Elemental Enrichment in the Microscopic Inclusions of the Native Sulfur from Kueishantao Hydrothermal System, Taiwan, China
-
摘要: 台湾东北部的龟山岛浅海热液体系产生大量的热液自然硫.为了理解微量元素在自然硫中的富集规律和机制,采用激光剥蚀等离子体质谱仪(LA-ICPMS)对龟山岛自然硫进行了元素含量分析.结果显示,硫磺基底仅含有As、Se和Te等岩浆脱气产生的挥发性亲铜元素.Fe、Mn、Co、Ni等亲铁元素主要来自于安山岩基岩,富集于富铁或含硅包体中.Al、Zn、Ba、Pb、La、Ce、Au、Ag等元素显著富集于含硅包体中,表明这些元素受硅酸盐矿物控制.富铜包体具有最高的Hg、Pb、Zn等亲铜元素的单位富集程度.首次对龟山岛热液自然硫中的微量元素分布进行了原位微区分析,有助于理解微量元素在热液活动中的来源、分布和分配等地球化学行为.Abstract: The Kueishantao shallow-water hydrothermal system, offshore northeast Taiwan, discharges large amounts of native sulfur. In order to unveil the distribution of trace elements in the native sulfur, we analyzed the elemental contents of sulfur matrix and microscopic inclusions in the KST native sulfur by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). The results indicate that the sulfur matrix only contains volatile chalcophile elements such as As, Se, and Te, which are mainly originated from magma degassing. The siderophile elements including Fe, Mn, Co, and Ni are mainly contributed by the andesite host rock of the KST system. These elements are enriched in the Fe-rich and/or Si-bearing inclusions as various sulfides. Al, Zn, Ba, Pb, La, Ce, Au, and Ag were significantly enriched in Si-bearing inclusions, suggesting that the occurrence of these elements was mainly controlled by silicate particles.The Cu-rich inclusions contain higher per unit chalcophile elements (Hg, Pb, and Zn) than Fe-rich inclusions. The distribution of trace elements is analyzed in-situ in the KST native sulfur for the first time. This study will help to better understand the geochemical behaviors of trace elements during hydrothermal processes.
-
图 1 龟山岛浅海热液体系
据Chen et al.(2016).a.龟山岛的地质背景;b.典型的龟山岛热液喷口黄泉和白泉的位置;c.龟山岛热液区的卫星图;d.无人机拍摄的龟山岛黄泉附近海域的高空航拍图
Fig. 1. Settings of Kueishantao shallow submarine hydrothermal system
表 1 本研究中所用外标NIST610在不同能量密度和剥蚀直径下的元素同位素信号响应值
Table 1. The signals of NIST610 under different energy densities and spot sizes
能量密度 7.0 J·cm-2 3.5 J·cm-2 7.0 J·cm-2 斑束直径 50 μm 10 μm 30 μm 50 μm 同位素 001N610 002N610 003N610 050N610 051N610 052N610 053N610 054N610 055N610 056N610 057N610 27Al 10 632 795 10 506 287 10 646 829 199 557 200 659 2 428 744 2 386 419 3 726 995 3 713 084 9 826 536 9 502 382 28Si 162 307 728 155 150 416 154 058 645 2 751 663 2 718 086 34 904 917 34 989 671 53 574 904 53 346 137 142 436 893 137 321 484 34S 4 410 712 3 948 325 3 901 281 876 66 84 585 993 148 1043 368 1 637 267 1 552 397 4 420 334 4 079 054 55Mn 1 751 111 1 645 997 1 612 647 27 285 28 026 355 690 357 967 564 389 554 986 1 460 432 1 437 729 57Fe 1 656 012 1 587 383 1 581 955 28 178 27 234 332 996 327 048 545 207 529 867 1 458 480 1 413 498 59Co 1 171 282 1 135 959 1 133 812 19 756 19 321 247 491 240 552 388 900 384 056 1 009 779 979 989 60Ni 969 011 915 883 928 