The Morphology of Nanoparticles in the Ductile Shear Zone of Red River Fault and Its Tectonic Significance
-
摘要: 纳米颗粒被发现广泛发育于韧性剪切带内,其发育特征与断层的剪切活动密切相关.为了解红河断裂韧性剪切带内纳米颗粒的发育特征,探讨其形成规律及与红河断裂活动性的关系,我们在不同的区段3次穿越红河韧性剪切带,采集了韧性剪切带内糜棱岩、片麻岩和片岩等近百块样品进行扫描电镜(SEM)的观察,通过对纳米颗粒的统计和分析,在样品中发现了具球粒状形貌特征的纳米单体,这些单体呈分散状分布于岩石表面,同时还发现了多达12种纳米颗粒聚集体,不同的聚集体在形貌特征以及发育阶段上都有着明显的差异,反映了红河断裂带剪切活动过程中不同位置经历不同的构造应力、温度和压力条件.Abstract: Nanoparticles are widely found in the ductile shear zone, and their development characteristics are closely related to the fault shear deformation. To better understand the morphological characteristics of nanoparticles in the ductile shear zone of Red River Fault, the formation law and the relationship with Red River fault activity, we have traversed the ductile shear zone of Red River Fault three times in different sections, collecting almost 100 samples including mylonite, gneiss and schist. One type of nano monomers was found by the scanning electron microscopy (SEM), which show unique morphology features, including spherulitic monomer. These monomers are scattered over the mineral surface. At the same time, twelve kinds of nanoparticles aggregations were found, with different aggregations showing obvious differences in their morphology features and development stages, reflecting different tectonic stress, temperature and pressure conditions that different areas have experienced in the shear process of the ductile shear zone of Red River Fault.
-
Key words:
- Red River Fault /
- ductile shear zone /
- nanoparticles /
- aggregation /
- tectonic significance /
- tectonic geology
-
表 1 红河断裂韧性剪切带纳米颗粒的聚集形态
Table 1. The aggregation morphology of nanoparticles within the ductile shear zone of Red River Fault
聚集形态 大小 发育阶段 能否观察到纳米单体 定向性 球粒状聚集体 单体约20 nm 粒化阶段 能 几乎无定向 珊瑚状聚集体 约200 nm 团聚阶段 能 几乎无定向 草莓状聚集体 直径约200 nm 团聚阶段 能 几乎无定向 花状聚集体 单体约30 nm,聚体约500 nm左右 团聚阶段 能 几乎无定向 铜钱状聚集体 长约200 nm 团聚阶段 能 有一定定向性 棒状聚集体 宽200 nm,厚约20 nm 团聚阶段 能 有一定定向性 放射球状聚集体 直径可达几个微米 团聚阶段 能 几乎无定向呈放射状发散 黏块状聚集体 单个聚集体约200 nm 再生阶段 不能 几乎无定向 片状聚集体 长200~300 nm,厚约20 nm 再生阶段 不能 几乎无定向 膜状聚集体(单体不可见) 厚约20 nm,宽可达几个微米 再生阶段 不能 几乎无定向 膜状聚集体(单体可见) 厚约20 nm,宽可达几个微米 团聚阶段 能 几乎无定向 聚集体共生 直径可达几个微米 再生阶段 能 几乎无定向 -
[1] Chao, H.T., Sun, Y., Wang, Z.C., et al., 2009.A Case of Nanoseismic Observations of Seismogenic Fractures.Progress in Natural Science, 19(10):1076-1081 (in Chinese). doi: 10.1029/2006JB004665/abstract [2] Chao, H.T., Sun, Y., Wang, Z.C., et al., 2016.Observations and Analyses of Nano/Micro-Structures of Coseismic Stick Slipping and Aseismic Creep Slipping Faults.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):37-42 (in Chinese with English abstract). http://linkinghub.elsevier.com/retrieve/pii/S0191814110001653 [3] Chen, J.Z., 1994.Nanotechnology Development and Nanomineralogy Research.Geological Science and Technology Information, 13(2):32-38 (in Chinese with English abstract). http://europepmc.org/abstract/MED/15807631 [4] Chen, W.J., Li, Q., Wang, Y.P., 1996.Miocene Diachronic Uplift Ailao Mountains-Red River Left-Lateral Strike-Slip Shear Zone.Geology Review, 42(5):385-390 (in Chinese with English abstract). doi: 10.1111/1755-6724.12275/abstract [5] Chester, F.M., Evans, J.P., Biegel, R.L., 1993.Internal Structure and Weakening Mechanisms of the San Andreas Fault.Journal of Geophysical Research, Solid Earth, 98(B1):771-786. https://doi.org/10.1029/92JB01866 [6] de Paola, N., Holdsworth, R.E., Viti, C., et al., 2015.Can Grain Size Sensitive Flow Lubricate Faults during the Initial Stages of Earthquake Propagation? Earth and Planetary Science Letters, 