.00 0.05 0.00 0.03 0.05 0.00 0.00 0.03 0.00 0.00 0.04 0.00 0.00 0.00 0.00 TiO2 0.66 0.44 0.24 0.18 0.21 0.25 0.32 0.38 0.26 0.47 0.06 0.34 0.13 0.00 0.00 Cr2O3 0.09 0.07 0.08 0.07 0.08 0.06 0.08 0.06 0.07 0.11 0.13 0.14 0.09 0.06 0.09 V2O5 0.13 0.07 0.04 0.01 0.05 0.03 0.11 0.08 0.12 0.13 0.10 0.06 0.06 0.04 0.07 Total 100.49 99.06 99.43 100.01 99.86 99.48 100.86 100.25 101.28 100.53 96.40 100.06 100.27 100.96 99.60 Na apfu 0.002 0.001 0.002 0.001 0.001 0.002 0.002 0.001 0.002 0.003 0.000 0.000 0.000 0.000 0.001 Mg 0.791 0.807 0.786 0.795 0.789 0.797 0.803 0.798 0.781 0.795 0.463 0.581 0.537 0.548 0.481 Al 1.932 1.946 1.932 1.933 1.931 1.937 1.936 1.950 1.931 1.951 1.141 1.188 1.252 1.249 1.203 Si 0.004 0.003 0.004 0.003 0.004 0.004 0.003 0.003 0.004 0.001 0.009 0.011 0.003 0.005 0.000 Ba 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Fe2+ 0.235 0.202 0.218 0.207 0.223 0.206 0.204 0.209 0.225 0.212 0.281 0.154 0.204 0.189 0.284 Fe3+ 0.017 0.027 0.066 0.054 0.043 0.046 0.042 0.027 0.047 0.024 0.133 0.156 0.095 0.117 0.096 Mn 0.002 0.001 0.001 0.000 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 Ni 0.000 0.001 0.000 0.001 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.001 Ti 0.012 0.008 0.005 0.003 0.004 0.005 0.006 0.007 0.005 0.009 0.001 0.004 0.002 0.000 0.014 Cr 0.002 0.001 0.002 0.002 0.002 0.001 0.002 0.001 0.001 0.002 0.002 0.002 0.001 0.001 0.001 V 0.004 0.001 0.001 0.000 0.002 0.000 0.002 0.001 0.002 0.002 0.001 0.001 0.001 0.000 0.001 Mg# 75.23 76.86 71.07 73.38 73.31 74.30 75.06 76.18 72.55 76.28 60.67 69.29 69.91 69.19 63.33 DIA(μm) - - 43.0 47.8 38.5 27.0 16.0 20.0 32.0 10.6 - - - - - 注:尖晶石定量成分分析在中国地质科学院矿产资源研究所电子探针实验室完成.1~2测点为定向分布尖晶石片晶的成分数据;3~10测点为钛磁铁矿内部粒状尖晶石成分数据;11~13测点为钛磁铁矿颗粒边缘的大颗粒尖晶石成分数据;14~15测点为“鸟眼状”尖晶石的成分数据. 3.4.2 钛磁铁矿边缘尖晶石
晶界处尖晶石的化学成分介于镁尖晶石和铁尖晶石之间,Mg#较钛磁铁矿内部的尖晶石出溶体低,为60~70(表 1),Fe2+/ Fe3+为1~3.扫描电镜下的元素面扫图像显示,基底矿物钛磁铁矿的Al、Mg、Ca、Si元素明显偏暗,而Fe、O、Ti元素较亮,表明其成分以Fe、O和Ti元素为主(图 8d, 8e, 8g);其中心包裹的大颗粒脉石矿物主要富集Mg、Ca和Si元素(图 8f, 8h, 8j);尖晶石相中Al元素和Mg元素富集,呈较自形的粒状围绕在脉石矿物周围(图 8c, 8f).
4. 分析讨论
4.1 尖晶石的成因
岩浆岩和造山带中一些矿物出溶体及其显微出溶结构的深入研究,对揭示矿床形成及冷却过程中温度和氧逸度等信息,了解超高压岩石俯冲深度及其动力学演化过程均发挥着重要作用(Zhang and Liou, 1999;Green et al., 2000;Ye et al., 2000;Chopin,2003;Liou et al., 2007;刘良等,2009;He et al., 2013).因而,区分认定某些矿物的显微结构是否为“出溶结构”,并准确解析这些显微结构的地质内涵,已成为目前岩浆矿床及超高压研究亟待解决的科学难题之一.
对于钛磁铁矿内部定向明显的尖晶石片晶,前人普遍认为是出溶成因形成的,钛磁铁矿内部较大且自形程度较高的尖晶石虽然被认为不是早期结晶的产物,但有可能是重结晶的产物(Speczik et al., 1988),而对于钛磁铁矿边缘出现的大颗粒尖晶石的成因前人并没有明确定论.
出溶过程的本质是不同阳离子间的类质同象替代,尖晶石的出溶过程则是溶质通过扩散而富集形成新相的过程.磁铁矿和尖晶石同属尖晶石结构,他们的点阵中都由密集的氧原子和阳离子组成,其氧原子构成的结构基形是完全相同的,氧原子在{111}Mag/{111}Spl,{110}Mag/{110}Spl和{100}Mag/{100}Spl密集排布.如果能够找到两相点阵中相互平行的面或者面内方向就可以确定尖晶石和磁铁矿的晶体关系(Li et al., 2011).
本次对攀枝花钒钛磁铁矿中钛磁铁矿及尖晶石的EBSD极射赤平投影结果显示,尖晶石内部具有相同的晶体关系,尖晶石是单晶;且钛磁铁矿内部形貌复杂、自形程度较高的尖晶石,以及钛磁铁矿晶界处不规则大颗粒尖晶石,分别与其主晶磁铁矿和相邻的钛磁铁矿颗粒具有相同的晶体关系.尖晶石和磁铁矿主晶具有{111}Mag//{111}Spl,{110}Mag//{110}Spl和{100}Mag//{100}Spl,表明两者的氧原子密集分布的面和方向在两相中是完全平行的.因此,这些相界面是共格的,由此表明尖晶石是磁铁矿主晶的出溶体(图 6和图 7).磁铁矿的氧原子骨架与尖晶石完全吻合,这样可以使他们的界面具有最小的应变能(Fleet,1985;Zhang et al., 2011;Xu et al., 2015).
4.2 尖晶石的形成机制及出溶序次
4.2.1 出溶机制
在非稳定固溶体中,成分的涨落可以发生分解,以形核生长或旋节分解的方式生成不同的多相结构(王岩国等,1990).前人研究表明,自然界出现的出溶矿物大多数情况下都呈平行的针状晶体(出溶条纹)严格沿主晶矿物的同一个方向分布,出溶体的直径一般为<3 μm(Sautter et al., 1991;罗照华等,2001;梁凤华等,2006;Mccallum et al., 2006;朱永峰和Massonne,2007;朱永峰和徐新,2007;Sun et al., 2007;Yamamoto et al., 2009;夏斌等,2013;Airiyants et al., 2014;Xu et al., 2015).因此,钛磁铁矿中定向排列明显的针楔状细粒尖晶石通常被认为是磁铁矿固溶体在降温过程中的旋节分解产生的出溶体(李朝晖和彭志忠,1988;李文臣,1992;Krasnova and Krezer, 1995;Harrison and Putnis, 1997;Howarth et al., 2013;Liu et al., 2015).钛磁铁矿内部形貌复杂、粒度较大的尖晶石,以及钛磁铁矿晶界处不规则大颗粒尖晶石,同属于钛磁铁矿主晶的出溶体.但这些尖晶石的Mg#较小、形貌复杂且粒度较大,与旋节分解产生的定向排列的针楔状尖晶石差异较大,二者可能是由不同的出溶方式形成的.
