Theory and Technology of Nanogeochemistry for Mineral Exploration
-
摘要: 纳米地球化学为人类从微观探索和认识地壳发生的地质地球化学过程提供新的理论与方法,开展该领域研究将对资源、环境等领域的研究和应用产生重大影响.纳米地球化学在矿产勘查领域已取得了重要进展.通过总结、归纳前人研究并结合团队最新成果,从自然界纳米金属微粒形成过程、迁移方式、在表生介质中的赋存状态及纳米金属微粒的捕获等几个方面开展了梳理总结,并进一步阐述了纳米金属微粒对隐伏矿勘查的理论与实际应用意义.纳米微粒的迁移机制可总结为:成矿过程中成矿元素可形成纳米金属颗粒,在矿石风化过程中部分纳米金属微粒发生解离而具备活动性,活动性纳米金属颗粒因其巨大的表面能,可吸附于气体分子表面,并通过地气流的垂向运动,穿透矿体上方覆盖层而到达地表;另外,纳米物质所具备的易分散性质可以使纳米金属微粒自身发生垂向迁移而到达地表.到达地表后部分纳米金属微粒仍然滞留在壤中气,部分被土壤中粘土矿物或氧化物膜吸附,此外也可被地表生物所捕获.该迁移机制已通过表生气固介质中大量纳米金属微粒原位观测结果获得证实.在矿产勘查中,通过分离土壤中的纳米金属微粒可实现指示土壤覆盖层和深部矿体的目的,目前已取得一些成功案例.Abstract: Nanogeochemistry can help humans to understand and explore the geological and geochemical processes on the earth from microcosmic point of view, which have a significant impact on the research and application in the resources and environmental issues. Nanogeochemistry has made important progress in the field of mineral exploration. Based on the summarization of previous academic achievements and combined with this study. In this paper, it presents metallic nanoparticels from the formation process, migration patterns, occurrences in supergenic medium, and capture approaches and further states the theory of nanogeochemistry for mineral exploration and its application significance. The migration mechanism of nanoparticles can be summarized as follows:nanoparticles of ore-forming elements or minerals formed in the metallogenic process, released from the orebody of deposits by weathering, formed active metallic nanoparticles, can be adsorbed onto surface of gas molecular because of their tremendous surface energies and then be migrated to the earth surface through covers by their ascending geogas carrier or their gas-like phases, with part of them remained in geogases and other parts trapped into soil geochemical barriers and creature. The migration mechanism has been proven by lots of in-situ observation cases of metallic nanoparticles occurred in supergenic medium. Some successful cases show that separation of nanoparticles of mobile metals could be effectively applied to prospect concealed ore deposits under covers.
-
图 1 美国内华达卡林型金矿矿石扫描电镜图像
Fig. 1. HRTEM image of gold particles in arsenian pyrite from Carlin-type deposits in Nevada, USA
图 2 不同构造带(构造单元)中有序纳米粒、纳米线和纳米层分级以及分层结构的SEM观察图示(a~d)
Fig. 2. SEM images showing hierarchy and delamination textures of ordered nano particles, nano lines and nano layers in various structure zones (tectonic units) (a~d)
图 3 四川盆地上三叠统须家河组致密砂岩复杂孔隙三维重构图像
据邹才能等(2011).a.微裂缝,缝宽280 nm,缝长30 μm左右;b.致密砂岩复杂孔隙三维几何图,亮绿色为孔隙,黄色阴影为样品基质部分;c.图b中右上方孔隙放大图,为微裂缝三维几何图
Fig. 3. 3D pore reconstruction images in tight sandstone of the Upper Triassic Xujiahe Formation, Sichuan basin
图 4 自然界风化伊利石中包含的纳米铜
Fig. 4. Weathered illite containing nanometer-scale copper inclusions
图 5 河南南阳周庵铜镍矿床地气、土壤和矿石中纳米微粒
据王学求等(2012a).a.地气中的Cu-Ti纳米微粒;b.覆盖层土壤中的Cu-Ti纳米微粒;c.矿石中的Cu-Ti纳米微粒
Fig. 5. Nanoscale particles of metals in gases, soils and ores at Zhou'an Cu-Ni deposit in Nanyang, Henan
图 6 地气流携带纳米金属颗粒迁移模型
Fig. 6. Migration modal of nanoscale metal particles carried by earth gas
图 7 河南南阳周庵隐伏铜镍矿环状异常
Fig. 7. Circular-shaped anomaly over concealed Zhou'an Cu-Ni deposit in Nanyang, Henan
图 8 澳大利亚某金矿上方桉树叶子中的纳米-微米尺度金颗粒
Fig. 8. Nano- and micron-sized Au particles in leaf from specimens of Eucalyptus over a gold mine, Australia
-
[1] Abbas, Z., Labbez, C., Nordholm, S., et al., 2008.Size-Dependent Surface Charging of Nanoparticles.Journal of Physical Chemistry C, 112:5715-5723. https://doi.org/10.1021/jp709667u [2] Ahn, J.H., Xu, H.F., Buseck, P.R., 1997.Transmission Electron Microscopy of Native Copper Inclusions in Illite.Clays and Clay Minerals, 45:295-297. doi: 10.1346/CCMN [3] Alcoutlabi, M., McKenna, G.B., 2005.Effects of Confinement on Material Behaviour at the Nanometer Size Scale.Journal of Physics-Condensed Matter, 17:461-524. https://doi.org/10.1088/0953-8984/17/15/R01 [4] Anand, R.R., Cornelius, M., Phang, C., 2007.Use of Vegetation and Soil Inmineral Exploration in Areas of Transported Overburden, Yilgarn Craton, Western Australia:A Contribution towards Understanding Metal Transportation Processes.Geochemistry:Exploration, Environment, Analysis, 7(3):267-288. https://doi.org/10.1144/1467-7873/07-142 [5] Barnard, A.S., Xu, H., 2008.An Environmentally Sensitive Phase Map of Titania Nanocrystals.ACS Nano, 2(11):2237-2242. https://doi.org/10.1021/nn800446w [6] Basta, N.T., Ryan, J.A., Chaney, R.L., 2005.Trace Element Chemistry in Residual-Treated Soil:Key Concepts and Bioavailability.Journal of Environmental Quality Beauchamp, 34:49-63. https://doi.org/10.2134/jeq2005.0049dup [7] Bhatt, I., Tripathi, B., 2011.Interaction of Engineered Nanoparticles with Various Components of the Environment and Possible Strategies for Their Risk Assessment.Chemosphere, 82(3):308-317. https://doi.org/10.1016/j.chemosphere.2010.10.011 [8] Cameron, E.M., Hamilton, S.M.H., Leybourne, M.I.L., et al., 2004.Finding Deeply-Buried Deposits Using Geochemistry.Geochemistry:Exploration, Environment, Analysis, 4(1):7-32. https://doi.org/10.1144/1467-7873/03-019 [9] Cao, J.J., 2001.The Effect Factors and the Present State of Geogas Measurement Study.Hunan Geology, 20(2):154-156 (in Chinese with English abstract). http://en.journals.sid.ir/ViewPaper.aspx?ID=130268 [10] Cao, J.J., 2009.A Technique for Detecting Concealed Deposits by Combining Geogas Particle Characteristics with Element Concentrations.Metal Mine, 39(2):1-4 (in Chinese with English abstract). doi: 10.1111/rge.12055/abstract [11] Cao, J.J., 2011.Migration Mechanisms of Gold Nanoparticles Explored in Geogas of the Hetai Ore District, Southern China.Geochemical Journal, 45(3):9-13. doi: 10.2343/geochemj.1.0128 [12] Cao, J.J., 2012.Characteristics, Formation and Migration of the Particles Carried by Ascending Gas Flow from the Concealed Metal Deposits.Earth Science Frontiers, 19(3):113-119 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201203013.htm [13] Cao, J.J., Hu, R.Z., Jiang, Z.T., et al., 2010a.Simulation of Adsorption of Gold Nanoparticles Carried by Gas Ascending from the Earth's Interior in Alluvial Cover of the Middle-Lower Reaches of the Yangtze River.Geofluids, 10(3):438-446. https://doi.org/10.1111/j.1468-8123.2010.00287.x [14] Cao, J.J., Liu, C., Xiong, Z.H., et al., 2010b.Particles Carried by Ascending Gas Flow at the Tongchanghe Copper Mine, Guizhou Province, China.Science China Earth Sciences, 53 (11):1647-1654. https://doi.org/10.1007/s11430-010-4115-8 [15] Cao, J.J., Hu, R.Z., Liang, Z.R., et al., 2009.TEM Observation of Geogas-Carried Particles from the Changkeng Concealed Gold Deposit, Guangdong Province, South China.Journal of Geochemical Exploration, 101(3):247-253. https://doi.org/10.1016/j.gexplo.2008.09.001 [16] Cao, J.J., Li, Y.K., Jiang, T., et al., 2015.Sulfer-Containing Particles Emitted by Concealed Sulfide Ore Deposits:An Unknown Source of Sulfer-Containing Particles in the Atmosphere.Atmospheric Chemistry and Physics, 15:6959-6969. https://doi.org/10.5194/acp-15-6959-2015-supplement [17] Cao, J.J., Liang, Z.R., Liu, K.X., et al., 2004.Simulation of Adsorption of Gold Nanoparticles on Weathered Crust of Red Beds.Progress in Natural Science, 14(7):826-829 (in Chinesse). https://www.deepdyve.com/lp/elsevier/tem-observation-of-geogas-carried-particles-from-the-changkeng-OB0dZNbdKx [18] Chao, H.T., Sun, Y., Wang, Z.C., et al., 2009.A Case of Nanoscale Kinematics Observation of Seismogenic Fault.Progress in Natural Science, 19(10):1076-1081 (in Chinese). doi: 10.1029/2004TC001635 [19] Chao, T.T., 1984.Use of Partial Dissolution Techniques in Geochemical Exploration.Journal of Geochemical Exploration, 20:101-135. https://doi.org/10.1016/0375-6742(84)90078-5 [20] Chen, T.H., 2001.Progress and Problems in the Research on Palygorskite Clay in the Provinces of Jiangsu and Anhui.Journal of Hefei University of Technology, 24(5):885-889 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_hfgydxxb200105007.aspx [21] Chen, T.H., Yue, S.C., 2001.Role of Gaseous Phase in the Formation of Hydrothermal Ore Deposites.Journal of Hefei University of Technology, 24(4):470-476 (in Chinese with English abstract). https://www.deepdyve.com/lp/elsevier/the-role-of-sulfur-in-the-formation-of-magmatic-hydrothermal-copper-dlsYlkIFv8 [22] Colvin, V.L., 2003.The Potential Environmental Impact of Engineered Nanomaterials.Nature Biotechnology, 21(10):1166-1170. doi: 10.1038/nbt875 [23] Curtis, M.E., Sondergeld, C.H., Ambrose, R.J., et al., 2012.Microstructural Investigation of Gas Shales in Two and Three Dimensions Using Nanometer-Scale Resolution Imaging.AAPG Bulletin, 96(4):665-677. https://doi.org/10.1306/08151110188 [24] Fairbrother, L., Brugger, J., Shapter, J., et al., 2012.Supergene