Nanogeoscience: Connotation and Significance
-
摘要: 纳米地球科学是纳米科技与地球科学的结合,是一门高度综合的交叉学科,很难划分出经典意义上的单科性研究.纳米地球科学的研究对象主要分为纳米物质与纳米孔隙,二者成因多样、尺度效应明显、广泛分布,对于前者,主要通过各类图像表征手段观察其形态、大小、聚集方式,通过各类谱学方法研究其晶体结构、分子结构等;对于后者,则主要通过图像表征手段、流体注入方法与数值模拟的结合来表征孔隙形态、孔径分布、连通性等特征.纳米地球科学的学科内涵主要体现于:在各传统地球科学学科研究的基础和框架上,针对地球不同圈层中纳米尺度微粒形成、运移、聚集和存在形式以及孔隙形成与演化等亟待解决的科学问题开展系统研究,从而加深对矿物、岩石、构造、地化以及资源、灾害、环境等分支学科纳米尺度特性的认知.纳米地球科学的产生与发展使人类在认识和改造自然方面进入了一个新层次,是地球与行星科学发展的必然途径,为矿床勘探、资源开发、新能源利用、环境污染和地质灾害的预防与治理等问题提供了新的理论依据,有着不可估量的科学意义和应用价值.Abstract: Nanogeoscience is a highly comprehensive and overlapping subject, with combination of nanotechnology and geoscience. It is hard to partition nanogeoscience into single discipline of the classical sense. Its research objects mainly include nanomaterials and nanopores, which are widely distributed on the earth and have diverse causes and obvious scale effects. To nanomaterials, researchers use various image analysis methods to observe their shape, size and aggregation model, also investigate the crystal structure and molecular structure through all kinds of spectroscopy methods. To nanopores, researchers use image analysis, fluid invasion combined with numerical simulation methods, to characterize pore morphology, pore size distribution, connectivity and other characteristics. On the basis and framework of traditional geoscience research, the systematic research of nanogeoscience as a discipline is to solve the scientific problems about nanomaterials and nanopores in each sphere of the earth, such as formation, migration, aggregation and existence form of nanomaterials, as well as formation and evolution of nanopores. Consequently, it deepens the cognition of nanoscale characteristics of branches like mineralogy, petrology, structural geology, geochemistry as well as resources, disasters and environment. The emergence and development of nanogeoscience have brought human beings into a new level in understanding and transforming nature. It is the inevitable way for the development of the earth and planetary sciences. Related research has provided new theoretical basis for mineral deposit exploration, resource development, new energy utilization, prevention and treatment of environmental pollution and geological disaster, etc. It has immeasurable scientific significance and application values.
-
Key words:
- nanogeoscience /
- nanomaterials /
- nanopores /
- discipline connotation /
- research significance
-
图 1 广泛发育的纳米物质/结构
a.透射电镜图像,埃洛石纳米管(Tian et al., 2015);b.扫描电镜图像,趋磁细菌中发育的磁小体;c.扫描电镜图像,强烈变形的石英片岩(Ju et al., 2017);d.扫描电镜图像,韧性剪切带中副片麻岩剪切面上发现的纳米结构(Liu et al., 2017);e.透射电镜图像,金矿床上方土壤中的金-锌纳米颗粒(Wang et al., 2017);f.透射电镜图像,基于煤岩制备出的枝状碳纳米管(Wang et al., 2006);g.透射电镜图像,青藏高原上空发现的炭黑颗粒(Shao et al., 2017);h.透射电镜图像,海底热液喷口中发现的纳米颗粒(Gartman et al., 2014)
Fig. 1. Widely developed nanomaterials/nanostructures
图 2 地质体中发育的纳米孔隙
a.扫描电镜图像,页岩中的有机质孔(Zhao et al., 2017);b.原子力显微镜图像,烟煤中广泛发育的连通孔隙及较大的孔喉(Pan et al., 2015);c.纳米CT图像,致密砂岩中的孔隙(Zeng et al., 2017);d.透射电镜图像,两个角闪石矿物颗粒边界上发育的纳米尺度通道(Wang et al., 2003)
Fig. 2. Nanopores developing in geologic body
-
[1] Anand, R.R., Cornelius, M., Phang, C., 2007.Use of Vegetation and Soil in Mineral Exploration in Areas of Transported Overburden, Yilgarn Craton, Western Australia:A Contribution towards Understanding Metal Transportation Processes.Geochemistry:Exploration, Environment, Analysis, 7(3):267-288. https://doi.org/10.1144/1467-7873/07-142 [2] Bargar, J.R., Bernier-Latmani, R., Giammar, D.E., et al., 2008.Biogenic Uraninite Nanoparticles and Their Importance for Uranium Remediation.Elements, 4(6):407-412. doi: 10.2113/gselements.4.6.407 [3] Bartuś, K., Bródka, A., 2011.Methane in Carbon Nanotube:Molecular Dynamics Simulation.Molecular Physics, 109(13):1691-1699. https://doi.org/10.1080/00268976.2011.587456 [4] Bazylinski, D.A., Frankel, R.B., 2004.Magnetosome Formation in Prokaryotes.Nature Reviews Microbiology, 2(3):217. https://doi.org/10.1038/nrmicro842 [5] Bernard, S., Horsfield, B., Schulz, H.M., et al., 2012.Geochemical Evolution of Organic-Rich Shales with Increasing Maturity:A STXM and TEM Study of the Posidonia Shale (Lower Toarcian, Northern Germany).Marine and Petroleum Geology, 31(1):70-89. https://doi.org/10.1016/j.marpetgeo.2011.05.010 [6] Bhushan, B., 2005.Nanotribology and Nanomechanics.Wear, 259(7-12):1507-1531. https://doi.org/10.1016/j.wear.2005.01.010 [7] Chalmers, G.R., Bustin, R.M., Power, I.M., 2012.Characterization of Gas Shale Pore Systems by Porosimetry, Pycnometry, Surface Area, and Field Emission Scanning Electron Microscopy/Transmission Electron Microscopy Image Analyses:Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig Units.AAPG Bulletin, 96(6):1099-1119. https://doi.org/10.1306/10171111052 [8] Chalmers, G.R.L., Bustin, R.M., 2007.On the Effects of Petrographic Composition on Coalbed Methane Sorption.International Journal of Coal Geology, 69(4):288-304. https://doi.org/10.1016/j.coal.2006.06.002 [9] Chao, H.T., Sun, Y., Wang, Z.C., et al., 2009.Study on Determination and Experiment of the Nano-Sized Grain Texture Layer of Shear Slip Planes in Granite.Progress in Natural Science, 19(10):1076-1081 (in Chinese with English abstract). doi: 10.1007/s11434-008-0112-0 [10] Chao, H.T., Sun, Y., Wang, Z.C., et al., 2016.Observations and Analyses of Nano/Micro-Structures of Coseismic Stick Slipping and Aseismic Creep Slipping Faults.Bulletin of Mineralogy, Petrology and Geochemistry, 1:37-42 (in Chinese with English abstract). https://www.researchgate.net/publication/318271616_Implication_of_Creep_Slipping_Before_Main_Shock_for_Earthquake_Prediction_Evidence_from_NanoMicro-Scale_Structure_of_Gouges [11] Chen, H.F., Huang, W.B., Liu, C., et al., 2017.Characteristics and Origin of High Porosity in Nanoporous Sandy Conglomerates-A Case from Shahezi Formation of Xujiaweizi Fault Depression.Journal of Nanoscience and Nanotechnology, 17(9):6139-6148. https://doi.org/10.1166/jnn.2017.14408 [12] Chen, J.Z., 1994.Development of Nanoscience and Technology and Study of Nanomineralogy.Geological Science and Technology Information, 13(2):32-38 (in Chinese with English abstract). http://web-files.ait.dtu.dk/bruus/TMF/publications/books/nnote.pdf [13] Chen, T.H., Chen, J., Ji, J.F., et al., 2005.Nanometer-Scale Investigation on the Loess of Luochuan:Nano-Rod Calcite.Geological Review, 51(6):713-718 (in Chinese with English abstract). https://www.deepdyve.com/lp/elsevier/morphological-characters-and-multi-element-isotopic-signatures-of-ZWRFrPAU0s [14] Chen, Y., Xie, S.D., 2014.Characteristics and Formation Mechanism of a Heavy Air Pollution Episode Caused by Biomass Burning in Chengdu, Southwest China.Science of the Total Environment, 473:507-517. https://doi.org/10.1016/j.scitotenv.2013.12.069 [15] Cheng, H.F., Hu, E.D., Hu, Y.A., 2012.Impact of Mineral Micropores on Transport and Fate of Organic Contaminants:A Review.Journal of Contaminant Hydrology, 129-130:80-90. https://doi.org/10.1016/j.jconhyd.2011.09.008 [16] Chernyshova, I.V., Hochella, Jr.M.F., Madden, A.S., 2007.Size-Dependent Structural Transformations of Hematite Nanoparticles.1.Phase Transition.Physical Chemistry Chemical Physics, 9(14):1736-1750. https://doi.org/10.1039/B618790K [17] Civeira, M.S., Ramos, C.G., Oliveira, M.L.S., et al., 2016.Nano-Mineralogy of Suspended Sediment during the Beginning of Coal Rejects Spill.Chemosphere, 145:142-147. https://doi.org/10.1016/j.chemosphere.2015.11.059 [18] Clarkson, C.R., Solano, N., Bustin, R.M., et al., 2013.Pore Structure Characterization of North American Shale Gas Reservoirs Using USANS/SANS, Gas Adsorption, and Mercury Intrusion.Fuel, 103:606-616. https://doi.org/10.1016/j.fuel.2012.06.119 [19] Cudjoe, S., Barati, R., 2017.Lattice Boltzmann Simulation of CO2 Transport in Kerogen Nanopores-An Evaluation of CO2 Sequestration in Organic-Rich Shales.Journal of Earth Science, 28(5):926-932. https://doi.org/10.1007/s12583-017-0802-0 [20] Curtis, J.B., 2002.Fractured Shale-Gas Systems.AAPG Bulletin, 86(11):1921-1938. https://doi.org/10.1306/61EEDDBE-173E-11D7-8645000102C1865D [21] Curtis, M.E., Cardott, B.J., Sondergeld, C.H., et al., 2012.Development of Organic Porosity in the Woodford Shale with Increasing Thermal Maturity.International Journal of Coal Geology, 103:26-31. https://doi.org/10.1016/j.coal.2012.08.004 [22] Das, T., Saikia, B.K., Baruah, B.P., 2016.Formation of Carbon Nano-Balls and Carbon Nano-Tubes from Northeast Indian Tertiary Coal:Value Added Products from Low Grade Coal.Gondwana Research, 31:295-304. https://doi.org/10.1016/j.gr.2015.01.012 [23] Daulton, T.L., Eisenhour, D.D., Bernatowicz, T.J., et al., 1996.Genesis of Presolar Diamonds:Comparative High-Resolution Transmission Electron Microscopy Study of Meteoritic and Terrestrial Nano-Diamonds.Geochimica et Cosmochimica Acta, 60(23):4853-4872. https://doi.org/10.1016/S0016-7037(96)00223-2 [24] de Paola, N., 2013.Nano-Powder Coating Can Make Fault Surfaces Smooth and Shiny:Implications for Fault Mechanics? Geology, 41(6):719-720. https://doi.org/10.1130/focus062013.1 [25] de Paola, N., Holdsworth, R.E., Viti, C., et al., 2015.Can Grain Size Sensitive Flow Lubricate Faults during the Initial Stages of Earthquake Propagation? Earth and Planetary Science Letters, 431:48-58. https://doi.org/10.1016/j.epsl.2015.09.002 [26] Ding, Z.H., 1999.Dilemma and Chance in Mineralogy-Enlightenment to Mineralogy from Nanoscience.Acta Mineralogica Sinica, 19(3):379-384 (in Chinese with English abstract). [27] Emmanuel, S., Ague, J.J., 2011.Impact of Nano-Size Weathering Products on the Dissolution Rates of Primary Minerals.Chemical Geology, 282(1-2):11-18. https://doi.org/10.1016/j.chemgeo.2011.01.002 [28] Fathi, E., Akkutlu, I.Y., 2012.Lattice Boltzmann Method for Simulation of Shale Gas Transport in Kerogen.SPE Journal, 