攀枝花钒钛磁铁矿产于基性-超基性侵入岩体中,其钛铁氧化物是在较高的氧逸度和温度条件下较早结晶的产物,较高的温度使磁铁矿和钛铁矿中普遍赋存较高含量的Mg和Al,为尖晶石出溶提供了物质基础,同时也使晶体内部保留了大量的晶体缺陷,为出溶提供了必要的场所(Kazmerski et al., 1980;Schrott et al., 1988;Senkader et al., 2000;郑文勤等,2014).Harrison and Putnis(1997)实验证明,在磁铁矿-尖晶石固溶体的冷却过程中,较高温度下会先以形核出溶的方式形成较大的尖晶石颗粒,在随后的过程中以旋节分解的方式沿钛磁铁矿(100)方向出溶尖晶石片晶.
形核生长在出溶的原始阶段需要一个确定的相界面(王岩国等,1990).原始磁铁矿固溶体中存在的晶界面缺陷、层错等晶体缺陷,使在其周围点阵发生畸变,储存有畸变能.在后期缓慢的冷却过程中,在较低的ΔT条件下,尖晶石能否成核,决定于各种能量的变化趋势,即:
$$ \begin{array}{l} \Delta G = \Delta {G_V} + \Delta {G_S} + \Delta {G_E} - \Delta {G_d} = - \Delta {g_V}V + \\ \sigma S + \varepsilon V - \Delta {G_d}, \end{array} $$ (1) 式中:ΔgV.单位体积新相与母相自由能差;σ.单位面积界面能;ε.单位体积应变能;V.新相体积;S.新相面积;ΔGV表示体自由能差;ΔGS表示界面自由能差;ΔGE表示形变能差;ΔGd表示非均匀成核时,由于晶体缺陷消失或减少而降低的能量.新、旧相的自由能差ΔGV-ΔGd是尖晶石出溶的驱动力.
从式(1)可以看出,当发生出溶时,钛磁铁矿的晶体缺陷可以部分抵消出溶相形核时所引起的点阵畸变,具有较低的形核功(ΔG*),增大了形核率,因此,新核总是优先在这些区域形成.
在出溶的过程中晶体缺陷处可以允许更小的临界形核半径和临界能形核功,以及更高的形核率(徐洲和赵连城,2004),并且这些缺陷的延伸方向为出溶晶核提供了有利的生长方向.由此可见,这些缺陷为出溶结构预先提供一套确定的相界面,使出溶相容易在该界面处形核生长.钛磁铁矿晶界及其内部两类大颗粒尖晶石的形成可能与钛磁铁矿中的某些晶体缺陷具有密切的关系.
(1) 晶界处的尖晶石.晶界本身是一种非稳定的结构缺陷,该处的原子成键较弱,原子结构因变形而存在更多的缺陷,易于产生杂质、空位、点缺陷等的偏析,具有更多的跃迁位置、更低的活化能和更高的反应性(Kazmerski et al., 1980; Schrott et al., 1988).沿颗粒边界发生的扩散物质迁移的扩散系数往往比对应的体扩散大若干个数量级.钛磁铁矿的晶界在降温过程中成为出溶体形核的最优先部位(Nagy and Giletti, 1986; Plimpton and Wolf, 1990; Farver and Yund, 2000; Milke et al., 2001).前人对钛铁矿出溶体的研究表明,在高温环境下出溶元素会向钛磁铁矿颗粒边缘扩散聚集,形成大颗粒的钛铁矿出溶体,而在之后的低温环境中,出溶元素扩散能量减弱在钛磁铁矿内部形成粒度较小、出溶量较少的钛铁矿出溶片晶(Gruenewaldt et al., 1985; Howarth et al., 2013).
尖晶石出溶体的形成具有与钛铁矿出溶体类似的过程,随着温度的逐渐降低,Mg2+和Al3+逐渐从磁铁矿晶格中脱离出来,会在钛磁铁矿之间的晶界处率先形核,并在充足的物源(Mg2+和Al3+)供给条件下逐渐发育长大,形成粒度较大的出溶体(图 9a, 9b).由于其形成较早,形成温度较高,保留了较多的Fe,使其具有更小的Mg#.尖晶石出溶形成之后,在持续降温过程中仍会发生熟化现象以减小体系的自由能.在熟化过程中,晶界处的尖晶石相互聚集并会吸收钛磁铁矿边缘处较小的尖晶石颗粒以继续长大.
在岩体漫长的冷却过程中,钛磁铁矿的晶界不仅利于尖晶石的形核,还为尖晶石的聚集生长提供了场所,这样就最终形成了钛磁铁矿晶界处颗粒巨大且不规则的尖晶石出溶体(图 9d).当钛磁铁矿晶界处有后期热液充填形成的硫化物时,其内部从钛磁铁矿中出溶的尖晶石则会包裹在这些硫化物周围,出现厚薄不均的尖晶石出溶体包裹边,这就形成了形态较特殊的“鸟眼状”结构的尖晶石出溶体.
研究还显示在脉石矿物与钛磁铁矿的晶界并未出现上述粒度较大的尖晶石颗粒,但这些脉石矿物常具有自核部到边缘为钙长石-辉石-橄榄石的反应边.李建平等(1995)研究表明,在亚固相平衡过程中尖晶石会与周围脉石矿物发生元素交换,温度降低会使其Mg#降低.从岩石结构特征可看出这些脉石矿物晚于钛铁氧化物结晶,这种反应边可能是脉石矿物在结晶过程中钛磁铁矿发生亚固相平衡反应的结果.钛磁铁矿结晶后,脉石矿物逐渐结晶,在亚固相状态下钛磁铁矿中的Mg和Al等元素扩散到脉石矿物中,形成富Mg、Al的反应边.这也导致在之后的岩体降温过程中,钛磁铁矿边缘由于贫Mg、Al而无法出溶较大的尖晶石颗粒.
(2) 钛磁铁矿内部的尖晶石.在钛磁铁矿内部也存在有大量的晶体缺陷,这些缺陷的存在可以成为其他原子的扩散通道,使晶体的扩散系数增加,同时,杂质在位错线上富集可以降低晶体缺陷处的畸变能(Senkader et al., 2000),在降温过程中杂质元素会趋向于在钛磁铁矿内部位错线等晶体缺陷处富集.在钛磁铁矿内部的大颗粒尖晶石的核部常见有纳米、微米尺寸的极细粒硫化物异质晶粒.这些晶粒的成分和结构不同于钛磁铁矿,在出溶过程中以体缺陷的形式成为尖晶石形核的理想场所,并随着出溶生长过程的进行被包裹在尖晶石内部(图 9b, 9c).