465 15 861 16 708 199 408 200 377 316 046 312 797 828 768 818 615 63Cu 885 702 867 955 853 270 14 931 15 038 183 530 190 502 292 376 292 010 767 697 740 559 66Zn 670 471 665 524 655 005 11 408 11 214 142 657 143 449 226 623 233 240 589 640 576 817 75As 159 010 151 982 160 404 2 849 2 796 33 810 33 090 53 751 51 850 137 615 134 431 82Se 155 664 145 877 145 912 0 230 31 981 30 969 56 982 50 634 127 650 136 045 107Ag 769 893 716 834 719 986 11 140 11 661 143 017 143 766 230 016 228 046 604 932 594 448 121Sb 931 607 859 698 852 742 14 412 14 987 182 821 181 167 279 544 285 044 748 600 732 489 125Te 492 268 469 798 455 714 7 070 9 226 101 164 94 766 154 126 155 190 409 696 394 576 138Ba 3 279 020 3 134 210 3 108 120 48 560 48 624 663 454 654 277 1 041 296 1 034 534 2 726 525 2 682 136 139La 2 814 125 2 715 626 2 720 385 41 467 41 989 589 531 579 519 914 440 907 436 2 399 787 2 385 088 140Ce 3 436 999 3 207 732 3 159 180 48 852 48 825 667 000 655 531 1 058 299 1 039 935 2 765 167 2 713 024 197Au 28 130 25 946 26 177 432 414 5 394 5 386 8 504 8 453 22 343 22 117 202Hg 1 624 914 927 0 0 0 0 356 405 870 808 208Pb 1 777 300 1 699 781 1 747 724 26 392 27 631 349 919 340 576 549 837 548 429 1 469 798 1 446 846 表 2 龟山岛热液自然硫的元素含量
Table 2. Elemental contents of the native sulfur aggregates from Kueishantao
元素 方法 单位 样1 样2 样3 样4 样5 样6 样7 检出限 S % 99.18 99.09 98.69 99.20 99.34 99.04 98.96 1.8 Mg 10-6 2 450 2 265 133 176 54 239 270 30 Se 10-6 410 236 196 197 212 186 181 30 As XRF 10-6 394 245 325 363 220 286 198 90 Si 10-6 394 1 000 410 270 220 310 310 60 Fe 10-6 308 1 988 2 300 891 692 888 892 45 Al 10-6 259 567 220 190 160 270 270 45 Co 10-6 18.3 25.3 24.3 37.4 24.8 32.3 21.5 0.2 Ni 10-6 28.8 29.7 30.3 32.5 30.7 33.6 28.5 0.1 Cu 10-6 33.2 42.4 51.5 46.3 54.8 55.5 43.0 0.2 Zn 10-6 47.1 77.5 46.5 72.6 60.1 73.4 56.9 0.3 Sb ICPMS 10-6 1.56 0.741 n.d. n.d. n.d. n.d. n.d. 0.02 Ba 10-6 352 379 279 308 393 318 268 1 La 10-6 16.5 22.8 23.5 20.5 18.9 17.6 15.5 0.05 Ce 10-6 30.6 42.4 44.6 41.3 40.6 35.9 33.2 0.1 Pb 10-6 10.0 9.68 n.d. n.d. n.d. n.d. n.d. 0.02 注:n, d.代表没有检测到信号. 表 3 龟山岛热液硫磺中硫磺基质(SUL)和微观包体(INCL)的激光剥蚀ICP-MS结果
Table 3. Laser ablation ICP-MS results for sulfur matrix (SUL) and microscopic inclusions (INCL) in the native sulfur aggregates from Kueishantao
样品 类型 Al Si S (%) Mn Fe Co Ni Cu Zn As Se Sb Te Ba La Ce Hg Pb Ag Au 004SUL 基底 31 b.d.l. 99.4 9 2 103 5 b.d.l. b.d.l. b.d.l. 1 067 1 189 132 1 150 b.d.l. b.d.l. b.d.l. 90 b.d.l. 1.9 b.d.l. 005SUL 基底 12 b.d.l. 99.6 b.d.l. 26 b.d.l. 86 b.d.l. b.d.l. 1 151 1 237 130 1 196 b.d.l. b.d.l. b.d.l. 74 n.d. 1.2 b.d.l. 006SUL 基底 8 466 99.5 b.d.l. n.d. 7 b.d.l. b.d.l. 9 1138 1 394 219 1 286 b.d.l. 5.0 50.5 72 b.d.l. b.d.l. b.d.l. 007INCL 含硅 2 295 8 072 18.2 1 640 778 557 102 119 33 74 783 81 908 289 182 10.5 14.6 519 64 1.4 b.d.l. 008INCL 含硅 1 893 8 