18(1):27-37. https://doi.org/10.2118/146821-PA [29] Ferraris, C., Chopin, C., Wessicken, R., 2000.Nano-to Micro-Scale Decompression Products in Ultrahigh-Pressure Phengite:HRTEM and AEM Study, and Some Petrological Implications.American Mineralogist, 85(9):1195-1201. https://doi.org/10.2138/am-2000-8-912 [30] Gartman, A., Findlay, A.J., Luther, G.W., 2014.Nanoparticulate Pyrite and Other Nanoparticles are a Widespread Component of Hydrothermal Vent Black Smoker Emissions.Chemical Geology, 366:32-41. https://doi.org/10.1016/j.chemgeo.2013.12.013 [31] Ge, Y.C., Ge, X.J., He, H.P., 2014.Statistical Properties of the Photoelectron Energy Spectrum Generated by an Intense Laser Pulse and a Continuous X-Ray.Chinese Physics B, 23(11):114203. https://doi.org/10.1088/1674-1056/23/11/114203 [32] Hassellöv, M., von der Kammer, F., 2008.Iron Oxides as Geochemical Nanovectors for Metal Transport in Soil-River Systems.Elements, 4(6):401-406. https://doi.org/10.2113/gselements.4.6.401 [33] He, H.P., Li, T., Tao, Q., et al., 2014.Aluminum Ion Occupancy in the Structure of Synthetic Saponites:Effect on Crystallinity.American Mineralogist, 99(1):109-116. https://doi.org/10.2138/am.2014.4543 [34] He, L.Y., Hu, M., Huang, X.F., et al., 2006.Chemical Characterization of Fine Particles from On-Road Vehicles in the Wutong Tunnel in Shenzhen, China.Chemosphere, 62(10):1565-1573. https://doi.org/10.1016/j.chemosphere.2005.06.051 [35] Herwegh, M., Kunze, K., 2002.The Influence of Nano-Scale Second-Phase Particles on Deformation of Fine Grained Calcite Mylonites.Journal of Structural Geology, 24(9):1463-1478. https://doi.org/10.1016/S0191-8141(01)00144-4 [36] Hochella, M.F.Jr., 2002a.Nanoscience and Technology:The Next Revolution in the Earth Sciences.Earth and Planetary Science Letters, 203(2):593-605. https://doi.org/10.1016/S0012-821X(02)00818-X [37] Hochella, M.F.Jr., 2002b.There's Plenty of Room at the Bottom:Nanoscience in Geochemistry.Geochimica et Cosmochimica Acta, 66(5):735-743. https://doi.org/10.1016/S0016-7037(01)00868-7 [38] Hochella, M.F.Jr., 2008.Nanogeoscience:From Origins to Cutting-Edge Applications.Elements, 4(6):373-379. https://doi.org/10.2113/gselements.4.6.373 [39] Hochella, M.F.Jr., Lower, S.K., Maurice, P.A., et al., 2008.Nanominerals, Mineral Nanoparticles, and Earth Systems.Science, 319(5870):1631-1635. https://doi.org/10.1126/science.1141134 [40] Hotze, E.M., Phenrat, T., Lowry, G.V., 2010.Nanoparticle Aggregation:Challenges to Understanding Transport and Reactivity in the Environment.Journal of Environmental Quality, 39(6):1909-1924. https://doi.org/10.2134/jeq2009.0462 [41] Hua, S.G., Wang, L.J., Jia, X.F., et al., 2012.Occurrence and Enrichment Mechanism of Gold in the Qiuling Carlin-Type Gold Deposit, Zhen'an County, Shaanxi Province, China.Earth Science, 37(5):989-1002 (in Chinese with English abstract). https://www.researchgate.net/publication/286382895_Occurrence_and_enrichment_mechanism_of_gold_in_the_Qiuling_Carlin-type_gold_deposit_Zhen'an_County_Shaanxi_Province_China [42] Huang, Q.T., Cai, Z.R., Li, J.F., et al., 2017.Development Characteristics and Formation Mechanism of Nanoparticles in the Ductile Shear Zone of the Red River Fault.Journal of Nanoscience and Nanotechnology, 17(9):6843-6851. https://doi.org/10.1166/jnn.2017.14402 [43] Janssen, C., Wenk, H.R., Wirth, R., et al., 2016.Microstructures and Their Implications for Faulting Processes-Insights from DGLab Core Samples from the Gulf of Corinth.Journal of Structural Geology, 86:62-74. https://doi.org/10.1016/j.jsg.2016.03.008 [44] Javadpour, F., 2009.Nanopores and Apparent Permeability of Gas Flow in Mudrocks (Shales and Siltstone).Journal of Canadian Petroleum Technology, 48(8):16-21. https://doi.org/10.2118/09-08-16-DA [45] Jiang, B., Qin, Y., Ju, Y.W., et al., 2005.Research on Tectonic Stress Field of Generate and Reservoir of Coalbed Methane.Journal of China University of Mining & Technology, 34(5):564-569 (in Chinese with English abstract). https://www.scientific.net/amm.260-261.284.pdf [46] Jiang, Z.C., 1995.Nanoscience in the Field of Geology.Bulletin of Mineralogy, Petrology and Geochemistry, (4):262-266 (in Chinese). https://www.omicsonline.org/universities/Center_for_NanoScience [47] Jiao, K., Yao, S.P., Wu, H., 2014.Advances in Characterization of Pore System of Gas Shales.Geological Journal of China Universities, 1:151-161 (in Chinese with English abstract). [48] Johnson, C.A., Freyer, G., Fabisch, M., et al., 2014.Observations and Assessment of Iron Oxide and Green Rust Nanoparticles in Metal-Polluted Mine Drainage Within a Steep Redox Gradient.Environmental Chemistry, 11(4):377-391. https://doi.org/10.1071/EN13184 [49] Ju, Y.W., Huang, C., Sun, Y., et al., 2017.Nanogeosciences:Research History, Current Status, and Development Trends.Journal of Nanoscience and Nanotechnology, 17(9):5930-5965. https://doi.org/10.1166/jnn.2017.14436 [50] Ju, Y.W., Jiang, B., Hou, Q.L., et al., 2004.The New Structure-Genetic Classification System in Tectonically Deformed Coals and Its Geological Significance.Journal of China Coal Society, 29(5):513-517 (in Chinese with English abstract). [51] Ju, Y.W., Jiang, B., Hou, Q.L., et al., 2005a.Relationship between Nano-Scale Deformation of Coal Structure and Metamorphic-Deformed Environments.Chinese Science Bulletin, 50(16):1784-1795. doi: 10.1360/04wd0205 [52] Ju, Y.W., Jiang, B., Hou, Q.L., et al., 2005b.13C NMR Spectra of Tectonic Coals and the Effects of Stress on Structural Components.Science China Earth Sciences, 48(9):1418-1437. doi: 10.1360/04yd0199 [53] Ju, Y.W., Li, X.S., 2009.New Research Progress on the Ultrastructure of Tectonically Deformed Coals.Progress in Natural Science, 19:1455-1466. https://doi.org/10.1016/j.pnsc.2009.03.013 [54] Ju, Y.W., Lu, S.F., Sun, Y., et al., 2015.Nano-Geology and Unconventional Oil and Gas.Acta Geologica Sinica (English Edition), 89(S1):192-193. https://doi.org/10.1111/1755-6724.12303_18 [55] Ju, Y.W., Luxbacher, K., Li, X.S., et al., 2014.Micro-Structural Evolution and Their Effects on Physical Properties in Different Types of Tectonically Deformed Coals.International Journal of Coal Science & Technology, 1(3):364-375. https://core.ac.uk/download/pdf/81057163.pdf [56] Ju, Y.W., Sun, Y., Wan, Q., et al., 2016.Nanogeology:A Revolutionary Challenge in Geosciences.Bulletin of Mineralogy, Petrology and Geochemistry, 1:1-20, 22-23 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_kwysdqhxtb201601001 [57] Katsube, T.J., Williamson, M.A., 1994.Effects of Diagenesis on Shale Nano-Pore Structure and Implications for Sealing Capacity.Clay Minerals, 29(4):451-472. https://doi.org/10.1180/claymin.1994.029.4.05 [58] Kerr, R.A., 2010.Natural Gas from Shale Bursts onto the Scene.Science, 328(5986):1624-1626. https://doi.org/10.1126/science.328.5986.1624 [59] Langworthy, K.A., Krinsley, D.H., Dorn, R.I., 2011.Investigation of Tibetian Plateau Varnish:New Findings at the Nanoscale Using Focused Ion Beam and Transmission Electron Microscopy Techniques.Scanning, 33(2):78-81. https://doi.org/10.1002/sca.20226 [60] Lee, W.H., Park, J.S., Sok, J.H., et al., 2005.Effects of Pore Structure and Surface State on the Adsorption Properties of Nano-Porous Carbon Materials in Low and High Relative Pressures.Applied Surface Science, 246(1-3):77-81. https://doi.org/10.1016/j.apsusc.2004.10.038 [61] Li, D.W., Wang, P.L., Yu, J.B., 2004.Microscopic Study on the Weathering Characteristics of Danxia Rock Wall in Xinchang, Zhejiang Province.Progress in Natural Science, 14(1):75-80 (in Chinese). http://www.geog.com.cn/EN/abstract/abstract18986.shtml [62] Li, J.H., Pan, Y.X., 2015.Applications of Transmission Electron Microscopy in the Earth Sciences.Scientia Sinica Terrae, 45(9):1359-1382 (in Chinese). doi: 10.1360/zd2015-45-09-1359 [63] Liu, H., Sun, Y., Shu, L.S., 2009.Nano-Scaled Study on the Ductile Shear Zone in Wugongshan, South China.Acta Geologica Sinica, 83(5):609-616 (in Chinese with English abstract). https://www.researchgate.net/publication/231752258_Refractive_Index_Engineering_of_Nano-Polymer_Composites [64] Liu, H.L., Zhu, R.W., Shen, B.Y., et al., 2017.First Discovering of Nanoscale Tectonics in Western of Qiongnan Paleo-Tethyan Suture Zone in North Margin of South China Sea and Its Geotectonic Significance.Journal of Nanoscience and Nanotechnology, 17(9):6411-6422. https://doi.org/10.1166/jnn.2017.14450 [65] Liu, J., Sheng, A.X., Liu, F., et al., 2018.Nano Minerals and Their Environmental Effects.Earth Science, 43(5):(in Chinese with English abstract). [66] Loucks, R.G., Reed, R.M., Ruppel, S.C., et al., 2009.Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale.Journal of Sedimentary Research, 79(12):848-861. https://doi.org/10.2110/jsr.2009.092 [67] Loucks, R.G., Reed, R.M., Ruppel, S.C., et al., 2012.Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores.AAPG Bulletin, 96(6):1071-1098. https://doi.org/10.1306/08171111061 [68] Lower, S.K., Hochella, M.F.Jr., Banfield, J.F., et al., 2002.Nanogeoscience:From the Movement of Electrons to Lithosphere Plates.Eos, Transactions American Geophysical Union, 83(6):53-56. https://doi.org/10.1029/2002EO000036 [69] Lu, S.F., Zhang, Y.N., Li, J.Q., et al., 2016.Nanotechnology and Its Application in the Exploration and Development of Unconventional Oil and Gas.