由于岩浆中的矿物结晶顺序受氧逸度的控制,对于封闭体系而言,分离结晶过程中岩浆的氧逸度将随岩浆成分的变化而变化,而岩浆成分又受分离结晶矿物组成的控制,所以对于岩浆体系而言,岩浆的氧逸度在很大程度上受岩浆成分的影响(Toplis and Carroll, 1995).原始岩浆在冷却过程中氧逸度会随矿物结晶而不断调整变化,钛铁氧化物和脉石矿物的结晶顺序互有先后,所以在一些钛磁铁矿中偶见有早期结晶的辉石颗粒.由于这些颗粒相对较小,在降温过程中与磁铁矿基体以扩散的方式发生的均一化作用比较彻底,其内部成分均匀并没有类似钛磁铁矿晶界处辉石的反应边(图 9b, 9c, 9d).这些夹杂颗粒由于与钛磁铁矿本身存在热膨胀系数的差异,在冷却过程中会在自身附近引入较大的热应力并导致位错等晶体缺陷的形成(介万奇,2010);并且这些夹杂颗粒的表面为出溶结构预先提供了一套确定的相界面,成为了尖晶石出溶的优先场所,所以围绕这些辉石颗粒间有较多颗粒较大的尖晶石出溶颗粒,而在这些出溶体的周围则形成了贫Mg、Al的尖晶石“空白区”.
4.2.2 出溶顺序
电子探针测试数据显示,攀枝花钒钛磁铁矿中的各类尖晶石的Mg#基本分布在60~80,同属于镁铝尖晶石,表明这几类尖晶石可能具有同样的成因.然而,各类尖晶石在Mg#上具有各自的分布范围.
根据奥斯瓦尔德法则,当有2个或更多的相比现存相更稳定而可能形成时,最不稳定的新相将最先形成,然后再转变为更加稳定的相(Zhong and Zhu, 2006).尖晶石的出溶就本质而言是Mg和Al元素通过扩散而富集形成新相的过程,Mg和Al元素向出溶区迁移,而出溶区中的Fe则逐渐排出.在整个出溶过程中,出溶区域逐渐由磁铁矿相向尖晶石相转变.在出溶过程的初期,溶质的聚集程度还较低,仍表现为磁铁矿相.随着出溶过程的进一步进行,“出溶区”溶质含量逐渐升高向尖晶石相转变,随着溶质的进一步增加最终形成尖晶石出溶相.
在高温的环境中,阳离子的活性较强,Mg和Fe可以保持很高的互溶度(王濮等,1982),因此,出溶体并不是纯净的镁铝尖晶石,可以残留较多的Fe;随着温度降低,Mg和Fe的互溶度降低,形成的新出溶相中Mg更多,而残余的Fe则变少,形成的尖晶石出溶体会更加纯净.从边缘大颗粒尖晶石到粒状尖晶石再到尖晶石片晶,其Mg#逐渐增加,显示出随着出溶环境温度的降低,尖晶石内部残留的Fe含量增加的趋势.
而从能量的观点来看,在固态相变中,均匀形核的形核功最大,晶体内部位错等缺陷次之,晶界非均匀形核的形核功最小,晶界较晶体内部是形核出溶的优先场所(徐洲和赵连城,2004).
由上述讨论可知,Mg#的不同显示钛磁铁矿不同位置产出的各类尖晶石的出溶序次具有先后差异.在钛磁铁矿边缘的尖晶石是钛磁铁矿在降温过程中最先出溶的产物,在早期较高的温度下保留了较多的Fe含量,因此其Mg#最低;而钛磁铁矿内部的尖晶石则出溶较晚,且出溶越早颗粒越大的尖晶石保留的Fe量越多,Mg#越低;随着温度的继续降低,最后针楔状细粒尖晶石以旋节分解出溶形成,具有了相对较高的Mg#(图 9a, 9b, 9c).在出溶期后的熟化过程中,晶界处的尖晶石相互聚集并会吸收周围较小的尖晶石颗粒继续长大,最终形成颗粒巨大的尖晶石出溶颗粒(图 9d).
5. 意义
实际岩浆体系中的氧逸度在很大程度上受岩浆成分,特别是变价元素不同价态离子比例(Fe3+/Fe2+)的影响(张晓琪等,2011).在岩浆结晶过程中,磁铁矿和钛铁矿的结晶顺序受氧逸度的控制(Toplis and Carroll, 1995),两者的成分变化能够较好地反映岩浆中Fe3+ /Fe2+比值的变化,对确定其结晶时的温度和氧逸度具有重要指示意义(Buddington and Lindsley, 1964; Andersen and Lindsley, 1988).但由于磁铁矿和钛铁矿在结晶之后普遍经历了出溶作用,根据其成分无法准确地估算出钛铁氧化物形成时的温度和氧逸度(Pang et al., 2008).钛磁铁矿内部的显微出溶结构对估算磁铁矿固溶体的成分以计算铁钛氧化物的氧逸度-温度具有重要意义(Tan et al., 2016).本次研究表明,除了普遍被认为是出溶产物的尖晶石片晶外,钛磁铁矿内部较大且自形程度较高的尖晶石及其边缘出现的大颗粒尖晶石均为钛磁铁矿的出溶体.这3类尖晶石出溶体内部都保留有较多的Fe含量,其组成对恢复原始磁铁矿固溶体的成分,计算原始磁铁矿固溶体结晶时的温度和氧逸度都具有极其关键的作用.
此外,研究发现不同类型尖晶石出溶体内部Fe含量和Fe2+/Fe3+比值具有显著差异:在钛磁铁矿晶界等晶体缺陷处出溶的尖晶石的Mg#偏低,并较钛磁铁矿内部尖晶石具有更低的Fe2+ /Fe3+,分析认为,在攀枝花岩体缓慢冷却的过程中,Mg和Al元素共同置换Fe元素,在磁铁矿固溶体内部富集形成出溶体,温度差异导致Fe-Mg互溶度的变化是3种类型尖晶石Fe含量变化的主要原因,氧逸度虽未引起尖晶石出溶体内部Fe元素整体的含量的变化,但极可能改变其Fe2+/Fe3+比值.因此,尖晶石出溶体内部的组成变化与其出溶环境温度和氧逸度的差异具有密切关系,对Fe/Mg及Fe2+/Fe3+的进一步定量化研究,有望为攀枝花岩体冷却速率和氧逸度变化的研究提供重要的矿物学依据.
6. 结论
(1) 攀枝花钒钛磁铁矿中的尖晶石依据产出位置、形貌和成分特征可分为3类:第1种为沿钛磁铁矿(100)方向定向分布的尖晶石片晶;第2种为钛磁铁矿颗粒内部散乱分布、粒度较大的粒状尖晶石;第3种为钛磁铁矿粒间及与其他矿物的晶界处不规则的大颗粒尖晶石.依据化学成分3类尖晶石均属于镁铝尖晶石.
(2) 晶体生长取向关系表明钛磁铁矿中的3类尖晶石均为钛磁铁矿的出溶体.
(3) 钛磁铁矿晶界及其内部的大颗粒尖晶石是在钛磁铁矿某些晶体缺陷处优先形核出溶的,其中钛磁铁矿晶界出溶的尖晶石是钛磁铁矿在降温过程中最先出溶的产物,而钛磁铁矿内部的尖晶石则出溶较晚,随着温度的继续降低,最后针楔状细粒尖晶石以旋节分解出溶形成.
(4) 钛磁铁矿晶界及其内部的粒状尖晶石出溶体颗粒较大且内部保留有较多的Fe,其组成对恢复原始磁铁矿固溶体的成分,计算原始磁铁矿固溶体结晶时的温度和氧逸度都具有极其关键的作用,对其Fe/Mg及Fe2+/Fe3+的进一步定量化研究,有望为攀枝花岩体冷却速率和氧逸度变化的研究提供重要的矿物学依据.