239 37.2 2 546 575 878 133 197 41 92 976 408 1 360 365 32 4.3 22.4 688 96 1.4 b.d.l. 009INCL 富铁 396 n.d. 20.5 275 791 654 75 101 168 10 716 148 617 221 400 0.5 n.d. 345 13 b.d.l. b.d.l. 010INCL 富铁 2 468 n.d. 32.3 7 538 660 689 167 295 728 191 902 n.d. 564 670 43 118.8 293.6 320 236 1.0 n.d. 011INCL 富铁 1 510 n.d. 52.3 1 343 435 803 61 127 530 214 1486 330 913 924 88 5.8 21.1 662 114 1.3 n.d. 012INCL 富铁 429 n.d. 15.8 652 834 030 1 009 4 681 437 23 324 n.d. 103 127 3 b.d.l. b.d.l. 58 70 b.d.l. n.d. 013INCL 富铜 40 n.d. 97.5 n.d. 4 199 5 b.d.l. 17 738 241 615 782 73 535 30 n.d. b.d.l. 139 108 n.d. b.d.l. 014INCL 富铜 104 n.d. 97.5 n.d. 5 041 n.d. 11 18 628 229 460 n.d. 39 493 16 n.d. n.d. 162 111 n.d. 1.1 015INCL 富铁 631 n.d. 90.1 100 87 539 68 110 121 43 2 283 909 465 985 15 n.d. n.d. 361 25 b.d.l. n.d. 016INCL 含硅 7 922 17 399 80.4 676 153 399 67 58 477 1 687 1 435 905 314 1 008 2 071 31.7 157.3 281 436 1.5 n.d. 017INCL 含硅 1 450 17 839 61.6 1 258 351 545 194 256 462 68 1 720 777 805 874 210 4.8 11.9 437 62 b.d.l. b.d.l. 018INCL 富铁 15 769 n.d. 90.5 321 75 590 37 32 200 11 910 871 102 748 5 n.d. n.d. 110 45 n.d. n.d. 019INCL 富铁 190 n.d. 19.2 5 744 795 143 37 26 336 128 1 483 124 1 971 769 10 b.d.l. b.d.l. 1 352 55 4.5 n.d. 020INCL 富铁 27 n.d. 51.3 169 484 445 295 117 450 90 404 749 88 292 23 2.6 13.1 30 57 n.d. n.d. 021INCL 富铁 2 563 n.d. 94.7 245 44 545 46 68 115 18 1 267 925 216 644 210 5.5 3.2 110 33 n.d. b.d.l. 022INCL 富铁 12 122 n.d. 93.7 841 25 904 49 125 427 1 633 731 1 439 126 1 170 3 754 110.8 880.4 76 498 13.0 n.d. 023INCL 富铁 1 359 n.d. 67.9 2 657 310 704 72 77 452 95 1330 477 342 768 61 27.2 2.3 293 90 4.0 b.d.l. 024INCL 富铜 220 n.d. 90.9 30 1 955 b.d.l. 15 86 068 124 685 659 43 546 23 b.d.l. n.d. 109 509 6.0 n.d. 025INCL 富铜 103 n.d. 87.2 15 2 643 b.d.l. 17 122 564 154 417 892 b.d.l. 600 16 3.6 4.9 104 151 2.0 0.7 026INCL 富铁 520 n.d. 29.9 968 693 239 121 105 1 333 39 1 627 234 1 306 452 7 b.d.l. n.d. 1001 22 n.d. b.d.l. 027INCL 富铁 632 n.d. 17.3 644 820 812 81 58 1 184 23 1 220 b.d.l. 915 138 b.d.l. b.d.l. n.d. 712 12 1.1 b.d.l. 028INCL 富铜 820 n.d. 82.0 21 18 057 14 91 158 756 84 496 n.d. 47 452 155 5.2 n.d. 154 129 1.6 n.d. 029INCL 富铜 324 n.d. 85.1 16 5 369 b.d.l. n.d. 139 914 250 724 1 111 94 316 38 b.d.l. n.d. 223 281 n.d. 2.3 030INCL 富铜 133 n.d. 82.2 105 2 945 8 9 173 482 173 432 48 58 466 29 n.d. 4.3 81 178 7.5 n.d. 031INCL 含硅 4 585 437 95.1 253 38 151 13 47 130 77 1 468 301 404 619 121 5.2 15.8 330 39 1.6 b.d.l. 032INCL 含硅 7 561 7 662 52.0 1142 454 979 269 318 914 88 1 228 405 425 410 304 25.2 57.4 398 100 b.d.l. n.d. 033INCL 富铁 7 105 n.d. 94.9 414 33 867 55 38 325 63 1 725 1 262 1 217 1 053 146 9.4 53.5 253 31 n.d. 0.9 034INCL 含硅 13 414 57 490 58.2 671 331 441 377 784 3 447 242 649 n.d. 457 1 936 1 439 122.5 12.7 544 1 977 112.9 61.5 035INCL 含硅 2 184 57 254 73.7 460 195 