Gold Transformation:Biogenic Secondary and Nano-Particulate Gold from Arid Australia.Chemical Geology, 320-321:17-31. https://doi.org/10.1016/j.chemgeo.2012.05.025 [25] Fan, H.R., Li, Z.L., 1991.Simulating Experiments on the Concentration of Gold in Supergene Condition and Its Significance for Geochemistry.Gold, 12(1):12-15 (in Chinese with English abstract). doi: 10.1029/2004TC001635 [26] Gale, J.F.W., Reed, R.M., Holder, J., 2007.Natural Fractures in the Barnett Shale and Their Importance for Hydraulic Fracture Treatments.AAPG Bulletin, 91(4):603-622. https://doi.org/10.1306/11010606061 [27] Glover, R.D., Miller, J.M., Hutchison, J.E., 2011.Generation of Metal Nanoparticles from Silver and Copper Objects:Nanoparticle Dynamics on Surfaces and Potential Sources of Nanoparticles in the Environment.ACS Nano, 5(11):8950-8957. https://doi.org/10.1021/nn2031319 [28] Hall, G.E.M., 1998.Analytical Perspective on Trace Element Species of Interest in Exploration.Journal of Geochemical Exploration, 61(1):1-19. https://doi.org/10.1016/S0375-6742(97)00046-0 [29] He, C.Z., Hua, M.Q., 2005.Characteristics of Pore Structure and Physical Property of Low Permeability Sandstone Reservoir.Xinjiang Petroleum Geology, 26(3):280-284 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200903012.htm [30] Hochella, M.F., 2002.Nanoscience and Technology:The Next Revolution in the Earth Sciences.Earth and Planetary Science Letters, 203:593-605. doi: 10.1016/S0012-821X(02)00818-X [31] Hochella, M.F., 2006.The Case for Nanogeoscience.Annals of the New York Academy of Sciences, 1093:108-122. https://doi.org/10.1196/annals.1382.008 [32] Hochella, M.F., 2008.Nanogeoscience:From Origins to Cutting-Edge Applications.Elements, 4:373-379. https://doi.org/10.2113/gselements.4.6.373 [33] Hough, R.M., Noble, R.R.P., Reich, M., 2011.Natural Gold Nanoparticles.Ore Geology Reviews, 42:55-61. https://doi.org/10.1016/j.oregeorev.2011.07.003 [34] Hua, S.G., Wang, L.J., Jia, X.F., et al., 2012.Occurrence and Enrichment Mechanism of Gold in the Qiuling Carlin-Type Gold Deposit, Zhen'an County, Shanxi Province, China.Earth Science, 37(5):989-1002 (in Chinese with English abstract). doi: 10.1007%2Fs00126-015-0597-9 [35] Jiang, Z.C., 1993.Nanoscience and Geology.Geology-Geochemistry, (2):22-25 (in Chinese). http://web-files.ait.dtu.dk/bruus/TMF/publications/books/nnote.pdf [36] Jiang, Z.C., 1995.Issues of Nanoscale Science Related to Geosciences.Bulletin of Mineralogy, Petrology and Geochemistry, 14(4):262-266 (in Chinese). doi: 10.1142/S0219607712500073 [37] Joron, J.L., Le, G.F., Treuil, M., 1982.Geochemical Study of Elements Condensed during Cooling of a Gaseous Volcanic Phase:Moun Etna in 1976.Bull.Volcanol., 45(3):167-172. doi: 10.1007/BF02597726 [38] Ju, Y.W., Jiang, B., Hou, Q.L., et al., 2005.The Relationship between Nanoscale Deformation and Metamorphism and Deformation Environment of Coal Structure.Chinese Science Bulletin, 50(17):1884-1892 (in Chinese). http://www.hindawi.com/journals/jgr/2012/590857/ [39] Ju, Y.W., Sun, Y., Wan, Q., et al., 2016.Nanogeology:A Revolutionary Challenge in Geosciences.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):1-20 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_kwysdqhxtb201601001 [40] Ju-Nam, Y., Lead, J.R., 2008.Manufactured Nanoparticles:An Overview of Their Chemistry, Interactions and Potential Environmental Implications.Science of the Total Environment, 400(1):396-414. https://doi.org/10.1016/j.scitotenv.2008.06.042 [41] Kavalieris, I., 1986.High Au, Ag, Mo, Pb, V and W Contents of Fumarolic Deposits at Merapi Volcano, Central Java, Indonesia.Journal of Geochemical Exploration, 50(1-3):479-491. https://doi.org/10.1016/0375-6742(94)90037-X [42] Klaine, S.J., Fernandes, T.F., Handy, R.D., 2008.Nanomaterials in the Environment:Behavior, Fate, Bioavailability, and Effects.Environmental Toxicology and Chemistry, 27(9):1825-1851. https://doi.org/10.1897/08-090.1 [43] Lintern, M., Anand, R., Ryan, C., et al., 2013.Natural Gold Particles in Eucalyptus Leaves and Their Relevance to Exploration for Buried Gold Deposits.Nature Communications, 4:1-7. https://doi.org/10.1038/ncomms3614 [44] Liu, C.L., 1999.Biogenic Mineralization of Sedimentary Bauxite.Journal of Metallurgical Geology, (9):6-8 (in Chinese). http://www.sciencedirect.com/science/article/pii/0037073887900509 [45] Liu, J.M., 2011.Examples of Unconventional Mineral Resources in China and the Related Scientific Key-Points.Progress in Geophysics, 16(4):133-143 (in Chinese with English abstract). http://agris.fao.org/agris-search/export!exportTopEndNoteXML.action?agrovocString=papermaking&onlyFullText=false [46] Liu, J.M., Liu, J.J., 1997.Basin Fluid Genetic Model of Sediment-Hosted Micro-Disseminated Gold Deposits in the Gold-Triangle Area between Guizhou, Guangxi and Yunnan.Acta Mineralogica Sinica, 17(4):448-456 (in Chinese with English abstract). https://www.deepdyve.com/lp/elsevier/sediment-hosted-micro-disseminated-gold-mineralization-constrained-by-WqakErJMgR [47] Liu, J.M., Ye, J., Liu, J.J., et al., 2001.Relationship between Sediments-Hosted Micro-Disseminated Gold Deposits and Basin Evolution:Case Study in Youjiang Basin, South China.Mineral Deposits, 20(4):367-377 (in Chinese with English abstract). http://linkinghub.elsevier.com/retrieve/pii/S1367912001000530 [48] Liu, Y.H., Wang, M.Q., Zhao, H.C., et al., 2006.The Principle and Application Prospect of the Geogas Prospecting for Searching for Concealed Deposits.Management and Strategy of Qinghai Land and Resources, 3:41-42 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200707000.htm [49] Madden, A.S., Hochella, M.F., Luxton, T.P., 2006.Insights for Size-Dependent Reactivity of Hematite Nanomineral Surface through Cu2+ Sorption.Geochimica et Cosmochimica Acta, 70:4095-4104. https://doi.org/10.1016/j.gca.2006.06.1366 [50] Nel, A., Xia, T., Madler, L., et al., 2006.Toxic Potential of Materials at the Nanolevel.Science, 311(5761):622-627. https://doi.org/10.1126/science.1114397 [51] Noble, R.R.P., Anand, R.R., Gray, D.J., et al., 2016.Metal Migration at the DeGrussa Cu-Au Sulphide Deposit, Western Australia:Soil, Vegetation and Groundwater Studies.Geochemistry:Exploration, Environment, Analysis, 17:124-142. https://doi.org/10.1144/geochem2016-416 [52] Palenik, C.S., Utsunomiya, S., Reich, M., et al., 2004."Invisible" Gold Revealed:Direct Imaging of Gold Nanoparticles in a Carlin-Type Deposit.American Mineralogist, 89:1359-1366. doi: 10.2138/am-2004-1002 [53] Qiu, Y.N., Xue, S.H., 1997.Oil and Gas Reservoir Evaluation Technology.Petroleum Industry Press, Beijing, 1-343 (in Chinese). [54] Reith, F., Stewart, L., Wakelin, S.A., 2012.Supergene Gold Transformation:Secondary and Nano-Particulate Gold from Southern New Zealand.Chemical Geology, 320-321:32-45. https://doi.org/10.1016/j.chemgeo.2012.05.021 [55] Remi, J.C.S., Lauerer, A., Chmelik, C., et al., 2016.The Role of Crystal Diversity in Understanding Mass Transfer in Nanoporous Materials.Nature Materials, 15:401-406. https://doi.org/10.1038/nmat4510 [56] Ren, T.X., Liu, Y.H., Wang, M.Q., 1995.Nanometre Science and Hidden Mineral Resources.Science and Technology Review, (8):18-19 (in Chinese). http://pubs.rsc.org/en/Content/ArticleLanding/2013/RA/C3RA45763J [57] Sadik, O.A., 2013.Anthropogenic Nanoparticles in the Environment.Environmental Science:Processes Impacts, 15(1):19-20. https://doi.org/10.1039/c2em90063g [58] Shen, B.Y., Liu, B., Liu, H.L., et al., 2016.Xiaomei Ductile Shear Zone on Hainan Island in a Nanoscale Perspective.Earth Science, 41(9):1489-1498 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.504 [59] Shi, J.Y., Shen, Y.L., 1999.Physical and Chemical Properties of Nanometer Materials.Chemical Engineer, 3:21-23 (in Chinese). http://gradworks.umi.com/35/66/3566641.html [60] Shi, N.C., Ma, Z.S., He, W.Z., et al., 1995.Nano-Solid Research in Ocean Bottoms Manganese Nodules in the Northern Pacific Ocean:Nano-Solid in Minerals and Application Prospects.Science in China (Series B), 25(7):778-784 (in Chinese). http://europepmc.org/articles/PMC34287 [61] Sun, Y., Ju, Y.W., Lu, X.C., et al., 2016.To Re-Recognize Deformable Geological Bodies on the Nano-Level.