• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    北大西洋Logatchev热液区多形貌黄铁矿特征及其意义

    刘开君 黄菲 高尚 张志彬 安佰高 黎永丽

    刘开君, 黄菲, 高尚, 张志彬, 安佰高, 黎永丽, 2018. 北大西洋Logatchev热液区多形貌黄铁矿特征及其意义. 地球科学, 43(5): 1562-1573. doi: 10.3799/dqkx.2018.414
    引用本文: 刘开君, 黄菲, 高尚, 张志彬, 安佰高, 黎永丽, 2018. 北大西洋Logatchev热液区多形貌黄铁矿特征及其意义. 地球科学, 43(5): 1562-1573. doi: 10.3799/dqkx.2018.414
    Liu Kaijun, Huang Fei, Gao Shang, Zhang Zhibin, An Baigao, Li Yongli, 2018. Characteristics and Research Significance of Polymorphic Pyrite in Logatchev Hydrothermal Area, North Atlantic. Earth Science, 43(5): 1562-1573. doi: 10.3799/dqkx.2018.414
    Citation: Liu Kaijun, Huang Fei, Gao Shang, Zhang Zhibin, An Baigao, Li Yongli, 2018. Characteristics and Research Significance of Polymorphic Pyrite in Logatchev Hydrothermal Area, North Atlantic. Earth Science, 43(5): 1562-1573. doi: 10.3799/dqkx.2018.414

    北大西洋Logatchev热液区多形貌黄铁矿特征及其意义

    doi: 10.3799/dqkx.2018.414
    基金项目: 

    中国科学院地球与行星物理重点实验室开放基金项目 DQXX201706

    中国科学院矿物学和成矿学重点实验室开放基金项目 KLMM20150101

    海洋地质国家重点实验室(同济大学)开放基金项目 MGK1403

    国家自然科学基金项目 41272062

    详细信息
      作者简介:

      刘开君(1990-), 男, 博士研究生, 成因矿物学研究方向

      通讯作者:

      黄菲

    • 中图分类号: P571

    Characteristics and Research Significance of Polymorphic Pyrite in Logatchev Hydrothermal Area, North Atlantic

    • 摘要: 北大西洋Logatchev热液区产出的黄铁矿形貌丰富、成分各异,极具特殊性和代表性.运用扫描电镜和电子探针系统观测黄铁矿矿物学特征,发现粒状黄铁矿粒径不一,具高Fe、S,低微量元素的特点;草莓状黄铁矿见有松散莓体、球形-次球形莓体和自形结构莓体,其Cu含量总体较高,不同晶体特征的莓体成分存在差异;胶状黄铁矿见有多层环带,内核到环带由纳微米晶体聚合生成,由内到外成分具有S/Fe比、Zn含量减小,As含量增大的趋势.分析认为早期粒状黄铁矿是在较高温度下的热液体系中直接形成,随热液作用衰减,生成的粒状黄铁矿多呈纳-微米晶产出;草莓状黄铁矿是由松散纳-微米晶逐步聚集形成,受溶液过饱和度影响,莓体粒度和聚集程度存在差异;胶状黄铁矿多晶聚集环带生长方向是由内向外的,聚集程度差异指示沉积环境的反复交替.研究区多形貌黄铁矿具有由分散的微晶→多晶聚合体→自形单晶的完整演化系列特征,对于解读现代海底热液活动的方式和特点,揭示纳米晶体-宏观晶体的演化过程有积极意义.

       

    • 图  1  北大西洋Logatchev热液区地质概况以及取样位置

      Schmidt et al.(2007)

      Fig.  1.  Geological survey and sampling position of Logatchev hydrothermal region, North Atlantic

      图  2  样品手标本照片

      a.完整的手标本;b.x轴方向的手标本特征;c.x轴方向的手标本切面;d.z轴方向的手标本特征

      Fig.  2.  Hand specimen photographs

      图  3  研究区主要矿物组成和结构特征反射光照片

      a.长石晶屑;b.蚀变橄榄石;c.细粒黄铁矿与纤锌矿伴生;d.他形晶粒状白铁矿;e.交代结构;f.铜蓝包裹不规则形状的黄铜矿和闪锌矿形成反应边结构;g.骸晶结构;h.镶边结构;i.黄铁矿呈他形粒状与闪锌矿共生;Wur.纤锌矿;Py.黄铁矿;Mrc.白铁矿;Ccp.黄铜矿;Sp.闪锌矿;Cv.铜蓝