693 486 228 1 039 63 521 703 178 666 118 4.5 26.2 189 58 n.d. 13.2 036INCL 基底 80 n.d. 99.6 n.d. 97 n.d. n.d. b.d.l. n.d. 1 517 1 011 170 1 047 b.d.l. n.d. b.d.l. 111 n.d. 25.3 0.8 037INCL 富铁 1 510 n.d. 85.1 20 137 145 b.d.l. 18 2 648 138 942 1 239 224 819 154 n.d. 241.1 156 38 67.2 n.d. 038INCL 富铁 5 245 n.d. 95.4 193 31 485 13 14 2 398 92 1177 484 223 934 112 7.1 14.2 194 58 b.d.l. b.d.l. 039INCL 含硅 1 824 2 347 23.5 2 093 659 334 878 799 880 127 670 b.d.l. 494 370 27 27.0 27.2 149 92 7.4 b.d.l. 040INCL 含硅 3 589 53 765 92.2 125 7 955 18 843 2 091 300 657 250 286 828 1 075 288.4 1 659.8 n.d. 53 234.8 14.7 041INCL 富铁 660 n.d. 95.5 127 42 084 25 6 107 b.d.l. 472 379 89 472 19 29.0 b.d.l. 164 28 17.2 2.4 042INCL 含硅 6 612 5048 93.8 432 21 330 b.d.l. 8 591 355 891 872 114 1 178 7 602 99.3 950.4 n.d. 321 93.8 9.9 043INCL 富铁 1 312 n.d. 97.0 18 21 865 15 31 56 23 1 237 1 056 196 1 016 88 n.d. 2.2 164 43 1.9 b.d.l. 044INCL 富铜 589 n.d. 95.9 81 4 529 9 6 34 162 77 206 85 23 300 20 5.6 5.5 135 36 b.d.l. n.d. 045INCL 富铜 218 n.d. 94.1 38 2 856 n.d. n.d. 54 305 99 338 150 33 392 12 n.d. n.d. 241 92 2.3 n.d. 046INCL 含硅 643 1 147 95.7 9 28 553 9 148 9 029 124 292 492 49 491 39 16.9 374.3 121 125 17.8 1.7 047INCL 含硅 1 496 34 583 21.3 396 745 347 131 186 2 332 74 595 179 419 274 68 b.d.l. b.d.l. 378 28 1.5 n.d. 048INCL 富铁 286 n.d. 12.7 480 870 152 11 84 378 429 196 134 138 135 16 b.d.l. b.d.l. 158 62 1.4 b.d.l. 049INCL 富铁 6 086 n.d. 65.5 1 172 323 895 397 101 882 166 2 606 633 462 608 275 16.6 449.5 255 116 1.7 n.d. 注:除了S,其他元素单位为10-6.b.d.l.代表低于检定限;n.d.代表没有检测到信号. 表 4 龟山岛热液自然硫微观包体中元素的主成分分析
Table 4. Principle component analysis of the elements in the microscopic inclusions of Kueishantao native sulfur
元素 1 2 3 4 Al -0.175 0.511 0.456 0.121 S -0.607 0.069 0.660 -0.323 Mn 0.867 0.064 -0.044 0.008 Fe 0.619 -0.088 -0.616 0.347 Co -0.052 -0.078 -0.017 0.838 Ni 0.058 0.057 -0.176 0.843 Cu -0.271 -0.007 -0.344 -0.542 Zn -0.022 0.965 0.078 -0.063 As 0.425 -0.133 0.709 0.151 Se -0.305 0.320 0.761 0.131 Sb 0.927 -0.147 0.076 0.042 Te 0.055 0.316 0.866 -0.177 Ba -0.063 0.952 0.168 0.033 Hg 0.949 -0.127 -0.064 0.021 Pb -0.067 0.962 0.078 -0.065 特征值 5.086 3.043 2.135 1.789 方差的% 33.907 20.287 14.235 11.926 注:提取方法:主成分.旋转法:具有Kaiser标准化的正交旋转法. -
[1] Chen, C.T.A., Wang, B.J., Huang, J.F., et al., 2005a.Investigation into Extremely Acidic Hydrothermal Fluids Off Kueishan Tao, Taiwan, China.Acta Oceanologica Sinica, 24(1):125-133. [2] Chen, C.T.A., Zeng, Z.G., Kuo, F.W., et al., 2005b.Tide-Influenced Acidic Hydrothermal System Offshore Ne Taiwan.Chemical Geology, 224(1-3):69-81. doi: 10.1016/j.chemgeo.2005.07.022 [3] Chen, X.G., Lyu, S.S., Garbe-Schönberg, D., et al., 2018.Heavy Metals from Kueishantao Shallow-Sea Hydrothermal Vents, Offshore Northeast Taiwan.Journal of Marine Systems, 180:211-219. https://doi.org/10.1016/j.jmarsys.2016.11.018 [4] Chen, X.G., Zhang, H.Y., Li, X., et al., 2016.The Chemical and Isotopic Compositions of Gas Discharge from Shallow-Water Hydrothermal Vents at Kueishantao, Offshore Northeast Taiwan.Geochemical Journal, 50(4):341-355. doi: 10.2343/geochemj.2.0425 [5] Chen, Y.G., Wu, W.S., Chen, C.H., et al., 2001.A Date for Volcanic Eruption Inferred from a Siltstone Xenolith.Quaternary Science Reviews, 20(5):869-873. https://www.researchgate.net/publication/222837948_A_date_for_volcanic_eruption_inferred_from_a_siltstone_xenolith [6] Craddock, P.R., Bach, W., 2010.Insights to Magmatic-Hydrothermal Processes in the Manus Back-Arc Basin as Recorded by Anhydrite.Geochimica et Cosmochimica Acta, 74(19):5514-5536. doi: 10.1016/j.gca.2010.07.004 [7] de Ronde, C., Massoth, G.J., Butterfield, D.A., et al., 2011.Submarine Hydrothermal Activity and Gold-Rich Mineralization at Brothers Volcano, Kermadec Arc, New Zealand.Mineralium Deposita, 46(5-6):541-584. doi: 10.1007/s00126-011-0345-8 [8] Garbe-Schönberg, C.D., 1993.Simultaneous Determination of Thirty-Seven Trace Elements in Twenty-Eight International Rock Standards by ICP-MS.Geostandards and Geoanalytical Research, 17(1):81-97. doi: 10.1111/ggr.1993.17.issue-1 [9] Garbe-Schönberg, C.D., Müller, S., 2014.Nano-Particulate Pressed Powder Tablets for LA-ICP-MS.Journal of Analytical Atomic Spectrometry, 29:990-1000. doi: 10.1039/C4JA00007B [10] Gena, K.R., Chiba, H., Mizuta, T., et al., 2006.Hydrogen, Oxygen and Sulfur Isotope Studies of Seafloor Hydrothermal System at the Desmos Caldera, Manus Back-Arc Basin, Papua New Guinea:An Analogue of Terrestrial Acid Hot Crater-Lake.Resource Geology, 56(2):183-190. doi: 10.1111/rge.2006.56.issue-2 [11] German, C.R., Petersen, S., Hannington, M.D., 2016.Hydrothermal Exploration of Mid-Ocean Ridges:Where Might the Largest Sulfide Deposits Be Forming? Chemical Geology, 420:114-126. doi: 10.1016/j.chemgeo.2015.11.006 [12] Graf, J.L., 1977.Rare Earth Elements as Hydrothermal Tracers during the Formation of Massive Sulfide Deposits in Volcanic Rocks.Economic Geology, 72(4):527-548. doi: 10.2113/gsecongeo.72.4.527 [13] Guo, F. W., 2001. Priminary Investigation of the Hydrothermal Activities off Kueishantao Island, National Sun Yat-Sen University, Kaohsiung (in Chinese with English abstract). [14] Hattori, K.H., Arai, S., Clarke, D.B., 2002.Selenium, Tellurium, Arsenic and Antimony Contents of Primary Mantle Sulfides.Canadian Mineralogist, 40(2):637-650. doi: 10.2113/gscanmin.40.2.637 [15] Helmy, H.M., Ballhaus, C., Wohlgemuth-Ueberwasser, C., et al., 2010.Partitioning of Se, As, Sb, Te and Bi between Monosulfide Solid Solution and Sulfide Melt-Application to Magmatic Sulfide Deposits.Geochimica et Cosmochimica Acta, 74(21):6174-6179. doi: 10.1016/j.gca.2010.08.009 [16] Herzig, P.M., Hannington, M.D., 