致谢: 感谢匿名审稿专家提出的宝贵修改建议和意见.实验室闫莹灿、黎永丽等同学给予很大帮助,在此一并致以诚挚的谢意! -
图 1 中国西南攀枝花-西昌地区区域地质图及峨眉山大火成岩省分布
Fig. 1. Generalized geological map of the Pan-Xi area, Emeishan large igneous province, SW China showing the distribution of mafic-ultramafic intrusions that host Fe-Ti oxide mineralization
表 1 钛磁铁矿内部粒状尖晶石出溶体电子探针分析数据
Table 1. The EPMA data of the spinel exsolutions in the titanomagnetite
矿物(%) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Na2O 0.04 0.03 0.04 0.03 0.02 0.04 0.05 0.05 0.05 0.056 0.00 0.01 0.01 0.00 0.02 MgO 21.31 21.53 20.76 21.36 21.11 21.30 21.78 21.54 21.18 21.52 18.66 23.43 21.63 22.09 19.35 Al2O3 65.83 65.72 64.54 65.66 65.36 65.52 66.47 66.60 66.22 66.78 58.18 60.57 63.82 63.66 61.30 SiO2 0.18 0.13 0.15 0.011 0.17 0.14 0.10 0.13 0.14 0.04 0.54 0.67 0.17 0.29 0.01 BaO 0.07 0.04 0.00 0.02 0.03 0.04 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 FeO 12.09 10.91 13.50 12.52 12.68 12.03 11.89 11.35 13.15 11.36 18.59 14.79 14.32 14.72 17.72 MnO 0.08 0.06 0.07 0.01 0.08 0.06 0.05 0.02 0.07 0.04 0.06 0.06 0.05 0.08 0.03 NiO 0.00 0.05 0.00 0.03 0.05 0.00 0.00 0.03 0.00 0.00 0.04 0.00 0.00 0.00 0.00 TiO2 0.66 0.44 0.24 0.18 0.21 0.25 0.32 0.38 0.26 0.47 0.06 0.34 0.13 0.00 0.00 Cr2O3 0.09 0.07 0.08 0.07 0.08 0.06 0.08 0.06 0.07 0.11 0.13 0.14 0.09 0.06 0.09 V2O5 0.13 0.07 0.04 0.01 0.05 0.03 0.11 0.08 0.12 0.13 0.10 0.06 0.06 0.04 0.07 Total 100.49 99.06 99.43 100.01 99.86 99.48 100.86 100.25 101.28 100.53 96.40 100.06 100.27 100.96 99.60 Na apfu 0.002 0.001 0.002 0.001 0.001 0.002 0.002 0.001 0.002 0.003 0.000 0.000 0.000 0.000 0.001 Mg 0.791 0.807 0.786 0.795 0.789 0.797 0.803 0.798 0.781 0.795 0.463 0.581 0.537 0.548 0.481 Al 1.932 1.946 1.932 1.933 1.931 1.937 1.936 1.950 1.931 1.951 1.141 1.188 1.252 1.249 1.203 Si 0.004 0.003 0.004 0.003 0.004 0.004 0.003 0.003 0.004 0.001 0.009 0.011 0.003 0.005 0.000 Ba 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Fe2+ 0.235 0.202 0.218 0.207 0.223 0.206 0.204 0.209 0.225 0.212 0.281 0.154 0.204 0.189 0.284 Fe3+ 0.017 0.027 0.066 0.054 0.043 0.046 0.042 0.027 0.047 0.024 0.133 0.156 0.095 0.117 0.096 Mn 0.002 0.001 0.001 0.000 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 Ni 0.000 0.001 0.000 0.001 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.001 Ti 0.012 0.008 0.005 0.003 0.004 0.005 0.006 0.007 0.005 0.009 0.001 0.004 0.002 0.000 0.014 Cr 0.002 0.001 0.002 0.002 0.002 0.001 0.002 0.001 0.001 0.002 0.002 0.002 0.001 0.001 0.001 V 0.004 0.001 0.001 0.000 0.002 0.000 0.002 0.001 0.002 0.002 0.001 0.001 0.001 0.000 0.001 Mg# 75.23 76.86 71.07 73.38 73.31 74.30 75.06 76.18 72.55 76.28 60.67 69.29 69.91 69.19 63.33 DIA(μm) - - 43.0 47.8 38.5 27.0 16.0 20.0 32.0 10.6 - - - - - 注:尖晶石定量成分分析在中国地质科学院矿产资源研究所电子探针实验室完成.1~2测点为定向分布尖晶石片晶的成分数据;3~10测点为钛磁铁矿内部粒状尖晶石成分数据;11~13测点为钛磁铁矿颗粒边缘的大颗粒尖晶石成分数据;14~15测点为“鸟眼状”尖晶石的成分数据. -
[1] Airiyants, E.V., Zhmodik, S.M., Ivanov, P.O., et al., 2014.Mineral Inclusions in Fe-Pt Solid Solution from the Alluvial Ore Occurrences of the Anabar Basin (Northeastern Siberian Platform).Russian Geology & Geophysics, 55(8):945-958. http://linkinghub.elsevier.com/retrieve/pii/S1068797114001394 [2] Andersen, D.J., Lindsley, D.H., 1988.Internally Consistent Solution Models for Fe-Mg-Mn-Ti Oxides:Fe-Ti Oxides.American Mineralogist, 73:714-726. https://www.researchgate.net/publication/292765474_Internally_consistent_solution_models_for_Fe-Mg-Mn-Ti_oxides_Fe-Mg-_Ti_oxides_and_olivine [3] Buddington, A.F., Lindsley, D.H., 1964.Iron-Titanium Oxide Minerals and Synthetic Equivalents.Journal of Petrology, 5(2):310-357. doi: 10.1093/petrology/5.2.310 [4] Chopin, C., 2003.Ultrahigh-Pressure Metamorphism:Tracing Continental Crust into the Mantle.Earth and Planetary Science Letters, 212(1):1-14. https://www.deepdyve.com/lp/elsevier/ultrahigh-pressure-metamorphism-tracing-continental-crust-into-the-294eCeLoAd [5] Evans, B.W., Scaillet, B., Kuehner, S.M., 2006.Experimental Determination of Coexisting Iron-Titanium Oxides in the Systems FeTiAlO, FeTiAlMgO, FeTiAlMnO, and FeTiAlMgMnO at 800 and 900℃, 1-4 kbar, and Relatively High Oxygen Fugacity.Contributions to Mineralogy and Petrology, 152(2):149-167. doi: 10.1007/s00410-006-0098-z [6] Farver, J., Yund, R., 2000.Silicon Diffusion in a Natural Quartz Aggregate:Constraints on Solution-Transfer Diffusion Creep.Tectonophysics, 325(3):193-205. https://www.deepdyve.com/lp/elsevier/silicon-diffusion-in-a-natural-quartz-aggregate-constraints-on-0QpE75Yuo8 [7] Fleet, M.E., 1985.Orientation of Phase and Domain Boundaries in Crystalline Solids.American Mineralogist, 70(1-2):130-133. http://www.researchgate.net/publication/282494937_Orientation_of_phase_and_domain_boundaries_in_crystalline_solids [8] Graham, J.W., 1953.Changes of Ferromagnetic Minerals and Their Bearing on Magnetic Properties of Rocks.Journal of Geophysical Research:Atmospheres, 58(2):243-260. doi: 10.1029/JZ058i002p00243 [9] Green, H.W., Dobrzhinetskaya, L., Bozhilov, K.N., 2000.Mineralogical and Experimental Evidence for Very Deep Exhumation from Subduction Zones.Journal of Geodynamics, 30(1):61-76. http://www.academia.edu/1586210/Mineralogical_and_experimental_evidence_for_very_deep_exhumation_from_subduction_zones [10] Gruenewaldt, G.V., Klemm, D.D., Henckel, J., et al., 1985.Exsolution Features in Titanomagnetites from Massive Magnetite Layers and Their Host Rocks of the Upper Zone, Eastern Bushveld Complex.Economic Geology, 80(4):1049-1061. doi: 10.2113/gsecongeo.80.4.1049 [11] Harriuson, R.J., Putnis, A., 1995.Magnetic Properties of the Magnetite-Spinel Solid Solution:Saturation Magnetization and Cation Distributions.American Mineralogist, 80(3-4):213-221. doi: 10.2138/am-1995-3-402 [12] Harrison, R.J., Putnis, A., 1996.Magnetic Properties of the Magnetite-Spinel Solid Solution:Curie Temperatures, Magnetic Susceptibilities, and Cation Ordering.American Mineralogist, 81(3-4):375-384. doi: 10.2138/am-1996-3-412 [13] Harrison, R.J., Putnis, A., 1997.Interaction between Exsolution Microstructures and Magnetic Properties of the Magnetite-Spinel Solid Solution.American Mineralogist, 82(1-2):131-142. doi: 10.2138/am-1997-1-215 [14] He, D., Liu, Y., Tong, X., et al., 2013.Multiple Exsolutions in a Rare Clinopyroxene Megacryst from the Hannuoba Basalt, North China:Implications for Subducted Slab-Related Crustal Thickening and Recycling.Lithos, 177(3):136-147. http://adsabs.harvard.edu/abs/2013Litho.177..136H [15] Howarth, G.H., Prevec, S.A., Zhou, M.F., 2013.Timing of Ti-Magnetite Crystallisation and Silicate Disequilibrium in the Panzhihua Mafic Layered Intrusion:Implications for Ore-Forming Processes.Lithos, 170-171(6):73-89. http://www.sciencedirect.com/science/article/pii/S002449371300087X [16] Jha, A., Lahiri, A., Kumari, E.J., 2013.Beneficiation of Titaniferous Ores by Selective Separation of Iron Oxide, Impurities and Rare Earth Oxides for the Production of High Grade Synthetic Rutile.Mineral Processing & Extractive Metallurgy, 117(3):157-165. doi: 10.1179/174328508X292964 [17] Jie, W.Q., 2010.Principle and Technology of Crystal Growth.Science Press, Beijing, 634-637 (in Chinese). [18] Karipi, S., Tsikouras, B., Hatzipanagiotou, K., et al., 2007.Petrogenetic Significance of Spinel-Group Minerals from the Ultramafic Rocks of the Iti and Kallidromon Ophiolites (Central Greece).Lithos, 99(1):136-149. http://linkinghub.elsevier.com/retrieve/pii/S0024493707001156 [19] Kazmerski, L.L., Ireland, P.J., Ciszek, T.F., 1980.Evidence for the Segregation of Impurities to Grain Boundaries in Multigrained Silicon Using Auger Electron Spectroscopy and Secondary Ion Mass Spectroscopy.Applied Physics Letters, 36(4):323-325. doi: 10.1063/1.91479 [20] Krasnova, N.I., Krezer, Y.L., 1995.New Data on the Nature of Fine and Ultrafine Lamellae in Titanomagnetite.European Journal of Mineralogy, (6):1361-1372. https://www.researchgate.net/profile/Tomas_Petrov2/publication/261551920_New_data_on_the_nature_of_fine_and_ultrafine_lamellae_in_titanomagnetite/links/0a85e534989515ee88000000.pdf [21] Larson, E., Ozima, M., Ozima, M., et al., 2010.Stability of Remanent Magnetization of Igneous Rocks.Geophysical Journal of the Royal Astronomical Society, 17(3):263-292. http://gji.oxfordjournals.org/content/17/3/263.abstract [22] Lattard, D., Sauerzapf, U., Kasemann, M., 2005.New Calibration Data for the Fe-Ti Oxide Thermo-Oxybarometers from Experiments in the Fe-Ti-O System at 1 bar, 1 000-1 300℃ and a Large Range of Oxygen Fugacities.Contributions to Mineralogy and Petrology, 149:735-754. doi: 10.1007/s00410-005-0679-2 [23] Li, Z.H., Peng, Z.Z., 1988.Microstructure of Fe-Ti Oxide Minerals in Panxi District, Sichuan.Earth Science, 13(1):17-23 (in Chinese with English abstract). https://www.deepdyve.com/lp/elsevier/petrogenesis-and-metallogenesis-of-the-taihe-gabbroic-intrusion-WCimQC9vb0 [24] Li, J.P., Kornprobst, J., Provost, A., 1995.Spinel as a Chemical Indicator during Partial Melting and Subsolidus Equilibration of Mantle Peridotite:Experimental Study and Application in Natural Rocks.Acta Geologica Sinica, 69(2):169-184 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DZXW199504006.htm [25] Li, W.C., 1992.The Geology and Its Genesis of the Panzhihua Fe-V-Ti Deposit.Geology and Prospecting, (10):18-21 (in Chinese). http://linkinghub.elsevier.com/retrieve/pii/S1674987113000327 [26] Li, Z., Zhang, Y., Esling, C., et al., 2011.Determination of the Orientation Relationship between Austenite and 5M Modulated Martensite in Ni-Mn-Ga Alloys.Acta Materialia, 44(6):1222-1226. https://www.researchgate.net/profile/Zongbin_Li/publication/264623054_Determination_of_the_orientation_relationship_between_austenite_and_5M_modulated_martensite_in_Ni-Mn-Ga_alloys/links/53e97ce50cf2dc24b3cabc74.pdf?inViewer=true&disableCoverPage=true&origin=publication_detail [27] Liang, F.H., Zeng, L.S., Xu, Z.Q., et al., 2006.Nature and Significance of Haematite-Limenite Solid Solution in 540-600 m Eclogite of Chinese Continental Scientific Drilling Main Borehole:Implications for the Exhumantion of the CCSD Eclogites.Acta Petrologica Sinica, 22(7):1905-1914 (in Chinese with English abstract). [28] Lindsley, D.H., 1991.Experimental Studies of Oxide Minerals.Reviews in Mineralogy and Geochemistry, 25(1):69-106. https://www.researchgate.net/profile/Stephanie_Rossano/publication/226062336_Experimental_and_theoretical_study_of_the_structural_environment_of_magnesium_in_minerals_and_silicate_glasses_using_X-ray_absorption_near-edge_structure/links/02e7e51c9828f09df7000000.pdf [29] Liou, J.G., Zhang, R.Y., Ernst, W.G., 2007.Very High-Pressure Orogenic Garnet Peridotites.Proceedings of the National Academy of Sciences of the United States of America, 104(22):9116-9121. doi: 10.1073/pnas.0607300104 [30] Liu, L., Chen, D.L., Zhang, A.D., et al., 2005.Ultrahigh Pressure Gneissic Potassium Pomegranate Pyroxenite of Altyn Tagh (>7 GPa), the Evidence from Garnet Exsolve Monoclinic Pyroxene.Science China Earth Sciences, 35(2):105-114 (in Chinese). https://www.deepdyve.com/lp/elsevier/ultrahigh-pressure-minerals-and-metamorphic-terranes-the-view-from-TpCeRD05ZK [31] Liu, L., Sun, Y., Luo, J.H., et al., 2003.UHP Metamorphism of Gneisses of Alkin Inglezza.Science China Earth Sciences, 35(12):1184-1192 (in Chinese). [32] Liu, L., Yang, J.X., Zhang, J.F., et al., 2009.The Research Progress, Problems and Challenges of the Microscopic Exsolution Structure of the Minerals in the UHP Rocks.Bulletin of Minerology, Petrology and Geochemistry, 27(Suppl.1):1387-1400 (in Chinese with English abstract). https://www.researchgate.net/profile/Chao_Wang177/publication/225632088_Exsolution_microstructures_in_ultrahigh-pressure_rocks_Progress_controversies_and_challenges/links/563cac9408aec6f17dd7b585.