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):28-36 (in Chinese with English abstract). http://thescipub.com/PDF/ajassp.2012.784.793.pdf [70] Ma, Y., Zhong, N.N., Li, D.H., et al., 2015.Organic Matter/Clay Mineral Intergranular Pores in the Lower Cambrian Lujiaping Shale in the North-Eastern Part of the Upper Yangtze Area, China:A Possible Microscopic Mechanism for Gas Preservation.International Journal of Coal Geology, 137:38-54. https://doi.org/10.1016/j.coal.2014.11.001 [71] Mao, X.M., Tian, X.K., Yu, C.Y., 2011.Capturing and Storage of CO2 by Micron-Nano Minerals:Evidence from the Nature.Chinese Journal of Geochemistry, 30(4):569-575. doi: 10.1007/s11631-011-0541-3 [72] Meng, L., Huang, F., Liu, J., et al., 2017.The Genesis of Nano-Micron-Sized Spheroidal Aggregates of FeS2 in the Laozuoshan Gold Deposit, Heilongjiang Province, NE China.Journal of Nanoscience and Nanotechnology, 17(9):6539-6548. https://doi.org/10.1166/jnn.2017.14448 [73] Miller, A.W., Wang, Y.F., 2012.Radionuclide Interaction with Clays in Dilute and Heavily Compacted Systems:A Critical Review.Environmental Science & Technology, 46(4):1981-1994. https://doi.org/10.1021/es203025q [74] Milliken, K.L., Curtis, M.E., 2016.Imaging Pores in Sedimentary Rocks:Foundation of Porosity Prediction.Marine and Petroleum Geology, 73:590-608. https://doi.org/10.1016/j.marpetgeo.2016.03.020 [75] Mosher, K., He, J., Liu, Y., et al., 2013.Molecular Simulation of Methane Adsorption in Micro-and Mesoporous Carbons with Applications to Coal and Gas Shale Systems.International Journal of Coal Geology, 109:36-44. https://doi.org/10.1016/j.coal.2013.01.001 [76] Musil, J., 2000.Hard and Superhard Nanocomposite Coatings.Surface and Coatings Technology, 125(1-3):322-330. https://doi.org/10.1016/S0257-8972(99)00586-1 [77] Nelson, P.H., 2009.Pore-Throat Sizes in Sandstones, Tight Sandstones, and Shales.AAPG Bulletin, 93(3):329-340. https://doi.org/10.1306/10240808059 [78] Odusina, E., Sigal, R.F., 2011.Laboratory NMR Measurements on Methane Saturated Barnett Shale Samples.Petrophysics, 52(01):32-49. https://www.researchgate.net/publication/281423474_Laboratory_NMR_Measurements_on_Methane_Saturated_Barnett_Shale_Samples [79] Oleynikova, G.A., Panova, E.G., 2011.Geochemistry of Nanoparticles in the Rocks, Ores and Waste.Journal of Earth Science and Engineering, 1(3):207-219. https://www.researchgate.net/profile/Changxun_Yu/publication/225415486_Mineralogical_and_geochemical_constraints_on_environmental_impacts_from_waste_rock_at_Taojiang_Mn-ore_deposit_central_Hunan_China/links/0912f50b0946a7b8e0000000.pdf [80] Pan, J.N., Zhu, H.T., Hou, Q.L., et al., 2015.Macromolecular and Pore Structures of Chinese Tectonically Deformed Coal Studied by Atomic Force Microscopy.Fuel, 139:94-101. https://doi.org/10.1016/j.fuel.2014.08.039 [81] Reich, M., Kesler, S.E., Utsunomiya, S., et al., 2005.Solubility of Gold in Arsenian Pyrite.Geochimica et Cosmochimica Acta, 69(11):2781-2796. https://doi.org/10.1016/j.gca.2005.01.011 [82] Reich, M., Utsunomiya, S., Kesler, S.E., et al., 2006.Thermal Behavior of Metal Nanoparticles in Geologic Materials.Geology, 34(12):1033-1036. https://doi.org/10.1130/G22829A.1 [83] Ross, D.J.K., Bustin, R.M., 2009.The Importance of Shale Composition and Pore Structure upon Gas Storage Potential of Shale Gas Reservoirs.Marine and Petroleum Geology, 26(6):916-927. https://doi.org/10.1016/j.marpetgeo.2008.06.004 [84] Sánchez-Román, M., Fernández-Remolar, D., Amils, R., et al., 2014.Microbial Mediated Formation of Fe-Carbonate Minerals under Extreme Acidic Conditions.Scientific Reports, 4:4767. https://doi.org/10.1038/srep04767 [85] Sands, C.M., Connelly, D.P., Statham, P.J., et al., 2012.Size Fractionation of Trace Metals in the Edmond Hydrothermal Plume, Central Indian Ocean.Earth and Planetary Science Letters, 319:15-22. https://doi.org/10.1016/j.epsl.2011.12.031 [86] Schleicher, A.M., 2010.Nanocoatings of Clay and Creep of the San Andreas Fault at Parkfield, California.Geology, 38(7):667-670. https://doi.org/10.1130/G31091.1 [87] Shao, L.Y., Hu, Y., Fan, J.S., et al., 2017.Physicochemical Characteristics of Aerosol Particles in the Tibetan Plateau:Insights from TEM-EDX Analysis.Journal of Nanoscience and Nanotechnology, 17(9):6899-6908. https://doi.org/10.1166/jnn.2017.14472 [88] Shen, B.Y., Liu, B., Liu, H.L., et al., 2016.Xiaomei Ductile Shear Zone on Hainan Island in a Nanoscale Perspective.Earth Science, 41(9):1489-1498 (in Chinese with English abstract). https://www.researchgate.net/publication/309261959_Xiaomei_ductile_shear_zone_on_Hainan_island_in_a_nanoscale_perspective [89] Sheng, A.X., Liu, F., Shi, L., et al., 2016a.Aggregation Kinetics of Hematite Particles in the Presence of Outer Membrane Cytochrome OmcA of Shewanella Oneidenesis MR-1.Environmental Science & Technology, 50(20):11016-11024. https://doi.org/10.1021/acs.est.6b02963 [90] Sheng, A.X., Liu, F., Xie, N., et al., 2016b.Impact of Proteins on Aggregation Kinetics and Adsorption Ability of Hematite Nanoparticles in Aqueous Dispersions.Environmental Science & Technology, 50(5):2228. https://doi.org/10.1021/acs.est.5b05298 [91] Siman-Tov, S., Aharonov, E., Sagy, A., et al., 2013.Nanograins Form Carbonate Fault Mirrors.Geology, 41(6):703-706. https://doi.org/10.1130/G34087.1 [92] Sun, L., Wang, X.Q., Jin, X., et al., 2016.Three Dimensional Characterization and