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):52-55 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_kwysdqhxtb201601006 [62] Surani, F.B., Qiao, Y., 2006.Infiltration and Defiltration of an Electrolyte Solution in Nanopores.Journal of Applied Physics, 100:34311. https://doi.org/10.1063/1.2222042 [63] Sylvester, G.C., Mann, A.W., Rate, A.W., et al., 2016.Application of High-Resolution Mobile Metal Ion (MMI) Soil Geochemistry to Archaeological Investigations:An Example from a Roman Metal Working Site, Somerset, United Kingdom.Geoarchaeology, 32(5):563-574. https://doi.org/10.1002/gea.21618 [64] Tang, Q., Zhang, Y., Wang, J., 2010.Nanotechnology and Its Application in Geoscience.Public Communication of Science & Technology, 22:83-84 (in Chinese). http://ieeexplore.ieee.org/abstract/document/7509643 [65] Taran, A., Bemard, A., Gavilanes, J.C., et al., 2000.Native Gold in Mineral Precipates from High-Temperature Volcanic Gases of Colima Volcano, Mexico.Applied Geochemistry, 15:337-346. https://doi.org/10.1016/S0883-2927(99)00052-9 [66] Theng, B.K.G., Yuan, G., 2008.Nanoparticles in the Soil Environment.Elements, 4(6):395-399. https://doi.org/10.2113/gselements.4.6.395 [67] Tong, C.H., Li, J.C., 1999.A New Method Searching for Concealed Mineral Resources:Geogas Prospecting Based on Nuclear Analysis and Accumulation Sampling.Journal of China University of Geosciences, 10(4):329-332. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx-e199904011 [68] Tong, C.H., Li, J.C., Ge, L.Q., et al., 1997.Transportation of the Ore-Forming Matters by Ascending Gas Flows in the Crust and the Mechanism of Geogas Prospecting.Journal of Mineralogy and Petrology, 17(3):83-88 (in Chinese with English abstract). http://www.oalib.com/paper/4896152 [69] Tong, C.H., Li, J.C., Ge, L.Q., et al., 1998.Experimental Observation of the Nano-Scale Particles in Geogas Matters and Its Geological Significance.Science China Earth Sciences, 41(3):325-329. https://doi.org/10.1007/BF02973123 [70] Wan, Q., Qin, Z.H., Ju, Y.W., et al., 2016.Nanogeochemistry:Origin, Recent Advances and Future Directions.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):21-27 (in Chinese with English abstract). doi: 10.1002/ppp.620/abstract [71] Wang, M.Q., Gao, Y.Y., Zhang, D.E., et al., 2006.Breakthrough in Mineral Exploration Using Geogas Survey in the Basin Area of Northern Qilian Region and Its Significance.Geophysical & Geochemical Exploration, 30(1):7-12 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_wtyht200601002.aspx [72] Wang, P.F., Jiang, Z.X., Li, Z., et al., 2017.Micro-Nano Pore Structure Characteristics in the Lower Cambrian Niutitang Shale, Northeast Chongqing.Earth Science, 42(7):1147-1156 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.093 [73] Wang, X.Q., 1998.Leaching of Mobile Forms of Metals in Overburden:Development and Applications.Journal of Geochemical Exploration, 61:39-55. https://doi.org/10.1016/S0357-6742(97)00039-3 [74] Wang, X.Q., 2005.Conceptual Model of Deep-Penetrating Geochemical Migration.Geological Bulletin of China, 24(10-11):18-22 (in Chinese with English abstract). https://www.deepdyve.com/lp/elsevier/application-of-geochemical-anomaly-identification-methods-in-mapping-WatkUzg7tZ [75] Wang, X.Q., Cheng, Z.Z., Lu, Y.Y., et al., 1997.Nanoscale Metals in Earthgas and Mobile Forms of Metals in Overburden in Widespaced Regional Exploration for Giant Ore Deposits in Overburden Terrain.Journal of Geochemical Exploration, 58(1):63-72. https://doi.org/10.1016/S0357-6742(96)00052-0 [76] Wang, X.Q., Wen, X.Q., Ye, R., et al., 2007.Vertical Variations and Dispersion of Elements in Arid Desert Regolith:A Case Study from the Jinwozi Gold Deposit, Northwestern China.Geochemistry:Exploration, Environment, Analysis, 7(2):163-171. https://doi.org/10.1144/1467-7873/07-131 [77] Wang, X.Q., Xie, X.J., 2000.Exploration Geochemistry of Gold.Shandong Science and Technology Press, Jinan (in Chinese). [78] Wang, X.Q., Xie, X.J., Lu, Y.X., 1995.Dynamic Collection of Geogas and Its Preliminary Application in Search for Concealed Deposits.Geophysical & Geochemical Exploration, 19(3):161-171 (in Chinese with English abstract). http://www.oalib.com/paper/4896152 [79] Wang, X.Q., Xie, X.J., Ye, S.Y., 1995.Concepts for Geochemical Gold Exploration Based on the Abundance and Distribution of Ultrafine Gold.Journal of Geochemical Exploration, 55(1-3):93-101. https://doi.org/10.1016/0357-6742(95)00026-7 [80] Wang, X.Q., Xu, S.F., Chi, Q.H., et al., 2013.Gold Geochemical Provinces in China:A Micro-and Nano-Scale Formation Mechanism.Acta Geologica Sinica, 87(1):1-8 (in Chinese with English abstract). doi: 10.1111/acgs.2013.87.issue-1 [81] Wang, X.Q., Ye, R., 2011.Finding of Nanoscale Metal Particles:Evidence for Deep-Penetrating Geochemistry.Acta Geoscientica Sinica, 32(1):7-12 (in Chinese with English