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail [33] Liu, P.P., Zhou, M.F., Chen, W, T., et al., 2015.In-Situ LA-ICP-MS Trace Elemental Analyses of Magnetite:Fe-Ti-(V) Oxide-Bearing Mafic-Ultramafic Layered Intrusions of the Emeishan Large Igneous Province, SW China.Ore Geology Reviews, 65:853-871. doi: 10.1016/j.oregeorev.2014.09.002 [34] Liu, X.W., Jin, Z.M., Qu, J., et al., 2005.The Ilmenite and Chromite Magnetite Exsolution of Olivine in Garnet Wehrlite.Science China Earth Sciences, 35(10):949-956 (in Chinese). doi: 10.1360/03yd0590.pdf [35] Luo, Z.H., Su, S.G., Liu, C., 2001.Pyroxene Exsolution in Diopside Pyroxenite in Dayishan Basalt and Its Geological Significance.Geoscience, 15(2):184-188 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200102013.htm [36] Mao, C., Lü, X.B., Chen, C., et al., 2016.Characteristics and Metallogenic Significance of Melt-Fluid Inclusions of Shanshenfu Granite in the Hongyan Area, Inner Mongolia.Earth Science, 41(1):139-152 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.011 [37] Mccallum, I.S., Domeneghetti, M.C., Schwartz, J.M., et al., 2006.Cooling History of Lunar Mg-Suite Gabbronorite 76255, Troctolite 76535 and Stillwater Pyroxenite SC-936:The Record in Exsolution and Ordering in Pyroxenes.Geochimica et Cosmochimica Acta, 70(24):6068-6078. doi: 10.1016/j.gca.2006.08.009 [38] Mcenroe, S.A., Harrison, R.J., Peter, R., et al., 2010.Nanoscale Hematite-Ilmenite Lamellae in Massive Ilmenite Rock:An Example of"Lamellar Magnetism"with Implications for Planetary Magnetic Anomalies.Geophysical Journal of the Royal Astronomical Society, 151(3):890-912. http://adsabs.harvard.edu/abs/2002GeoJI.151..890M [39] Milke, R., Wiedenbeck, M., Heinrich, W., 2001.Grain Boundary Diffusion of Si, Mg, and O in Enstatite Reaction Rims:A SIMS Study Using Isotopically Doped Reactants.Contributions to Mineralogy and Petrology, 142(1):15-26. doi: 10.1007/s004100100277 [40] Nagy, K.L., Giletti, B.J., 1986.Grain Boundary Diffusion of Oxygen in a Macroperthitic Feldspar.Geochimica et Cosmochimica Acta, 50(6):1151-1158. doi: 10.1016/0016-7037(86)90397-2 [41] Nord, G.L., Lawson, C.A., 1989.Order-Disorder Transition-Induced Twin Domains and Magnetic Properties in Ilmenite-Hematite.American Mineralogist, 74(1-2):160-176. http://www.researchgate.net/publication/285374647_Order-disorder_transition-induced_twin_domains_and_magnetic_properties_in_ilmenite-hematite [42] Pang, K.N., Zhou, M.F., Lindsley, D., et al., 2008.Origin of Fe-Ti Oxide Ores in Mafic Intrusions:Evidence from the Panzhihua Intrusion, SW China.Journal of Petrology, 49(2):295-313. https://www.researchgate.net/profile/John_Malpas/publication/239536302_Origin_of_Fe-Ti_Oxide_Ores_in_Mafic_Intrusions_Evidence_from_the_Panzhihua_Intrusion_SW_China/links/0deec528d5810e6f74000000.pdf?inViewer=true&disableCoverPage=true&origin=publication_detail [43] Plimpton, S.J., Wolf, E.D., 1990.Effect of Interatomic Potential on Simulated Grain-Boundary and Bulk Diffusion:A Molecular-Dynamics Study.Physical Review B (Condensed Matter), 41(5):2712. doi: 10.1103/PhysRevB.41.2712 [44] Price, G.D., 1981.Subsolidus Phase Relations in the Titanomagnetite Solid Solution Series.American Mineralogist, 66:751-758. https://www.researchgate.net/publication/282561035_Subsolidus_Phase_Relations_in_the_Titanomagnetite_Solid_Solution_Series [45] Robinson, P., Harrison, R.J., Mcenroe, S.A., et al., 2002.Lamellar Magnetism in the Haematite-Ilmenite Series as an Explanation for Strong Remanent Magnetization.Nature, 418(6897):517-520. doi: 10.1038/nature00942 [46] Robinson, P., Harrison, R.J., Mcenroe, S.A., et al., 2004.Nature and Origin of Lamellar Magnetism in the Hematite-Ilmenite Series.American Mineralogist, 89:725-747. doi: 10.2138/am-2004-5-607 [47] Sang, Z.N., Xia, B., Zhou, Y.S., et al., 2003.Experimental Study on Liquid Immiscibility of Gol Ore-Bearing Gabbro.Science China Earth Sciences, 33(4):353-361 (in Chinese). https://www.deepdyve.com/lp/elsevier/the-role-of-vapor-in-the-transportation-of-tin-in-hydrothermal-systems-0erQ8lawCl [48] Sauerzapf, U., Lattard, D., Burchard, M., et al., 2008.The Titanomagnetite-Ilmenite Equilibrium:New Experimental Data and Thermo-Oxybarometric Application to the Crystallization of Basic to Intermediate Rocks.Journal of Petrology, 49(6):1161-1185. doi: 10.1093/petrology/egn021 [49] Sautter, V., Haggerty, S.E., Field, S., 1991.Ultradeep (>300 Kilometers) Ultramafic Xenoliths:Petrological Evidence from the Transition Zone.Science, 252(5007):827-830. doi: 10.1126/science.252.5007.827 [50] Schrott, A.G., Cohen, S.L., Dinger, T.R., et al., 1988.Photoemission Study of Grain Boundary Segregation in YBa2Cu3O7.AIP Conf.Proc.