Quantitative Connectivity Analysis of Micro/Nano Pore Space.Petroleum Exploration and Development, 43(3):537-546. https://doi.org/10.1016/S1876-3804(16)30063-5 [93] Sun, Y., Jiang, S.Y., Wei, Z., et al., 2013.Nano-Coating Texture on the Shear Slip Surface in Rocky Materials.Advanced Materials Research, 669:108-114. https://doi.org/10.4028/www.scientific.net/AMR.669.108 [94] Sun, Y., Jiang, S.Y., Zhou, W., et al., 2014.Mechanical Analysis and Identification Markings of Nanoparticle Distribution in Narrow Friction Zones.Trans.Tech.Publications, 924:312-318. https://doi.org/10.4028/www.scientific.net/AMR.924.312 [95] Sun, Y., Ju, Y.W., Lu, X.C., et al., 2016.To Re-Recognize Deformable Geological Bodies on the Nano-Level.Bulletin of Mineralogy, Petrology and Geochemistry, 1:52-55, 2 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_kwysdqhxtb201601006 [96] Sun, Y., Lu, X. C., Ju, Y. W., 2018. On Nano Texture and Mineralization in Fault Shear Zones. Geological Journal of China Universities, in press (in Chinese with English abstract). https://doi.org/10.16108/j.issn1006-7493.2017114 [97] Sun, Y., Lu, X.C., Zhang, X.H., et al., 2009.Nano-Texture of Penetrative Foliation in Metamorphic Rocks.Science China Earth Sciences, 39(8):1140-1147 (in Chinese with English abstract). https://www.researchgate.net/profile/Xihui_Zhang2/publication/225646141_Nano-texture_of_penetrative_foliation_in_metamorphic_rocks/links/0046352b77c811930e000000.pdf?inViewer=true&pdfJsDownload=true&disableCoverPage=true&origin=publication_detail [98] Sun, Y., Shu, L.S., Lu, X.C., et al., 2008.A Comparative Study of Natural and Experimental Nano-Sized Grinding Grain Textures in Rocks.Chinese Science Bulletin, 53(8):1217-1221. doi: 10.1007/s11434-008-0112-0 [99] Tang, X.W., Hu, Z.W., Xu, Y.L., et al., 1991.About Nanogeology and Nanoastronomy.Chinese Journal of Nature, 14(8):563-565 (in Chinese). [100] Tian, X.K., Wang, W.W., Wang, Y.X., et al., 2015.Polyethylenimine Functionalized Halloysite Nanotubes for Efficient Removal and Fixation of Cr (Ⅵ).Microporous and Mesoporous Materials, 207:46-52. https://doi.org/10.1016/j.micromeso.2014.12.031 [101] Tong, C.H., Li, J.C., Ge, L.Q., et al., 1998.Experimental Observation and Significance of Nanoparticles in Geogas.Science China Earth Sciences, 28(2):153-156 (in Chinese). https://www.researchgate.net/publication/286998334_Experimental_observation_of_the_nano-scale_particles_in_geogas_matters_and_its_geological_significance [102] Verberne, B.A., Plümper, O., De Winter, D.A.M., et al., 2014.Superplastic Nanofibrous Slip Zones Control Seismogenic Fault Friction.Science, 346(6215):1342-1344. https://doi.org/10.1126/science.1259003 [103] Viti, C., 2011.Exploring Fault Rocks at the Nanoscale.Journal of Structural Geology, 33(12):1715-1727. https://doi.org/10.1016/j.jsg.2011.10.005 [104] Viti, C., Collettini, C., Tesei, T., 2014.Pressure Solution Seams in Carbonatic Fault Rocks:Mineralogy, Micro/Nanostructures and Deformation Mechanism.Contributions to Mineralogy and Petrology, 167(2):970. https://doi.org/10.1007/s00410-014-0970-1 [105] Wan, Q., Qin, Z.H., Ju, Y.W., et al., 2016.Nanogeochemistry:Origin, Recent Advances and Future Directions.Bulletin of Mineralogy, Petrology and Geochemistry, 1:21-27 (in Chinese with English abstract). [106] Wang, G.C., Ju, Y.W., 2015.Organic Shale Micropore and Mesopore Structure Characterization by Ultra-Low Pressure N2 Physisorption:Experimental Procedure and Interpretation Model.Journal of Natural Gas Science and Engineering, 27:452-465. https://doi.org/10.1016/j.jngse.2015.08.003 [107] Wang, G.C., Ju, Y.W., Yan, Z.F., et al., 2015.Pore Structure Characteristics of Coal-Bearing Shale Using Fluid Invasion Methods:A Case Study in the Huainan-Huaibei Coalfield in China.Marine and Petroleum Geology, 62:1-13. https://doi.org/10.1016/j.marpetgeo.2015.01.001 [108] Wang, P.F., Jiang, Z.X., Ji, W.M., et al., 2016a.Heterogeneity of Intergranular, Intraparticle and Organic Pores in Longmaxi Shale in Sichuan Basin, South China:Evidence from SEM Digital Images and Fractal and Multifractal Geometries.Marine and Petroleum Geology, 72:122-138. https://doi.org/10.1016/j.marpetgeo.2016.01.020 [109] Wang, X.Q., Zhang, B.M., Lin, X., et al., 2016b.Geochemical Challenges of Diverse Regolith-Covered Terrains for Mineral Exploration in China.Ore Geology Reviews, 73:417-431. https://doi.org/10.1016/j.oregeorev.2015.08.015 [110] Wang, Y., Pu, J., Wang, L.H., et al., 2016c.Characterization of Typical 3D Pore Networks of Jiulaodong Formation Shale Using Nano-Transmission X-Ray Microscopy.Fuel, 170:84-91. https://doi.org/10.1016/j.fuel.2015.11.086 [111] Wang, Q., Chen, X., Jha, A.N., et al., 2014.Natural Gas from Shale Formation-The Evolution, Evidences and Challenges of Shale Gas Revolution in United States.Renewable and Sustainable Energy Reviews, 30:1-28. https://doi.org/10.1016/j.rser.2013.08.065 [112] Wang, X.Q., Zhang, B.M., Yao, W.S., et al., 2014.Geochemical Exploration:From Nanoscale to Global-Scale Patterns.Earth Science Frontiers, 21(1):65-74 (in Chinese with English abstract). https://www.researchgate.net/publication/282788070_Geochemical_exploration_From_nanoscale_to_global-scale_patterns [113] Wang, X.Q., Zhang, B.M., Ye, R., 2016.Nanogeochemistry for Mineral Exploration through Covers.