      Fig.  3.  Main mineral compositions and structural characteristics in the study area

      图  4  粒状黄铁矿的反射光照片和扫描电镜照片

      Fig.  4.  Optical microscope photographs and BSE images of granular pyrite

      图  5  草莓状黄铁矿的扫描电镜图像

      Fig.  5.  BSE images of framboid pyrites distributed in the Logatchev sample

      图  6  胶状黄铁矿的扫描电镜和反射光照片

      Fig.  6.  Optical microscope photographs and BSE images of colloidal pyrite

      表  1  多形貌黄铁矿EPMA分析结果(%)

      Table  1.   EPMA analysis results of polymorphic pyrite (%)

      黄铁矿特征 As S Pb Fe Cu Zn Co Ag Au Ni Si O Total S/Fe Co/Ni
      自形-半自形黄铁矿 0.05 53.48 0.00 46.15 0.04 0.00 0.05 0.00 0.02 0.00 99.79 2.03
      0.03 52.84 0.00 46.24 0.07 0.01 0.10 0.01 0.30 0.01 99.59 2.00 10.00
      0.11 53.23 0.11 45.86 0.08 0.07 0.06 0.03 0.00 0.00 99.54 2.03
      0.00 53.46 0.02 46.30 0.08 0.01 0.08 0.00 0.04 0.00 99.98 2.02
      0.02 53.46 0.09 46.00 0.00 0.01 0.05 0.00 0.03 0.00 99.66 2.03
      0.07 53.00 0.00 46.34 0.00 0.00 0.07 0.00 0.00 0.02 99.50 2.00 3.50
      0.06 53.30 0.04 46.36 0.04 0.00 0.08 0.01 0.00 0.00 99.89 2.01
      松散的莓体 0.00 45.45 0.05 39.47 0.13 0.01 0.06 0.00 5.40 6.23 96.80 2.02
      0.00 45.13 0.00 40.01 0.04 0.00 0.08 0.00 6.34 12.15 103.75 1.97
      球形莓体 0.11 51.32 0.03 44.62 0.16 0.02 0.11 0.01 0.47 1.13 97.96 2.01 11.00
      0.00 52.62 0.00 44.02 0.16 0.05 0.09 0.00 0.89 1.26 99.09 2.09
      自形结构莓体 0.00 52.47 0.00 46.13 0.06 0.05 0.10 0.00 0.25 0.78 99.84 1.99
      0.05 52.65 0.00 46.26 0.00 0.04 0.07 0.00 0.11 0.32 99.50 1.99
      紧密排列莓体 0.10 52.91 0.02 45.99 0.22 0.03 0.06 0.01 0.00 0.01 99.36 2.01 6.00
      0.05 53.69 0.04 46.39 0.12 0.07 0.08 0.00 0.00 0.02 100.46 2.03 4.00
      0.06 53.76 0.00 46.16 0.12 0.01 0.07 0.00 0.00 0.00 100.18 2.04
      0.04 53.21 0.03 46.34 0.47 0.03 0.07 0.00 0.01 0.04 100.25 2.01 1.75
      0.10 52.75 0.02 45.91 0.09 0.03 0.09 0.00 0.01 0.00 98.99 2.01
      0.08 53.51 0.02 46.04 0.26 0.01 0.01 0.02 0.03 0.00 99.99 2.03
      0.03 53.47 0.00 46.66 0.07 0.07 0.03 0.02 0.02 0.00 100.35 2.01
      0.04 53.14 0.00 46.56 0.26 0.02 0.05 0.00 0.03 0.00 100.10 2.00
      胶状黄铁矿 0.60 53.52 45.09 0.02 0.02 0.01 0.22 0.02 99.50 2.08 1.00
      0.63 53.61 44.90 0.01 0.05 0.00 0.07 0.01 99.29 2.09 5.00
      0.63 53.49 45.67 0.02 0.04 0.01 0.07 0.03 99.95 2.05 1.33
      0.64 53.61 45.52 0.00 0.03 0.00 0.00 0.00 99.80 2.06
      0.60 53.53 45.69 0.00 0.02 0.03 0.12 0.01 100.00 2.05 2.00
      0.66 51.46 43.92 0.00 0.01 0.01 0.13 0.02 96.20 2.05 0.50
      注:胶状黄铁矿环带EPMA分析结果顺序为由内到外.
      下载: 导出CSV
    • [1] Abraitis, P.K., Pattrick, R.A.D., Vaughan, D.J., 2004.Variations in the Compositional, Textural and Electrical Properties of Natural Pyrite:A Review.International Journal of Mineral Processing, 74(1):41-59. https://www.deepdyve.com/lp/elsevier/variations-in-the-compositional-textural-and-electrical-properties-of-RawgMkDenM