(United States), 165(1):349-357. https://www.researchgate.net/profile/SiuWai_Chan/publication/231819314_Grain_boundary_faceting_in_YBa2Cu3O7-_x_bicrystal_thin_films_on_SrTiO3_substrates/links/00b7d52c196db9082c000000/Grain-boundary-faceting-in-YBa2Cu3O7-x-bicrystal-thin-films-on-SrTiO3-substrates.pdf [51] Senkader, S., Jurkschat, K., Wilshaw, P.R., et al., 2000.A Study of Oxygen Dislocation Interactions in CZ-Si.Materials Science & Engineering B, 73(1):111-115. http://linkinghub.elsevier.com/retrieve/pii/S0921510799004456 [52] Speczik, S., Wiszniewska, J., Diedel, R., 1988.Minerals, Exsolution Features and Geochemistry of Fe-Ti Ores of the Suwaki District (North-East Poland).Mineralium Deposita, 23(3):200-210. doi: 10.1007/BF00204302 [53] Spencer, K.J., Lindsley, D.H., 1981.A Solution Model for Coexisting Iron Titanium Oxides.American Mineralogist, 66:1189-1201. http://petrology.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=gsammin&resid=66/11-12/1189 [54] Strangway, D.W., Larson, E.E., Goldstein, M., 1968.A Possible Cause of High Magnetic Stability in Volcanic Rocks.Journal of Geophysical Research, 73(12):3787-3795. doi: 10.1029/JB073i012p03787 [55] Sun, X.M., Tang, Q., Sun, W.D., et al., 2007.Monazite, Iron Oxide and Barite Exsolutions in Apatite Aggregates from CCSD Drillhole Eclogites and Their Geological Implications.Geochimica et Cosmochimica Acta, 71(11):2896-2905. doi: 10.1016/j.gca.2007.03.030 [56] Tan, W., He, H., Wang, C.Y., et al., 2016.Magnetite Exsolution in Ilmenite from the Fe-Ti Oxide Gabbro in the Xinjie Intrusion (SW China) and Sources of Unusually Strong Remnant Magnetization.American Mineralogist, 101(12):2759-2767. doi: 10.2138/am-2016-5688 [57] Tathavadkar, V.D., Jha, A., Antony, M.P., 2001.The Soda-Ash Roasting of Chromite Minerals:Kinetics Considerations.Metallurgical and Materials Transactions B, 32:593-602. doi: 10.1007/s11663-001-0115-6 [58] Toplis, M.J., Carroll, M.R., 1995.An Experimental Study of the Influence of Oxygen Fugacity on Fe-Ti Oxide Stability, Phase Relations, and Mineral-Melt Equilibria in Ferro-Basaltic Systems.Journal of Petrology, 36(5):1137-1170. doi: 10.1093/petrology/36.5.1137 [59] Wang, P., Pan, Z.L., Weng, L.B., et al., 1982.Systematic Mineralogy.Geological Publishing House, Beijing, 488-489 (in Chinese). [60] Wang, Y.G., Ye, H.Q., Ximen, L.L., et al., 1990.A HREM Study of the Exolution and Defects in Magnetite.Acta Mineralogica Sinica, 10(1):8-14 (in Chinese with English abstract). http://www.osti.gov/scitech/biblio/20015569-hrem-study-ultra-thin-titanium-films-high-resolution-electron-microscopy [61] Wenk, H.R., Chen, K., Smith, R., 2011.Morphology and Microstructure of Magnetite and Ilmenite Inclusions in Plagioclase from Adirondack Anorthositic Gneiss.American Mineralogist, 96(8-9):1316-1324. doi: 10.2138/am.2011.3760 [62] Xia, B., Liu, W.L., Zhou, G.Q., et al., 2013.Exsolutions in a Magnesian Eclogite and the Geologic Significance from Western Peng Lake, Tibet.Journal of Nanjing University (Natural Sciences), 49(3):356-386 (in Chinese with English abstract). https://doi.org/10.13232/j.cnki.jnju.2013.03.010 [63] Xing, C.M., Wang, Y., Zhang, M.J., 2012.Volatile and C-H-O Isotopic Compositions of Giant Fe-Ti-V Oxide Deposits in the Panxi Region and Their Implications for the Sources of Volatiles and the Origin of Fe-Ti Oxide Ores.Science China Earth Sciences, 42(11):1701-1715 (in Chinese). doi: 10.1007/s11430-012-4468-2 [64] Xu, H.J., Zhao, S.T., Wu, Y., 2016.Microstructure and Mechanism of Quartz Exsolution in Clinopyroxene.Earth Science, 41(6):948-970 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.080 [65] Xu, H.R., Zhang, J.F., Zong, K.Q., et al., 2015.Quartz Exsolution Topotaxy in Clinopyroxene from the UHP Eclogite of Weihai, China.Lithos, 226:17-30. https://doi.org/10.1016/j.lithos.2015.02.010 [66] Xu, Z., Zhao, L.C., 2004.Principle of Metal Solid-State Phase Changes.Science Press, Beijing, 14-16 (in Chinese). [67] Yamamoto, S., Komiya, T., Hirose, K., et al., 2009.Coesite and Clinopyroxene Exsolution Lamellae in Chromites:In-Situ Ultrahigh-Pressure Evidence from Podiform Chromitites in the Luobusa Ophiolite, Southern Tibet.Lithos, 109(3-4):314-322. https://doi.org/10.1016/j.lithos.2008.05.003 [68] Ye, K., Cong, B., Ye, D., 2000.The Possible Subduction of Continental Material to Depths Greater than 200 km.Nature, 407(6805):734. https://doi.org/10.1038/35037566 [69] Zhang, J.F., Xu, H.J., Liu, Q., et al., 2011.Pyroxene Exsolution Topotaxy in Majoritic Garnet from 250 to 300 km Depth.Journal of Metamorphic Geology, 29(7):741-751. doi: 10.1111/j.1525-1314.2011.00939.x [70] Zhang, R.Y., Liou, J.G., 1999.Exsolution Lamellae in Minerals from Ultrahigh-Pressure Rocks.International Geology Review, 41:981-993. https://doi.org/10.1080/00206819909465184 [71] Zhang, X.Q., Zhang, J.F., Song, X.Y., et al., 2011.Implications of Compositions of Plagioclase and Olivine on the Formation of the Panzhihua V-Ti Magnetite Deposit, Sichuan Province.Acta Petrologica Sinica, 27(12):3675-3688 (in Chinese with English abstract). http://www.oalib.com/paper/1474882 [72] Zhang, Z.B., Huang, F., Peng, Y.D., et al., 2015.The Mineralogical Characteristics and Spinel Exsolution from Panzhihua V-Ti Magnetite Deposit and Its Significance.Journal of Jilin University (Earth Science Edition), 45(Suppl.1):1510-1552 (in Chinese). [73] Zhang, Z. B., Huang, F., Wan, Q., et al., 2016. The Granular Sequence