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):43-51, 2 (in Chinese with English abstract). https://www.researchgate.net/profile/Steven_Hill12/publication/238100469_A_NEW_UNDERSTANDING_FOR_THE_USE_OF_BIOGEOCHEMISTRY_TO_EXPRESS_MINERALISATION_THROUGH_TRANSPORTED_COVER_IN_REGIONAL_AND_PROSPECT_SCALE_MINERAL_EXPLORATION/links/557bcd1d08ae26eada8b0428.pdf?origin=publication_list [114] Wang, X.Q., Zhang, B.M., Ye, R., 2017.Nanoparticles Observed by TEM from Gold, Copper-Nickel and Silver Deposits and Implications for Mineral Exploration in Covered Terrains.Journal of Nanoscience and Nanotechnology, 17(9):6014-6025. https://doi.org/10.1166/jnn.2017.14496 [115] Wang, Y.F., Bryan, C., Xu, H.F., et al., 2003.Nanogeochemistry:Geochemical Reactions and Mass Transfers in Nanopores.Geology, 31(5):387-390.https://doi.org/10.1130/0091-7613(2003)031<0387:NGRAMT>2.0.CO; 2 doi: 10.1130/0091-7613(2003)031<0387:NGRAMT>2.0.CO;2 [116] Wang, Y.X., Tian, X.K., 2016.New Opportunities for the Study of Geology:Nano Geology.Bulletin of Mineralogy, Petrology and Geochemistry, 01:79-86, 2 (in Chinese with English abstract). https://www.researchgate.net/publication/318861937_New_Opportunities_for_the_Study_of_Geology_Nano_Geology [117] Wang, Z.Y., Zhao, Z.B., Qiu, J.S., 2006.Synthesis of Branched Carbon Nanotubes from Coal.Carbon, 44(7):1321-1324. https://doi.org/10.1016/j.carbon.2005.12.030 [118] Waychunas, G.A., Zhang, H., Gilbert, B., 2008.Structure, Chemistry, and Properties of Mineral Nanoparticles.Elements, 4(6):381-387. https://doi.org/10.2113/gselements.4.6.381 [119] Wei, M.M., Zhang, L., Xiong, Y.Q., et al., 2016.Nanopore Structure Characterization for Organic-Rich Shale Using the Non-Local-Density Functional Theory by a Combination of N2 and CO2 Adsorption.Microporous and Mesoporous Materials, 227:88-94. https://doi.org/10.1016/j.micromeso.2016.02.050 [120] Wu, J.F., Wells, M.L., Rember, R., 2011.Dissolved Iron Anomaly in the Deep Tropical-Subtropical Pacific:Evidence for Long-Range Transport of Hydrothermal Iron.Geochimica et Cosmochimica Acta, 75(2):460-468. https://doi.org/10.1016/j.gca.2010.10.024 [121] Xu, P., Xu, J.X., He, M., et al., 2016.Morphology and Chemical Characteristics of Micro-and Nano-Particles in the Haze in Beijing Studied by XPS and TEM/EDX.Science of the Total Environment, 565:827-832. https://doi.org/10.1016/j.scitotenv.2016.03.042 [122] Yan, E.Y., Wu, X.L., 2004.The TEM Study on Nano-Scale Fluid Inclusions in Metamorphic Rocks.Journal of Jiaozuo University, (1):61-64 (in Chinese with English abstract). https://www.researchgate.net/publication/289214207_Nano-scale_fluid_inclusions_in_quarts_of_jadeite_quartzite_at_Shuanghe_Dabie_Mountains [123] Yang, R., He, S., Yi, J.Z., et al., 2016.Nano-Scale Pore Structure and Fractal Dimension of Organic-Rich Wufeng-Longmaxi Shale from Jiaoshiba Area, Sichuan Basin:Investigations Using FE-SEM, Gas Adsorption and Helium Pycnometry.Marine and Petroleum Geology, 70:27-45. https://doi.org/10.1016/j.marpetgeo.2015.11.019 [124] Yang, Y., Colman, B.P., Bernhardt, E.S., et al., 2015.Importance of a Nanoscience Approach in the Understanding of Major Aqueous Contamination Scenarios:Case Study from a Recent Coal Ash Spill.Environmental Science & Technology, 49(6):3375-3382. https://doi.org/10.1021/es505662q [125] Yang, Y., Zhou, L.M., Tou, F.Y., 2018.Nanoparticle:A Unique Geochemical Composition in the Environment.Earth Science, 43(5):(in Chinese with English abstract). [126] Yao, Y.B., Liu, D.M., Che, Y., et al., 2010.Petrophysical Characterization of Coals by Low-Field Nuclear Magnetic Resonance (NMR).Fuel, 89(7):1371-1380. https://doi.org/10.1016/j.fuel.2009.11.005 [127] Yuan, P., 2018.Unique Structure and Surface-Interface Reactivity of Nanostructured Minerals.Earth Science, 43(5):(in Chinese with English abstract). [128] Yuan, R.M., Zhang, B.L., Xu, X.W., et al., 2014.Features and Genesis of Micro-Nanometer-Sized Grains on Shear Slip Surface of the 2008 Wenchuan Earthquake.Science China Earth Sciences, 57(8):1961-1971. https://doi.org/10.1007/s11430-014-4859-7 [129] Yücel, M., Gartman, A., Chan, C.S., et al., 2011.Hydrothermal Vents as a Kinetically Stable Source of Iron-Sulphide-Bearing Nanoparticles to the Ocean.Nature Geoscience, 4(6):367-371. https://doi.org/10.1038/ngeo1148 [130] Zeng, J.H., Feng, X., Feng, S., et al., 2017.Influence of Tight Sandstone Micro-Nano Pore-Throat Structures on Petroleum Accumulation:Evidence from Experimental Simulation Combining X-Ray