      [2] Barrie, C.D., Boyce, A.J., Boyle, A.P., et al., 2009.Growth Controls in Colloform Pyrite.American Mineralogist, 94(4):415-429. doi: 10.2138/am.2009.3053
      [3] Bi, S.J., Li, Z.K., Tang, K.F., et al., 2016.LA-ICP-MS In Situ Trace Element Analysis of Pyrite from Dongtongyu Gold Deposit and Its Metallogenic Significance, Xiaoqinling Gold District.Earth Science, 41(7):1121-1140 (in Chinese with English abstract). https://www.researchgate.net/publication/306173269_LA-ICP-MS_in_situ_trace_element_analysis_of_pyrite_from_Dongtongyu_gold_deposit_and_its_metallogenic_significance_Xiaoqinling_gold_district
      [4] Dick, H.J.B., Lin, J., Schouten, H., 2003.An Ultraslow-Spreading Class of Ocean Ridge.Nature, 426(6965):405-412. doi: 10.1038/nature02128
      [5] Feng, Y., Ma, T.Y., Liu, L., et al., 2009.Insights into Shape Control and Growth Mechanism of Inorganic Nanocrystals.Science in China (Series B), 39(9):864-886 (in Chinese with English abstract). https://www.researchgate.net/publication/262685195_Insights_into_shape_control_and_growth_mechanism_of_inorganic_nanocrystals
      [6] Franchini, M., McFarlane, C., Maydagán, L., et al., 2015.Trace Metals in Pyrite and Marcasite from the Agua Rica Porphyry-High Sulfidation Epithermal Deposit, Catamarca, Argentina:Textural Features and Metal Zoning at the Porphyry to Epithermal Transition.Ore Geology Reviews, 66:366-387. doi: 10.1016/j.oregeorev.2014.10.022
      [7] Gablina, I.F., Semkova, T.A., Stepanova, T.V., et al., 2006.Diagenetic Alterations of Copper Sulfides in Modern Ore-Bearing Sediments of the Logatchev-1 Hydrothermal Field (Mid-Atlantic Ridge 14°45'N).Lithology and Mineral Resources, 41(1):27-44. doi: 10.1134/S0024490206010032
      [8] Gao, S., Huang, F., Gu, X.P., et al., 2017.Research on the Growth Orientation of Pyrite Grains in the Colloform Textures in Baiyunpu Pb-Zn Polymetallic Deposit, Hunan, China.Mineralogy & Petrology, 111(1):69-79. doi: 10.1007%2Fs00710-016-0465-z
      [9] Gao, S., Huang, F., Wang, Y.H., et al., 2016.A Review of Research Progress in the Genesis of Colloform Pyrite and Its Environmental Indications.Acta Geologica Sinica (English Edition), 90(4):1353-1369. doi: 10.1111/acgs.2016.90.issue-4
      [10] Huang, F., Gao, W.Y., Gao, S., et al., 2017.Morphology Evolution of Nano-Micron Pyrite:A Review.Journal of Nanoscience & Nanotechnology, 17(9):5980-5995. http://www.ingentaconnect.com/contentone/asp/jnn/2017/00000017/00000009/art00004
      [11] Huang, F., Kou, D.M., Song, D., et al., 2011.Microscopic Observation of the Pyrite Whisker Patterns in Gengzhuang, Shanxi Province, and Its Typomorphic Significance.Acta Geologica Sinica, 85(9):1486-1492 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_dizhixb201109008
      [12] Huang, F., Wang, R.C., Zhang, W.L., et al., 2009.Morphologic Characteristics and Growth Interface Stability of Nano-Micron FeS2 Whiskers.Chinese Science Bulletin, 54(23):4479-4486. https://www.researchgate.net/profile/Fei_Huang3