1995.Polymetallic Massive Sulfides at the Modern Seafloor a Review.Ore Geology Reviews, 10(2):95-115. doi: 10.1016/0169-1368(95)00009-7 [17] Huang, W., Tao, C.H., Li, J., et al., 2016.Osmium Isotopic Compositions and Osmium Distribution in the Mid-Ocean Ridge Hydrothermal System.Earth Science, 41(3):441-451 (in Chinese with English abstract). https://www.deepdyve.com/lp/elsevier/osmium-isotope-distribution-within-the-palaeozoic-alexandrinka-fsBulQwwSS [18] Jiang, W., Zhong, Y., Shen, L., et al., 2014.Stress-Driven Discovery of Natural Products from Extreme Marine Environment-Kueishantao Hydrothermal Vent, a Case Study of Metal Switch Valve.Current Organic Chemistry, 18(7):925-934. doi: 10.2174/138527281807140515155705 [19] Kargel, J.S., Delmelle, P., Nash, D.B., 1999.Volcanogenic Sulfur on Earth and Io:Composition and Spectroscopy.Icarus, 142(1):249-280. doi: 10.1006/icar.1999.6183 [20] Kato, Y., Fujinaga, K., Nakamura, K., et al., 2011.Deep-Sea Mud in the Pacific Ocean as a Potential Resource for Rare-Earth Elements.Nature Geoscience, 4(8):535-539. doi: 10.1038/ngeo1185 [21] Kim, J., Lee, K.Y., Kim, J.H., 2011.Metal-Bearing Molten Sulfur Collected from a Submarine Volcano:Implications for Vapor Transport of Metals in Seafloor Hydrothermal Systems.Geology, 39(4):351-354. doi: 10.1130/G31665.1 [22] König, S., Luguet, A., Lorand, J.P., et al., 2012.Selenium and Tellurium Systematics of the Earth's Mantle from High Precision Analyses of Ultra-Depleted Orogenic Peridotites.Geochimica et Cosmochimica Acta, 86:354-366. doi: 10.1016/j.gca.2012.03.014 [23] Li, J., Sun, Z.L., Huang, W., et al., 2014.Mordern Seafloor Hydrothermal Processes and Mineralization.Earth Science, 39(3):312-324 (in Chinese with English abstract). https://www.researchgate.net/publication/287279663_Modern_seafloor_hydrothermal_processes_and_mineralization [24] Li, X.H., Chu, F.Y., Lei, J.J., et al., 2014.Discussion on Sources of Metallogenic Materials of Hydrothermal Sulfide from Southwest Indian Ridge:Isotope Evidences.Journal of Earth Sciences and Environment, 36(1):193-200 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201401018 [25] Li, Y., Audétat, A., 2012.Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between Sulfide Phases and Hydrous Basanite Melt at Upper Mantle Conditions.Earth and Planetary Science Letters, 355:327-340. https://www.deepdyve.com/lp/elsevier/partitioning-of-v-mn-co-ni-cu-zn-as-mo-ag-sn-sb-w-au-pb-and-bi-between-Rzy6nFy6jO [26] Liu, C.H., Wang, X.M., Zeng, Z.G., et al., 2009.Lead Isotopic Compositions of Native Sulfur Chimneys from Nearby Kueishantao Island in Northeast Taiwan and Its Geological Implications.Oceanologia et Limnologia Sinica, 40(4):393-399 (in Chinese with English abstract). http://www.oalib.com/paper/1593171 [27] Liu, C.H., Zeng, Z.G., Yin, X.B., et