431:48-58. http://linkinghub.elsevier.com/retrieve/pii/S0012821X15005695 [7] Gong, W., Jiang, X.D., 2017.Thermal Evolution History and Its Genesis of the Ailao Shan-Red River Fault Zone in the Ailao Shan and Day Nui Con Voi Massif during Oligocene-Early Miocene.Earth Science, 42(2):223-239 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.017 [8] Han, R., Hirose, T., Shimamoto, T., 2010.Strong Velocity Weakening and Powder Lu-Brication of Simulated Carbonate Faults at Seismic Slip Rates.Journal of Geophys Research, 115:B03412. http://doi.org/10.1029/2008JB006136 [9] Han, R., Shimamoto, T., Hirose, T., et al., 2007.Ultra-Low Friction of Carbonate Faults Caused by Thermal Decomposition.Science, 316:878-881. https://doi.org/10.1126/science.1139763 [10] Ju, Y.W., Sun, Y., Wan, Q., et al., 2016.Nanogeology:A Revolutionary Challenge in Geosciences.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):1-20 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_kwysdqhxtb201601001 [11] Leloup, H.P., Lacassin, R., Tapponnier, P., et al., 1995.The Ailao Shan-Red River Shear Zone (Yunnan, China), Tertiary Transform Boundary of Indochina.Tectonophysics, 251:3-84. doi: 10.1016/0040-1951(95)00070-4 [12] Liu, D.L., Yang, Q., Li, W.Y., et al., 2004.A Discovery of Nanometer-Grade Grain in the Mylonite of Ductile Fracture in the South of Tancheng-Lujian Fracture Zone.Science Technology and Engineering, 4(1):42-43 (in Chinese with English abstract). https://www.researchgate.net/publication/273059544_082012-923-140066 [13] Liu, H., Sun, Y., Shu, L.S., et al., 2009.Nano-Scaled Study on the Ductile Shear Zone in Wugongshan, South China.Acta Geologica Sinica, 83(5):609-616 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SHLX200503017.htm [14] Rangin, C., Klein, M., Roques, D., et al., 1995.The Red River Fault System in the Tonkin Gulf, Vietnam.Tectonophysics, 243(3-4):209-222. doi: 10.1016/0040-1951(94)00207-P [15] Sammis, C.G., Ben-Zion, Y., 2008.Mechanics of Grain-Size Reduction in Fault Zones.Journal of Geophysic Research, 113:B02306. https://doi.org/10.1029/2006JB004892 [16] Scharer, U., Zhang, L.S., Tapponnier, P., 1994.Duration of Strike-Slip Movement in Large Shear Zones:The Red River Belt, China.Earth Planet Science Letters, 126:379-397. doi: 10.1016/0012-821X(94)90119-8 [17] Siman-Tov, S., Aharonov, E., Sagy, A., et al., 2013.Nanograins Form Carbonate Fault Mirrors.Geology, 41(6):703-706. doi: 10.1130/G34087.1 [18] Sun, Y., Ge, H.P., Lu, X.C., et al., 2003.Discovery and Analysis of Ultrafine Abrasive Grain Structure in Slip-Glide Shear Blades.Science China Earth Sciences, 33(7):619-625 (in Chinese). doi: 10.1088/0370-1301/64/9/303 [19] Sun, Y., Ju, Y.W., Lu, X.C., et al., 2016.To Re-Recognize Deformable Geological Bodies on the Nano-Level.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):52-55 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_kwysdqhxtb201601006 [20] Sun, Y., Lu, X.C., Liu, D.L., et al., 2005.Discovery, Nomenclature of the Centimeter Scale Grinding Gravels and the Nanometer Scale Grinding Grains in Fault Shearing Zones and the Significance for Oil-Gas Geology.Geological Journal of China Universities, 11(4):521-526 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LXJZ201103004.htm [21] Wan, J.L., Li, Q., Chen, W.J., 1997.Fission Track Evidence of Diachronic Uplift alone the Ailao-Red River Left-Lateral Strike-Slip Shear Zone.Seismology and Geology, 19(1):87-90 (in Chinese with English abstract). doi: 10.1029/2000JB900322 [22] Wang, Y.X., Tian, X.K., 2016.New Opportunities for the Study of Geology:Nano Geology.