      [13] Jiang, S.Y., Yang, T., Li, L., et al., 2006.Lead and Sulfur Compositions of Sulfides from the TAG Hydrothermal Isotopic Field, Mid-Atlantic Ridge.Acta Petrologica Sinica, 22(10):2597-2602 (in Chinese with English abstract). https://www.researchgate.net/publication/285942914_Lead_and_sulfur_isotopic_compositions_of_sulfides_from_the_TAG_hydrothermal_field_Mid-Atlantic_Ridge
      [14] Kim, J., Lee, I., Halbach, P., et al., 2006.Formation of Hydrothermal Vents in the North Fiji Basin:Sulfur and Lead Isotope Constraints.Chemical Geology, 233(3):257-275. https://www.researchgate.net/publication/223835641_Formation_of_hydrothermal_vents_in_the_North_Fiji_Basin_Sulfur_and_lead_isotope_constraints
      [15] Kuhn, T., Alexander, B., Augustin, N., et al., 2004.The Logatchev Hydrothermal Field-Revisited:Preliminary Results of the R/V Meteor Cruise Hydromar I (M60/3).Interridge News, 13:1-4. https://www.deepdyve.com/lp/elsevier/mineralogical-and-chemical-mass-changes-in-mafic-and-ultramafic-rocks-BV0a0doRLs
      [16] Macdonald, K.C., 2001.Mid-Ocean Ridge Tectonics, Volcanism and Geomorphology.Encyclopedia of Ocean Sciences, 6:1798-1813. http://www.geol.ucsb.edu/faculty/macdonald/papers/Macdonald%20Mid-Ocean%20Ridge%20Tectonics.pdf
      [17] Marble, J.C., Carroll, K.C., Janousek, H., et al., 2010.In Situ Oxidation and Associated Mass-Flux-Reduction/Mass-Removal Behavior for Systems with Organic Liquid Located in Lower-Permeability Sediments.Journal of Contaminant Hydrology, 117(1):82-93. http://adsabs.harvard.edu/abs/2010JCHyd.117...82M
      [18] Marbler, H., Koschinsky, A., Pape, T., et al., 2010.Geochemical and Physical Structure of the Hydrothermal Plume at the Ultramafic-Hosted Logatchev Hydrothermal Field at 14°45'N on the Mid-Atlantic Ridge.Marine Geology, 271(3):187-197. https://www.deepdyve.com/lp/elsevier/geochemical-and-physical-structure-of-the-hydrothermal-plume-at-the-UaxVH67nrB
      [19] Maslennikov, V.V., Maslennikova, S.P., Large, R.R., et al., 2017.Chimneys in Paleozoic Massive Sulfide Mounds of the Urals VMS Deposits:Mineral and Trace Element Comparison with Modern Black, Grey, White and Clear Smokers.Ore Geology Reviews, 85:64-106. doi: 10.1016/j.oregeorev.2016.09.012
      [20] Merinero, R., Lunar, R., Martínez-Frías, J., et al., 2008.Iron Oxyhydroxide and Sulphide Mineralization in Hydrocarbon Seep-Related Carbonate Submarine Chimneys, Gulf of Cadiz (SW Iberian Peninsula).Marine and Petroleum Geology, 25(8):706-713. doi: 10.1016/j.marpetgeo.2008.03.005
      [21] Mozgova, N.N., Trubkin, N.V., Borodaev, Y.S., et al., 2008.Mineralogy of Massive Sulfides from the Ashadze Hydrothermal Field, 13°N, Mid-Atlantic Ridge.The Canadian Mineralogist, 46(3):545-567. doi: 10.3749/canmin.46.3.545
      [22] Ohfuji, H., Rickard, D., 2005.Experimental Syntheses of Framboids-A Review.Earth-Science Reviews, 71(3):147-170. https://www.deepdyve.com/lp/elsevier/experimental-syntheses-of-framboids-a-review-J2xPPl4QRS