abstract). https://www.deepdyve.com/lp/elsevier/multivariate-analysis-of-regolith-sediment-geochemical-data-from-the-bQQl94k0b0 [82] Wang, X.Q., Zhang, B.M., Liu, X.M., 2012a.Nanogeochemistry:Deep-Penetrating Geochemical Exploration through Cover.Earth Science Frontiers, 19(3):101-112 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_dxqy201203012 [83] Wang, X.Q., Zhang, B.M., Yao, W.S., et al., 2012b.New Evidences for Transport Mechanism and Case Histories of Geochemical Exploration through Covers.Earth Science, 37(6):1126-1132 (in Chinese with English abstract). doi: 10.1029/2003GC000687/abstract [84] Wang, X.Q., Zhang, B.M., Yao, W.S., et al., 2014.Geochemical Exploration:From Nanoscale to Global-Scale Patterns.Earth Science Frontiers, 21(1):65-74 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DXQY201401010.htm [85] Wang, X.Q., Zhang, B.M., Ye, R., 2016.Nanogeochemistry for Mineral Exploration through Covers.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):43-51 (in Chinese with English abstract). doi: 10.4236/jgis.2010.23025 [86] Wang, X.Q., Zhang, B.M., Ye, R., 2017.Nanoparticles Observed by TEM from Gold, Copper-Nickel and Silver Deposits and Implications for Mineral Exploration in Covered Terrains.Journal of Nanoscience and Nanotechnology, 17(9):6014-6025. https://doi.org/10.1166/jnn.2017.14496 [87] Wang, Y.F., 2014.Nanogeochemistry:Nanostructures, Emergent Properties and Their Control on Geochemical Reactions and Mass Transfers.Chemical Geology, 378-379:1-23. doi: 10.1016/j.chemgeo.2014.04.007 [88] Wang, Y.F., Bryan, C.R., Xu, H.F., et al., 2003.Nanogeochemistry:Geochemical Reactions and Mass Transfers in Nanopores.Geology, 31(5):387-390.https://doi.org/10.1130/0091-7613(2003)031<0387:NGRAMT>2.0.CO;2 doi: 10.1130/0091-7613(2003)031<0387:NGRAMT>2.0.CO;2 [89] Wang, Y.X., Tian, X.K., 2016.New Opportunities for the Study of Geology:Nano Geology.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):79-86 (in Chinese with English abstract). https://www.uvm.edu/cas/geology [90] Wei, X.J., Cao, J.J., Holub, R.F., et al., 2013.TEM Study of Geogas-Carried Nanoparticles from the Fankou Lead-Zinc Deposit, Guangdong Province, South China.Journal of Geochemical Exploration, 128:124-135. https://doi.org/10.1016/j.gexplo.2013.02.003 [91] Westerhoff, P., Song, G., Hristovski, K., et al., 2011.Occurrence and Removal of Titanium at Full Scale Wastewater Treatment Plants:Implications for TiO2 Nanomaterials.Journal of Environmental Monitoring Jem, 13(5):1195-1203. https://doi.org/10.1039/clem10017c [92] Whitesides, G.M., 2005.Nanoscience, Nanotechnology, and Chemistry.Nanoscience and Chemistry, 2:172-179. https://doi.org/10.1002/smll.200400130 [93] Xie, X.J., Lu, Y.X., Yao, W.S., et al., 2011.Further Study on Deep Penetrating Geochemistry over the Spence Porphyry Copper Deposit, Chile.Geoscience Frontiers, 2(3):303-311. https://doi.org/10.1016/j.gsf.2011.05.017 [94] Xie, X.J., Wang, X.Q., 1991.Geochemical Exploration for Gold:A New Approach to an Old Problem.Journal of Geochemical Exploration, 40(1-3):25-48. https://doi.org/10.1016/0375-6742(91)90030-X [95] Xie, X.J., Wang, X.Q., 2003.Recent Developments on Deep-Penetrating Geochemistry.Earth Science Frontiers, 10(1):225-238 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200301027 [96] Xue, Q.J., Xu, K., 2000.Nanochemistry.Progress in Chemistry, 12(4):432-444 (in Chinese with English abstract). doi: 10.1021/cr400425h [97] Yao, W.S., Wang, X.Q., Zhang, B.M., et al., 2012.Pilot Study of Deep-Penetrating Geochemical Exploration for Sandstone-Type Uranium Deposit, Ordos Basin.Earth Science Frontiers, 19(3):167-176 (in Chinese with English abstract). https://www.deepdyve.com/lp/elsevier/sixty-years-of-exploration-geochemistry-in-china-sqtX9w8tli [98] Ye, J.J., Tan, T.W., 2001.Screening for and Characteristics of Microbial Flocculant.Microbiology China, 28(4):31-35 (in Chinese with English abstract). https://www.deepdyve.com/lp/elsevier/flocculation-properties-of-pectin-in-various-suspensions-KCfom6ypSt [99] Ye, R., Zhang, B.M., Wang, Y., 2015.Mechanism of the Migration of Gold in Desert Regolith Cover over a Concealed Gold Deposit.Geochemistry:Exploration, Environment, Analysis, 15:62-71. https://doi.org/10.1144/geochem2013-228 [100] Ye, R., Zhang, B.M., Yao, W.S., et al., 2012.Occurrences and Formation of Copper Nanoparticles over the