al., 2006.Basic Characters of Native Sulfur Chimneys Near the Sea off Kueishantao from the Northeastern Taiwan.Journal of Oceanography in Taiwan Strait, 25(3):309-317 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_twhx200603001 [28] Maier, W., 1999.The Fractionation of Ni, Cu and the Noble Metals in Silicate and Sulfide Liquids.Geological Association of Canada Short Course Notes, 13:69-106. http://www.researchgate.net/publication/254300308_THE_FRACTIONATION_OF_NI_CU_AND_THE_NOBLE_METALS_IN_SILICATE_AND_SULFIDE_LIQUIDS [29] McDonough, W.F., Sun, S.S., 1995.The Composition of the Earth.Chemical Geology, 120(3-4):223-253. doi: 10.1016/0009-2541(94)00140-4 [30] Park, J.W., Campbell, I.H., Kim, J., 2016.Abundances of Platinum Group Elements in Native Sulfur Condensates from the Niuatahi-Motutahi Submarine Volcano, Tonga Rear Arc:Implications for Pge Mineralization in Porphyry Deposits.Geochimica et Cosmochimica Acta, 174:236-246. doi: 10.1016/j.gca.2015.11.026 [31] Peng, S.H., Hung, J.J., Hwang, J.S., 2011.Bioaccumulation of Trace Metals in the Submarine Hydrothermal Vent Crab Xenograpsus Testudinatus off Kueishan Island, Taiwan.Marine Pollution Bulletin, 63(5-12):396-401. doi: 10.1016/j.marpolbul.2011.05.013 [32] Petersen, S., Monecke, T., Westhues, A., et al., 2014.Drilling Shallow-Water Massive Sulfides at the Palinuro Volcanic Complex, Aeolian Island Arc, Italy.Economic Geology, 109(8):2129-2158. doi: 10.2113/econgeo.109.8.2129 [33] Qiu, Z.Y., Han, X.Q., Wang, Y.J., et al., 2015.The Characters of Sediment from Northwest Indian Ocean Carlsberg Ridge and Its Prospecting Application.Acta Mineralogica Sinica, 35(Suppl.):776 (in Chinese). https://www.researchgate.net/profile/Chunhui_Tao [34] Rose-Weston, L., Brenan, J.M., Fei, Y., et al., 2009.Effect of Pressure, Temperature, and Oxygen Fugacity on the Metal-Silicate Partitioning of Te, Se, and S:Implications for Earth Differentiation.Geochimica et Cosmochimica Acta, 73(15):4598-4615. doi: 10.1016/j.gca.2009.04.028 [35] Sobolev, A.V., Asafov, E.V., Gurenko, A.A., et al., 2016.Komatiites Reveal a Hydrous Archaean Deep-Mantle Reservoir.Nature, 531:628-632. doi: 10.1038/nature17152 [36] Tao, C.H., Li, H.M., Jin, X.B., et al., 2014.Seafloor Hydrothermal Activity and Polymetallic Sulfide Exploration on the Southwest Indian Ridge.Chinese Science Bulletin, 59(19):1812-1822 (in Chinese with English abstract). doi: 10.1007/s11434-014-0182-0 [37] Wang, Y., Han, X., Petersen, S., et al., 2017.Mineralogy and Trace Element Geochemistry of Sulfide Minerals from the Wocan Hydrothermal Field on the Slow-Spreading Carlsberg Ridge, Indian Ocean.Ore Geology Reviews, 84:1-19. doi: 10.1016/j.oregeorev.2016.12.020 [38] Wardell, L., Kyle, P., Counce, D., 2008.Volcanic Emissions of Metals and Halogens from White Island (New Zealand) and