      [23] Rickard, D., Luther, G.W., 1997.Kinetics of Pyrite Formation by the H2S Oxidation of Iron (Ⅱ) Monosulfide in Aqueous Solutions between 25 and 125℃:The Mechanism.Geochimica et Cosmochimica Acta, 61(1):135-147. doi: 10.1016/S0016-7037(96)00322-5
      [24] Sawlowicz, Z., 1993.Pyrite Framboids and Their Development:A New Conceptual Mechanism.Geologische Rundschau, 82(1):148-156. doi: 10.1007/BF00563277
      [25] Schmidt, K., Koschinsky, A., Garbe-Schönberg, D., et al., 2007.Geochemistry of Hydrothermal Fluids from the Ultramafic-Hosted Logatchev Hydrothermal Field, 15°N on the Mid-Atlantic Ridge:Temporal and Spatial Investigation.Chemical Geology, 242(1-2):1-21. doi: 10.1016/j.chemgeo.2007.01.023
      [26] Shi, X.F., Ye, J., Yang, Y.M., et al., 2013.Hydrothermal Mineralization and Metallogenic Setting of the Mid-Atlantic Ridge.Acta Mineralogica Sinica, (Suppl.2):664 (in Chinese). doi: 10.1134/S1075701507060037
      [27] Taylor, K.G., Macquaker, J.H.S., 2000.Early Diagenetic Pyrite Morphology in a Mudstone-Dominated Succession:The Lower Jurassic Cleveland Ironstone Formation, Eastern England.Sedimentary Geology, 131(1):77-86. https://www.deepdyve.com/lp/elsevier/early-diagenetic-pyrite-morphology-in-a-mudstone-dominated-succession-2KbPYj7LXf
      [28] Tivey, M.K., 1995.The Influence of Hydrothermal Fluid Composition and Advection Rates on Black Smoker Chimney Mineralogy:Insights from Modeling Transport and Reaction.Geochimica et Cosmochimica Acta, 59(10):1933-1949. doi: 10.1016/0016-7037(95)00118-2
      [29] Tivey, M.K., Humphris, S.E., Thompson, G., et al., 1995.Deducing Patterns of Fluid Flow and Mixing within the TAG Active Hydrothermal Mound Using Mineralogical and Geochemical Data.Journal of Geophysical Research Atmospheres, 100(B7):12527-12555. doi: 10.1029/95JB00610
      [30] Wang, J., Liu, Z., Liu, J., et al., 2017.Trace Element Compositions of Pyrite from the Shuangwang Gold Breccias, Western Qinling Orogen, China:Implications for Deep Ore Prediction.Journal of Earth Science, 28(4):1-9. doi: 10.1007%2Fs12583-017-0751-7
      [31] Wang, P., Huang, Y., Wang, C., et al., 2013.Pyrite Morphology in the First Member of the Late Cretaceous Qingshankou Formation, Songliao Basin, Northeast China.Palaeogeography, Palaeoclimatology, Palaeoecology, 385(5):125-136. http://linkinghub.elsevier.com/retrieve/pii/S0031018212005408
      [32] Wang, Y.J., Han, X.Q., Jin, X.L., et al., 2011.Typomorphic Characteristics of Pyrite and Its Metallogenic Environment of Edmond Hydrothermal Field, Central Indian Ridge.Acta Mineralogica Sinica, 31(2):173-179 (in Chinese with English abstract). https://www.researchgate.net/publication/309900966_Typomorphic_characteristics_of_pyrite_and_its_metallogenic_environment_of_edmond_hydrothermal_field_central_Indian_ridge