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):79-86 (in Chinese with English abstract). https://www.uvm.edu/cas/geology [23] Wibberley, C.A.J., Shimamoto, T., 2003, Internal Structure and Permeability of Major Strike-Slip Fault Zones:The Median Tectonic Line in Mie Prefecture, Southwest Japan.Journal of Structural Geology, 25:59-78. https://doi.org/10.1016/S0191-8141(02)00014-7 [24] Xiang, H.F., Han, Z.J., Guo, S.M., et al., 2004a.Large-Scale Dextral Strike-Slip Movement and Asociated Tectonic Deformation along the Red-River Fault Zone.Seismology and Geology, 26(4):598-610 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdzyj-e200502003 [25] Xiang, H.F., Han, Z.J., Guo, S.M., et al., 2004b.Processing About Quantitative Study of Large-Scale Strike-Slip Movement on Red River Fault Zone.Advance in Earth Sciences, 19(Suppl.):56-59 (in Chinese with English abstract). doi: 10.11648/j.earth.20170605.15 [26] Xu, Y., Liu, J.F., Liu, F.T., et al., 2003.The Crust-Upper Mantle Structure of Ailaoshan-Red River Fault Zone and Its Adjacent Area.Science China Earth Sciences, 33(12):1201-1208 (in Chinese). doi: 10.1002/cjg2.848 [27] Yuan, R.M., Zhang.B.L., Xu, X.W., et al., 2014.The Characteristics, Formation Mechanism and Seismic Significance of Micro-Nanometer Particles in the Shearing Surface of Wenchuan Earthquake.Science China Earth Sciences, 44(8):1821-1832 (in Chinese). http://earth.scichina.com:8080/sciDe/CN/Y2014/V57/I8/1961 [28] 晁洪太, 孙岩, 王志才, 等, 2009.发震断裂的纳米级运动学观测一例.自然科学进展, 19(10):1076-1081. doi: 10.3321/j.issn:1002-008X.2009.10.008 [29] 晁洪太, 孙岩, 王志才, 等, 2016.同震和无震剪切滑移作用的纳微米级构造观察与分析.矿物岩石地球化学通报, 35(1):37-42. http://www.cqvip.com/QK/84215X/201601/668146275.html [30] 陈敬中, 1994.纳米科技的发展与纳米矿物学研究.地质科技情报, 13(2):32-38. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ402.007.htm [31] 陈文寄, 李齐, 汪一鹏, 1996.哀牢山-红河左旋走滑剪切带中新世抬升的时间序列.地质论评, 42(5):385-390. http://www.oalib.com/paper/4887717 [32] 宫伟, 姜效典, 2017.哀牢山-红河断裂带-大象山段渐新世-早中新世热史演化及成因.地球科学, 42(2):223-239. http://www.earth-science.net/WebPage/Article.aspx?id=3430 [33] 琚宜文, 孙岩, 万泉, 等, 2016.纳米地质学:地学领域革命性挑战.矿物岩石地球化学通报, 35(1):1-20. http://www.cqvip.com/QK/84215X/201601/668146269.html [34] 刘德良, 杨强, 李王晔, 等, 2004.郯庐断裂南段韧性剪切带糜棱岩中纳米级颗粒的发现.科学技术与工程, 4(1):42-43. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200702001.htm [35] 刘浩, 孙岩, 舒良树, 等, 2009.华南武功山地区韧性剪切带的纳米尺度测量研究.地质学报, 83(5):609-616. http://www.oalib.com/paper/4875965 [36] 孙岩, 葛和平, 陆现彩, 等, 2003.韧脆性剪切带滑移叶片中超微磨粒构造的发现和分析.中国科学:地球科学, 33(7):619-625. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_zgkx-cd200307002 [37] 孙岩, 琚宜文, 陆现彩, 等, 2016.从纳米层次重新认识变形的地质体.矿物岩石地球化学通报, 35(1):52-55. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_kwysdqhxtb201601006 [38] 孙岩, 陆现彩, 刘德良, 等, 2005.断裂剪切带厘米级磨砾和纳米级磨粒的发现、命名及其油气地质意义.高校地质学报, 11(4):521-526. http://www.cqvip.com/QK/90539X/200504/20835610.html [39] 万景林, 李齐, 陈文寄, 1997.哀牢山-红河左旋走滑剪切带构造抬升时间序列的裂变径迹证据.地震地质, 19(1):87-90. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW200710002528.htm [40] 王焰新, 田熙科, 2016.地学研究的新机遇——纳米地质学.矿物岩石地球化学通报, 35(1):79-86. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_kwysdqhxtb201601010 [41] 向宏发, 韩竹军, 虢顺民, 等, 2004a.红河断裂带大型右旋走滑运动与伴生构造地貌变形.地震地质, 26(4):598-610. doi: 10.3969/j.issn.0253-4967.2004.04.006 [42] 向宏发, 韩竹军, 虢顺民, 等, 2004b.红河断裂带大型右旋走滑运动定量研究的若干问题.地球科学进展, 19(增刊):56-59. http://www.cqvip.com/QK/94287X/2004S1/1000335770.html [43] 胥颐, 刘建华, 刘福田, 等, 2003.哀牢山-红河断裂带及其邻区的地壳上地幔结构.中国科学:地球科学, 33(12):1201-1208. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200312001010.htm [44] 袁仁茂, 张秉良, 徐锡伟, 等, 2014.汶川地震剪切滑动面微-纳米级颗粒的特征、形成机制及地震意义.中国科学:地球科学, 44(8):1821-1832. http://www.oalib.com/paper/4152475