Characteristics and Genesis of Spinel Exsolution from Panzhihua V-Ti Magnetite Deposit. National Symposium on Mineral Science and Engineering, Beijing, 36-37 (in Chinese). [74] Zheng, W.Q., Deng, Y.F., Song, X.Y., et al., 2014.Composition and Genetic Significance of the Ilmenite of the Panzhihua Intrusion.Acta Petrologica Sinica, 30(5):1432-1442 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20140517 [75] Zhong, H., Zhu, W.G., 2006.Geochronology of Layered Mafic Intrusions from the Pan-Xi Area in the Emeishan Large Igneous Province, SW China.Mineralium Deposita, 41(6):599-606. https://doi.org/10.1007/s00126-006-0081-7 [76] Zhu, Y.F., Massonne, H.J., 2007.Pyrrhotite Exsoluiton Texture of Apatite in the Main Borehole of the Chinese Continental Scientific Dirlling (CCSD).Acta Petrologica Sinica, 23(12):3249-3254 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200712018.htm [77] Zhu, Y.F., Xu, X., 2007.Exsolution Texture of Two-Pyroxenes in Herzolite from Baijiangtan Opiolitic Mélange, Western Junggar, China.Acta Petrologica Sinica, 23(5):1075-1086 (in Chinese with English abstract). http://www.researchgate.net/publication/285864020_Exsolution_texture_of_two-pyroxenes_in_lherzolite_from_Baijiangtan_ophiolitic_melange_western_Junggar_China [78] 介万奇, 2010.晶体生长原理与技术.北京:科学出版社, 634-637. [79] 李朝晖, 彭志忠, 1988.攀西地区铁钛氧化物矿物的显微结构.地球科学, 13(1):17-23. http://mall.cnki.net/magazine/article/DQKX198801008.htm [80] 李建平, Kornprobst, J., Provost, A., 1995.尖晶石在地幔橄榄岩部分熔融和亚固相平衡过程中的化学指示——实验研究及在自然岩石中的应用.地质学报, 4(2):169-184. http://www.oalib.com/paper/4877605 [81] 李文臣, 1992.攀枝花钒钛磁铁矿矿床地质及其成因.地质与勘探, (10):18-21. https://www.researchgate.net/profile/Xiangkun_Zhu/publication/271520066_Fe_isotopic_characteristics_of_V-Ti_magnetite_deposit_in_Panzhihua_area_of_Sichuan_Province_and_their_genetic_implications/links/54cb126d0cf22f98631df376.pdf?origin=publication_detail [82] 梁凤华, 曾令森, 许志琴, 等, 2006.中国大陆科学钻探主孔540~600 m榴辉岩中赤铁矿-钛铁矿固溶体出溶结构的特征及对榴辉岩折返动力学过程的意义.岩石学报, 22(7):1905-1914. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201401005017.htm [83] 刘良, 陈丹玲, 张安达, 等, 2005.阿尔金超高压(>7 GPa)片麻状(含)钾长石榴辉石岩——石榴子石出溶单斜辉石的证据.中国科学:地球科学, 35(2):105-114. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200303041.htm [84] 刘良, 孙勇, 罗金海, 等, 2003.阿尔金英格利萨依花岗质片麻岩超高压变质.中国科学:地球科学, 35(12):1184-1192. http://www.cqvip.com/QK/98491X/200312/8859006.html [85] 刘良, 杨家喜, 章军锋, 等, 2009.超高压岩石中矿物显微出溶结构研究进展、面临问题与挑战.矿物岩石地球化学通报, 27(增刊1):1387-1400. http://mall.cnki.net/magazine/Article/KXTB200910011.htm [86] 刘祥文, 金振民, 曲晶, 等, 2005.石榴石异剥橄榄岩中橄榄石的钛铁矿和含铬钛磁铁矿出溶体.中国科学:地球科学, 35(10):949-956. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200510005 [87] 罗照华, 苏尚国, 刘翠, 2001.大椅山玄武岩中幔源透辉石岩的辉石出溶作用及其地质意义.现代地质, 15(2):184-188. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX198401007.htm [88] 毛晨, 吕新彪, 陈超, 等, 2016.内蒙古红彦镇地区山神府花岗岩熔融-流体包裹体特征及其成矿意义.地球科学, 41(1):139-152. http://www.earth-science.net/WebPage/Article.aspx?id=3227 [89] 桑祖南, 夏斌, 周永胜, 等, 2003.含矿辉长岩液态不混溶作用实验研究.中国科学:地球科学, 33(4):353-361. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200304008 [90] 王濮, 潘兆橹, 翁玲宝, 等, 1982.系统矿物学.北京:地质出版社, 488-489. [91] 王岩国, 叶恒强, 西门露露, 等, 1990.磁铁矿中出溶与缺陷结构的高分辨电镜研究.矿物学报, 10(1):8-14. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB199001001.htm [92] 夏斌, 刘维亮, 周国庆, 等, 2013.西藏蓬湖西镁质榴辉岩中的出溶物及其地质意义.南京大学学报(自然科学版), 49(3):356-386. http://d.old.wanfangdata.com.cn/Periodical/njdxxb201303007 [93] 邢长明, 王焰, 张铭杰, 2012.攀西地区超大型钒钛磁铁矿矿床挥发份组成及其C-H-O稳定同位素研究:对挥发份来源和矿石成因的约束.中国科学:地球科学, 42(11):1701-1715. http://earth.scichina.com:8080/sciD/CN/abstract/abstract509199.shtml [94] 徐海军, 赵素涛, 武云, 2016.单斜辉石中石英出溶体的显微结构和成因机制.地球科学, 41(6):948-970. http://www.earth-science.net/WebPage/Article.aspx?id=3310 [95] 徐洲, 赵连城, 2004.高等院校教材:金属固态相变原理.北京:科学出版社, 14-16. [96] 张晓琪, 张加飞, 宋谢炎, 等, 2011.斜长石和橄榄石成分对四川攀枝花钒钛磁铁矿床成因的指示意义.岩石学报, 27(12):3675-3688. http://mall.cnki.net/magazine/Article/YSXB201112015.htm [97] 张志彬, 黄菲, 彭艳东, 等, 2015.攀枝花钒钛磁铁矿中尖晶石出溶体的特征及其标示意义.吉林大学学报(地球科学版), 45(增刊1):1510-1552. https://t.docin.com/p-1688030067.html [98] 张志彬, 黄菲, 万泉, 等, 2016. 攀枝花钒钛磁铁矿中尖晶石出溶体的粒度序变特征及其成因分析. 北京: 全国矿物科学与工程学术研讨会, 36-37. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=9140978 [99] 郑文勤, 邓宇峰, 宋谢炎, 等, 2014.攀枝花岩体钛铁矿成分特征及其成因意义.岩石学报, 30(5):1432-1442. https://www.researchgate.net/profile/Yufeng_Deng/publication/286314943_Composition_and_genetic_significance_of_the_ilmenite_of_the_Panzhihua_intrusion/links/57d6a74208ae601b39abf141.pdf?origin=publication_list [100] 朱永峰, Massonne, H.J., 2007.中国大陆科学钻探主孔中磷灰石的磁黄铁矿出溶结构.岩石学报, 23(12):3249-3254. doi: 10.3969/j.issn.1000-0569.2007.12.017 [101] 朱永峰, 徐新, 2007.西准噶尔白碱滩二辉橄榄岩中两种辉石的出溶结构及其地质意义.岩石学报, 23(5):1075-1086. https://www.researchgate.net/profile/Yongfeng_Zhu/publication/278340576_Exsolution_texture_of_two-pyroxenes_in_Iherzolite_from_Baijiangtan_ophiolitic_melange_western_Junggar_China/links/56fe6eff08ae650a64f71c9e/Exsolution-texture-of-two-pyroxenes-in-Iherzolite-from-Baijiangtan-ophiolitic-melange-western-Junggar-China.pdf 期刊类型引用(4)
1. 刘红旭,丁波,刘威宏,邱林飞,王文全. 有关砂岩中钛铁矿蚀变与铀成矿作用的研究进展. 铀矿地质. 2023(02): 173-187 . 百度学术
2. 魏本赞,卢辉雄,汪冰,张恩. 中祁连大白石头沟钛铁矿床地质特征与成因探讨. 地质与资源. 2022(04): 492-499 . 百度学术
3. 张乙飞,张志彬,黄菲,常卓雅,闻昕宇,侯志刚. 铁矿围岩制备钙长石微晶釉的微观特征研究. 陶瓷学报. 2020(02): 184-189 . 百度学术
4. ZHANG Zhibin,HUANG Fei,XING Miaomiao,WAN Quan,GAO Wenyuan,GAO Shang,CHEN Zhenyu,CAI Jianhui. Mineralogical Characteristics of Exsolved Spinel in the Panzhihua V-Ti Magnetite Deposit, Sichuan: Implications for the Mineralization Process. Acta Geologica Sinica(English Edition). 2018(05): 1784-1797 . 必应学术
其他类型引用(2)
-