      [33] Wei, H., Algeo, T.J., Yu, H., et al., 2015.Episodic Euxinia in the Changhsingian (Late Permian) of South China:Evidence from Framboidal Pyrite and Geochemical Data.Sedimentary Geology, 319:78-97. doi: 10.1016/j.sedgeo.2014.11.008
      [34] Wei, H., Wei, X., Qiu, Z., et al., 2016.Redox Conditions across the G-L Boundary in South China:Evidence from Pyrite Morphology and Sulfur Isotopic Compositions.Chemical Geology, 440:1-14. doi: 10.1016/j.chemgeo.2016.07.009
      [35] Yang, W.F., Yang, Q.H., Pan, A.Y., 2011.Characteristics of Organic Composition and Source of Organic Matter in Surface Sediments near the Logatchev Hydrothermal Field.Journal of Marine Sciences, 29(1):9-16 (in Chinese with English abstract). https://www.researchgate.net/publication/229415733_Characteristics_and_source_of_inorganic_and_organic_compounds_in_the_sediments_from_two_hydrothermal_fields_of_the_Central_Indian_and_Mid-Atlantic_Ridges
      [36] Yang, X.Y., Gong, Y.M., 2011.Pyrite Framboid:Indicator of Environments and Life.Earth Science, 36(4):643-658 (in Chinese with English abstract). https://www.researchgate.net/publication/286315083_Pyrite_framboid_Indicator_of_environments_and_life
      [37] Zeng, Z.G., Qin, Y.S., Zhao, Y.Y., et al., 2000.Sulfur Isotopic Composition of Seafloor Surface Hydrothermal Sediments in the TAG Hydrothermal Field of Mid-Atlantic Ridge and Its Geological Implications.Oceanologia et Limnologia Sinica, 31(5):518-529 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-hyfz200005009.htm
      [38] 毕诗健, 李占轲, 唐克非, 等, 2016.小秦岭东桐峪金矿床黄铁矿LA-ICP-MS微量元素特征及其成矿意义.地球科学, 41(7):1121-1140. http://www.earth-science.net/WebPage/Article.aspx?id=3323
      [39] 冯怡, 马天翼, 刘蕾, 等, 2009.无机纳米晶的形貌调控及生长机理研究.中国科学(B辑), 39(9):864-886. http://www.cqvip.com/QK/88064X/200909/31665842.html
      [40] 黄菲, 寇大明, 宋丹, 等, 2011.山西耿庄黄铁矿晶须形貌的显微观测及其标型意义.地质学报, 85(9):1486-1492. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201109009.htm
      [41] 蒋少涌, 杨涛, 李亮, 2006.大西洋洋中脊TAG热液区硫化物铅和硫同位素研究.岩石学报, 22(10):2597-2602. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200610021
      [42] 石学法, 叶俊, 杨耀民, 等, 2013.大西洋中脊热液成矿作用与成矿背景.矿物学报, (增刊2):664. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2013S2375.htm
      [43] 王叶剑, 韩喜球, 金翔龙, 等, 2011.中印度洋脊Edmond热液区黄铁矿的标型特征及其对海底成矿作用环境的指示.矿物学报, 31(2):173-179. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_kwxb201102003
      [44] 杨伟芳, 杨群慧, 潘安阳, 2011.Logatchev热液场附近表层沉积物中有机质的组成特征、来源及其影响因素.海洋学研究, 29(1):9-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dhhy201101002
      [45] 杨雪英, 龚一鸣, 2011.莓状黄铁矿:环境与生命的示踪计.地球科学, 36(4):643-658. http://www.earth-science.net/WebPage/Article.aspx?id=2133
      [46] 曾志刚, 秦蕴珊, 赵一阳, 等, 2000.大西洋中脊TAG热液活动区海底热液沉积物的硫同位素组成及其地质意义.海洋与湖沼, 31(5):518-529. doi: 10.11693/hyhz200005010010
    • 加载中
    图(6) / 表(1)
    计量
    • 文章访问数:  4045
    • HTML全文浏览量:  1394
    • PDF下载量:  27
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-01-11
    • 刊出日期:  2018-05-15

    目录

      /

      返回文章
      返回