Erebus Volcano (Antarctica) Determined with Chemical Traps.Journal of Volcanology and Geothermal Research, 177(3):734-742. doi: 10.1016/j.jvolgeores.2007.07.007 [39] Wilkinson, J.J., Stoffell, B., Wilkinson, C.C., et al., 2009.Anomalously Metal-Rich Fluids Form Hydrothermal Ore Deposits.Science, 323(5915):764-767. doi: 10.1126/science.1164436 [40] Wohlgemuth-Ueberwasser, C.C., Viljoen, F., Petersen, S., et al., 2015.Distribution and Solubility Limits of Trace Elements in Hydrothermal Black Smoker Sulfides:An in-Situ LA-ICP-MS Study.Geochimica et Cosmochimica Acta, 159:16-41. doi: 10.1016/j.gca.2015.03.020 [41] Xi, Z.Z., Li, R.X., Song, G., et al., 2016.Electrical Structure of Sea-Floor Hydrothermal Sulfide Deposits.Earth Science, 41(8):1395-1401 (in Chinese with English abstract). https://www.researchgate.net/publication/307875779_Electrical_structure_of_sea-floor_hydrothermal_sulfide_deposits [42] Zeng, Z.G., 2011.Seafloor Hydrothermal Geology.Science Press, Beijing. [43] Zeng, Z.G., Chen, C.T.A., Yin, X.B., et al., 2011.Origin of Native Sulfur Ball from the Kueishantao Hydrothermal Field Offshore Northeast Taiwan:Evidence from Trace and Rare Earth Element Composition.Journal of Asian Earth Sciences, 40(2):661-671. doi: 10.1016/j.jseaes.2010.10.019 [44] Zeng, Z.G., Liu, C.H., Chen, C.T.A., et al., 2007.Origin of a Native Sulfur Chimney in the Kueishantao Hydrothermal Field, Offshore Northeast Taiwan.Science China Earth Sciences, 50(11):1746-1753. doi: 10.1007/s11430-007-0092-y [45] Zheng, L., Minami, T., Takano, S., et al., 2017.Distribution and Stoichiometry of Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in Seawater around the Juan De Fuca Ridge.Journal of Oceanography, 73(5):1-17. doi: 10.1007/s10872-017-0424-2 [46] 郭富雯, 2001. 龟山岛海底热液活动初步调查. 高雄: 台湾中山大学. [47] 黄威, 陶春辉, 李军, 等, 2016.洋中脊热液系统中的锇及其同位素.地球科学, 41(3):441-451. http://www.earth-science.net/WebPage/Article.aspx?id=3262 [48] 李军, 孙治雷, 黄威, 等, 2014.现代海底热液过程及成矿.地球科学, 39(3):312-324. http://www.earth-science.net/WebPage/Article.aspx?id=2841 [49] 李小虎, 初凤友, 雷吉江, 等, 2014.西南印度洋中脊热液硫化物成矿物质来源探讨:同位素证据.地球科学与环境学报, 36(1):193-200. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201401018 [50] 刘长华, 汪小妹, 曾志刚, 等, 2009.台湾东北部龟山岛附近海域自然硫烟囱体的铅同位素组成及地质意义.海洋与湖沼, 40(4):393-399. doi: 10.11693/hyhz200904002002 [51] 刘长华, 曾志刚, 殷学博, 等, 2006.台湾岛东北部龟山岛附近海域自然硫烟囱体的基本特征研究.台湾海峡, 25(3):309-317. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=twhx200603001 [52] 邱中炎, 韩喜球, 王叶剑, 等, 2015.西北印度洋卡尔斯伯格脊沉积物特征及其找矿启示.矿物学报, 35(增刊):776. http://www.cnki.com.cn/Journal/A-A5-CCDZ-2015-S1.htm [53] 陶春辉, 李怀明, 金肖兵, 等, 2014.西南印度洋脊的海底热液活动和硫化物勘探.科学通报, 59(19):1812-1822. http://www.docin.com/p-1479330221.html [54] 席振铢, 李瑞雪, 宋刚, 等, 2016.深海热液金属硫化物矿电性结构.地球科学, 41(8):1395-1401. http://www.earth-science.net/WebPage/Article.aspx?id=3346 [55] 曾志刚, 2011.海底热液地质学.北京:科学出版社.