Concealed Ore Deposits.Earth Science Frontiers, 19(3):120-129 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TYGC201404019.htm [101] Ye, Y., Shen, Z.Y., Xiao, D.H., et al., 2002.Accumulation of Nature Nano-Submicro-Minerals:A Typical Unconventional Mineral Resources.Progress in Geophysics, 17(4):651-658 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_dqwlxjz200204014 [102] Zeng, H., Singh, A., Basak, S., et al., 2009.Nanoscale Size Effects on Uranium (Ⅵ) Adsorption to Hematite.Environment Science Technology, 43:1373-1378. https://doi.org/10.1021/es802334e [103] Zhang, B.M., Wang, X.Q., Chi, Q.H., et al., 2016.Three-Dimensional Geochemical Patterns of Regolith over a Concealed Gold Deposit Revealed by Overburden Drilling in Desert Terrains of Northwestern China.Journal of Geochemical Exploration, 164:122-135. https://doi.org/10.1016/j.gexplo.2015.06.007 [104] Zhang, B.M., Wang, X.Q., Ye, R., 2015.Geochemical Exploration for Concealed Deposits at the Periphery of the Zijinshan Copper-Gold Mine, Southeastern China.Journal of Geochemical Exploration, 157:184-193. https://doi.org/10.1016/j.gexplo.2015.06.015 [105] Zhang, H.T., Su, W.C., Tian, J.J., et al., 2008.The Occurrence of Gold at Shuiyindong Carlin-Type Gold Deposit, Guizhou.Acta Mineralogica Sinica, 28(1):17-24 (in Chinese with English abstract). http://www.chinair.org.cn/handle/1471x/178808 [106] Zhang, L.D., Mou, J.M., 2001.Nanomaterials and Nanostructures.Science Press, Beijing, 112-145 (in Chinese). doi: 10.1142/9781860945960_fmatter [107] Zheng, D.Z., Zheng, R.F., 2002.A New Approach to Genetic Mechanism for Copper and Its Alloy Minerals.Acta Geologica Sichuan, 22(2):72-81 (in Chinese with English abstract). http://agris.fao.org/agris-search/export!exportTopEndNoteXML.action?agrovocString=Detoxification&onlyFullText=false [108] Zhou, D.Q., 1992.The Mystery of Volcano Spraying Gold.Science Pictorial, 8:4 (in Chinese). https://www.usgs.gov/ [109] Zou, C.N., Li, J.Z., Dong, D.Z., et al., 2010.China has Found Abundant Nano-Scale Pores in Shale Gas Reservoirs for the First Time.Petroleum Exploration and Development, 37(5):513 (in Chinese). doi: 10.1016/S1876-3804(10)60051-1 [110] Zou, C.N., Zhu, R.K., Bai, B., et al., 2011.First Discovery of Nano-Pore Throat in Oil and Gas Reservoir in China and Its Scientific Value.Acta Petrologica Sinica, 27(6):1857-1864 (in Chinese with English abstract). http://pub.chinasciencejournal.com/article/getArticleRedirect.action?doiCode=10.3724/SP.J.1249.2015.03257 [111] 曹建劲, 2001.地气测量研究现状及其影响因素.湖南地质, 20(2):154-156. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hunandz200102019 [112] 曹建劲, 2009.地气微粒特征和元素含量结合探测隐伏矿床技术.金属矿山, 39(2):1-4. http://mall.cnki.net/magazine/Article/JSKS200902002.htm [113] 曹建劲, 2012.隐伏金属矿床上升气流微粒特征、形成及迁移.地学前缘, 19(3):113-119. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203013.htm [114] 曹建劲, 梁致荣, 刘可星, 等, 2004.红层风化壳对地气纳米金微粒吸附的模拟实验研究.自然科学进展, 14(7):826-829. http://www.oalib.com/paper/1696289 [115] 晁洪太, 孙岩, 王志才, 等, 2009.发震断裂的纳米级运动学观测一例.自然科学进展, 19 (10):1076-1081. doi: 10.3321/j.issn:1002-008X.2009.10.008 [116] 陈天虎, 2001.苏皖凹凸棒石粘土研究现状和存在的问题.合肥工业大学学报(自然科学版), 24(5):885-889. http://d.wanfangdata.com.cn/Periodical_hfgydxxb200105007.aspx [117] 陈天虎, 岳书仓, 2001.热液矿床中气相成矿作用.合肥工业大学学报(自然科学版), 24(4):470-476. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hfgydxxb200104003 [118] 范宏瑞, 李兆麟, 1991.金在表生作用中的富集模拟实验及地球化学意义.黄金, 12(1):12-15. http://www.cqvip.com/QK/90449X/199101/528273.html [119] 贺承祖, 华明琪, 2005.低渗砂岩气藏的孔隙结构与物性特征.新疆石油地质, 26(3):280-284. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjsydz200503016 [120] 华曙光, 王力娟, 贾晓芳, 等, 2012.陕西镇安丘岭卡林型金矿金的赋存状态和富集机理.地球科学, 37(5):989-1002. http://www.earth-science.net/WebPage/Article.aspx?id=2304 [121] 姜泽春, 1993.纳米科学与地学.地质地球化学, (2):22-25. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201401010.htm [122] 姜泽春, 1995.地学领域里的纳米科学问题.矿物岩石地球化学通报, 14(4):262-266. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH504.012.htm [123] 琚宜文, 姜波, 侯泉林, 等, 2005.煤岩结构纳米级变形与变质变形环境的关系.科学通报, 50 (17):1884-1892. doi: 10.3321/j.issn:0023-074X.2005.17.016 [124] 琚宜文, 孙岩, 万泉, 等, 2016.纳米地质学:地学领域革命性挑战.矿物岩石地球化学通报, 35(1):1-20. http://www.cqvip.com/QK/84215X/201601/668146269.html [125] 刘长龄, 1999.沉积铝土矿的生物成矿作用.冶金地质动态, (9):6-8. http://mall.cnki.net/magazine/Article/DXJZ199003011.htm [126] 刘建明, 2011.我国非传统矿产资源的实例及其所涉及的科学问题.地球物理学进展, 16(4):133-143. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz200104017 [127] 刘建明, 刘家军, 1997.滇黔桂金三角区微细浸染型金矿床的盆地流体成因模式.矿物学报, 17(4):448-456. http://mall.cnki.net/magazine/Article/KWXB199704011.htm [128] 刘建明, 叶杰, 刘家军, 等, 2001.论我国微细浸染型金矿床与沉积盆地演化的关系——以右江盆地为例.矿床地质, 20(4):367-377. http://www.cqvip.com/QK/93610X/2001004/5651390.html [129] 刘应汉, 汪明启, 赵恒川, 等, 2006.寻找隐伏矿的"地气"测量方法原理及应用前景.青海国土经略, 3:41-42. http://www.cqvip.com/QK/95266A/200603/22706714.html [130] 裘亦楠, 薛叔浩, 1997.油气储层评价技术.北京:石油工业出版社, 1-343. [131] 任天祥, 刘应汉, 汪明启, 1995.纳米科学与隐伏矿藏——一种寻找隐伏矿的新方法、新技术.科技导报, (8):18-19. http://www.oalib.com/paper/4635666 [132] 沈宝云, 刘兵, 刘海龄, 等, 2016.海南岛小妹韧性剪切带的纳米尺度.地球科学, 41(9):1489-1498. http://www.earth-science.net/WebPage/Article.aspx?id=3354 [133] 史金燕, 申永良, 1999.纳米材料及其理化性质.化学工程师, 3:21-23. http://cdmd.cnki.com.cn/Article/CDMD-10358-2009025022.htm [134] 施倪承, 马喆生, 何万中, 等, 1995.太平洋北部洋底锰结核中的纳米固体研究:矿物中的纳米固体及其应用前景.中国科学(B辑), 25(7):778-784. http://www.cqvip.com/QK/88064X/199507/1671137.html [135] 孙岩, 琚宜文, 陆现彩, 等, 2016.从纳米层次重新认识变形的地质体.矿物岩石地球化学通报, 35(1):52-55. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_kwysdqhxtb201601006 [136] 汤倩, 张燕, 王钜, 2010.纳米科技及其在地学上应用.科技传播, 22:83-84. http://mall.cnki.net/magazine/Article/HJZZ200306006.htm [137] 童纯菡, 李巨初, 葛良全, 等, 1997.地壳内上升气流对物质的迁移及地气测量原理.矿物岩石, 17(3):83-88. http://www.cnki.com.cn/Article/CJFDTOTAL-HERE198506004.htm [138] 万泉, 覃宗华, 琚宜文, 等, 2016.纳米地球化学刍析:起源、研究进展和发展方向.矿物岩石地球化学通报, 35(1):21-27. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_kwysdqhxtb201601002 [139] 汪明启, 高玉岩, 张德恩, 等, 2006.地气测量在北祁连盆地区找矿突破及其意义.物探与化探, 30(1):7-12. http://d.wanfangdata.com.cn/Periodical_wtyht200601002.aspx [140] 王朋飞, 姜振学, 李卓, 等, 2017.渝东北下寒武统牛蹄塘组页岩微纳米孔隙结构特征.地球科学, 42(7):1147-1156. http://www.earth-science.net/WebPage/Article.aspx?id=3603 [141] 王学求, 2005.深穿透地球化学迁移模型.地质通报, 24(10-11):18-22. http://www.oalib.com/paper/4898762 [142] 王学求, 谢学锦, 2000.金的勘查地球化学.济南:山东科学技术出版社. [143] 王学求, 谢学锦, 卢荫庥, 1995.地气动态提取技术的研制及其在寻找隐伏矿的初步试验.物探与化探, 19(3):161-171. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ200205001103.htm [144] 王学求, 徐善法, 迟清华, 等, 2013.中国金的地球化学省及其成因的微观解释.地质学报, 87(1):1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201301001 [145] 王学求, 叶荣, 2011.纳米金属微粒发现:深穿透地球化学的微观证据.地球学报, 32(1):7-12. doi: 10.3975/cagsb.2011.1.01 [146] 王学求, 张必敏, 刘雪敏, 2012a.纳米地球化学:穿透覆盖层的地球化学勘查.地学前缘, 19(3):101-112. http://www.cqvip.com/QK/98600X/201203/42487001.html [147] 王学求, 张必敏, 姚文生, 等, 2012b.覆盖区勘查地球化学理论研究进展与案例.地球科学, 37(6):1126-1132. http://www.earth-science.net/WebPage/Article.aspx?id=2316 [148] 王学求, 张必敏, 姚文生, 等, 2014.地球化学探测:从纳米到全球.地学前缘, 21(1):65-74. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201401010.htm [149] 王学求, 张必敏, 叶荣, 2016.纳米地球化学与覆盖区矿产勘查.矿物岩石地球化学通报, 35(1):43-51. http://www.cnki.com.cn/Article/CJFDTotal-WTHT201406011.htm [150] 王焰新, 田熙科, 2016.地学研究的新机遇——纳米地质学.矿物岩石地球化学通报, 35(1):79-86. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_kwysdqhxtb201601010 [151] 谢学锦, 王学求, 2003.深穿透地球化学新进展.地学前缘, 10(1):225-238. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200301027 [152] 薛群基, 徐康, 2000.纳米化学.化学进展, 12(4):432-444. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGVE200300001046.htm [153] 姚文生, 王学求, 张必敏, 等, 2012.鄂尔多斯盆地砂岩型铀矿深穿透地球化学勘查方法实验.地学前缘, 19(3):167-176. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203019.htm [154] 叶晶菁, 谭天伟, 2001.微生物絮凝剂的研制——菌种选育、絮凝效果及提取工艺.微生物学通报, 28(4):31-35. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_wswxtb200104009 [155] 叶荣, 张必敏, 姚文生, 等, 2012.隐伏矿床上方纳米铜颗粒存在形式与成因.地学前缘, 19(3):120-129. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203014.htm [156] 叶瑛, 沈忠悦, 肖旦红, 等, 2002.天然纳米-亚微米矿物堆积体:一种典型的非传统矿产资源.地球物理学进展, 17(4):651-658. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_dqwlxjz200204014 [157] 张弘弢, 苏文超, 田建吉, 等, 2008.贵州水银洞卡林型金矿床金的赋存状态初步研究.矿物学报, 28(1):17-24. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_kwxb200801004 [158] 张立德, 牟季美, 2001.纳米材料和纳米结构.北京:科学出版社, 112-145. http://www.cnki.com.cn/Article/CJFDTOTAL-CLKY801.007.htm [159] 郑大中, 郑若锋, 2002.自然铜、铜合金矿物及其矿床形成机理新探索.四川地质学报, 22(2):72-81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scdzxb200202002 [160] 周道其, 1992.火山喷金之谜.科学画报, 8:4. http://www.cqvip.com/QK/92075X/199208/12434862.html [161] 邹才能, 李建忠, 董大忠, 等, 2010.中国首次在页岩气储集层中发现丰富的纳米级孔隙.石油勘探与开发, 37(5):513. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106024.htm [162] 邹才能, 朱如凯, 白斌, 等, 2011.中国油气储层中纳米孔首次发现及其科学价值.岩石学报, 27(6):1857-1864. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106024.htm