Tomography.Journal of Nanoscience and Nanotechnology, 17(9):6459-6469. https://doi.org/10.1166/jnn.2017.14514 [131] Zhang, H., Zhu, Y.M., Wang, Y., et al., 2016.Comparison of Organic Matter Occurrence and Organic Nanopore Structure Within Marine and Terrestrial Shale.Journal of Natural Gas Science and Engineering, 32:356-363. https://doi.org/10.1016/j.jngse.2016.04.040 [132] Zhang, J.F., Clennell, M.B., Dewhurst, D.N., et al., 2014.Combined Monte Carlo and Molecular Dynamics Simulation of Methane Adsorption on Dry and Moist Coal.Fuel, 122:186-197. https://doi.org/10.1016/j.fuel.2014.01.006 [133] Zhang, X.L., Xiao, L.Z., Shan, X.W., et al., 2014.Lattice Boltzmann Simulation of Shale Gas Transport in Organic Nano-Pores.Scientific Reports, 4:4843. https://doi.org/10.1038/srep04843 [134] Zhang, Z.G., Jiang, Z.C., 1993.Nano-Level Ore Deposit Research:A New Promising Branch of Geoscience.Mineral Resources and Geology, (3):161-165 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201203013.htm [135] Zhao, A.K., Yu, Q., Lei, Z.H., et al., 2017.Geological and Microstructural Characterization of the Wufeng-Longmaxi Shale in the Basin-Orogen Transitional Belt of North Guizhou Province, China.Journal of Nanoscience and Nanotechnology, 17(9):6026-6038. https://doi.org/10.1166/jnn.2017.14522 [136] Zhou, Q.H., Wang, L.X., Cao, Z.Y., et al., 2016a.Dispersion of Atmospheric Fine Particulate Matters in Simulated Lung Fluid and Their Effects on Model Cell Membranes.Science of the Total Environment, 542:36-43. https://doi.org/10.1016/j.scitotenv.2015.10.083 [137] Zhou, S.W., Yan, G., Xue, H.Q., et al., 2016b.2D and 3D Nanopore Characterization of Gas Shale in Longmaxi Formation Based on FIB-SEM.Marine and Petroleum Geology, 73:174-180. https://doi.org/10.1016/j.marpetgeo.2016.02.033 [138] Zhu, X.Q., Zhang, Z.G., 1996.Experimental Study of Adsorption of Minerals and Rocks to the Nano Gold in Solution.Mineral Resources and Geology, (2):126-130 (in Chinese with English abstract). https://www.deepdyve.com/lp/springer-journals/potential-applications-of-nano-scale-science-and-technology-in-7SwWiddiGW [139] Zou, C.N., Yang, Z., Tao, S.Z., et al., 2013.Continuous Hydrocarbon Accumulation over a Large Area as a Distinguishing Characteristic of Unconventional Petroleum:The Ordos Basin, North-Central China.Earth-Science Reviews, 126:358-369. https://doi.org/10.1016/j.earscirev.2013.08.006 [140] Zou, C.N., Zhu, R.K., Bai, B., et al., 2011.First Discovery of Nano-Pore Throat in Oil and Gas Reservoir in China and Its Scientific Value.Acta Petrologica Sinica, 27(6):1857-1864 (in Chinese with English abstract). https://www.researchgate.net/publication/282738284_First_discovery_of_nano-pore_throat_in_oil_and_gas_reservoir_in_China_and_its_scientific_value [141] 晁洪太, 孙岩, 王志才, 等, 2009. 发震断裂的纳米级运动学观测一例. 自然科学进展, 19(10): 1076-1081. http://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200910008.htm [142] 晁洪太, 孙岩, 王志才, 等, 2016.同震和无震剪切滑移作用的纳微米级构造观察与分析.矿物岩石地球化学通报, 1:37-42. doi: 10.3969/j.issn.1007-2802.2016.01.004 [143] 陈敬中, 1994.纳米科技的发展与纳米矿物学研究.地质科技情报, 13(2):32-38. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ402.007.htm [144] 陈天虎, 陈骏, 季峻峰, 等, 2005.洛川黄土纳米尺度观察:纳米棒状方解石.地质论评, 51(6):713-718. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp200506014 [145] 丁振华, 1999.矿物学面临的困难与机遇——纳米科学对矿物学的启示.矿物学报, 19(3):379-384. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb199903019 [146] 华曙光, 王力娟, 贾晓芳, 等, 2012.陕西镇安丘岭卡林型金矿金的赋存状态和富集机理.地球科学, 37(5):989-1002. http://www.earth-science.net/WebPage/Article.aspx?id=2304 [147] 姜波, 秦勇, 琚宜文, 等, 2005.煤层气成藏的构造应力场研究.中国矿业大学学报, 34(5):564-569. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb200505005 [148] 姜泽春, 1995.地学领域里的纳米科学问题.矿物岩石地球化学通报, (4):262-266. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH504.012.htm [149] 焦堃, 姚素平, 吴浩, 等, 2014.页岩气储层孔隙系统表征方法研究进展.高校地质学报, 1:151-161. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201401015 [150] 琚宜文, 姜波, 侯泉林, 等, 2004.构造煤结构-成因新分类及其地质意义.煤炭学报, 29(5):513-517. http://mall.cnki.net/magazine/article/MTXB200405001.htm [151] 琚宜文, 孙岩, 万泉, 等, 2016.纳米地质学:地学领域革命性挑战.矿物岩石地球化学通报, 1:1-20, 22-23. doi: 10.3969/j.issn.1007-2802.2016.01.001 [152] 李德文, 王朋岭, 俞锦标, 2004.浙江新昌丹霞岩壁风化特征的微观研究.自然科学进展, 14(1):75-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrkxjz200401013 [153] 李金华, 潘永信, 2015.透射电子显微镜在地球科学研究中的应用.中国科学:地球科学, 45(9):1359-1382. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201509010.htm [154] 刘浩, 孙岩, 舒良树, 等, 2009.华南武功山地区韧性剪切带的纳米尺度测量研究.地质学报, 83(5):609-616. http://www.oalib.com/paper/4875965 [155] 刘娟, 盛安旭, 刘枫, 等, 2018.纳米矿物及其环境效应.地球科学, 43(5):1450-1463. http://cdmd.cnki.com.cn/Article/CDMD-10497-2007148998.htm [156] 卢双舫, 张亚念, 李俊乾, 等, 2016.纳米技术在非常规油气勘探开发中的应用.矿物岩石地球化学通报, 35(1):28-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201601003 [157] 沈宝云, 刘兵, 刘海龄, 等, 2016.海南岛小妹韧性剪切带的纳米尺度.地球科学, 41(9):1489-1498. http://www.earth-science.net/WebPage/Article.aspx?id=3354 [158] 孙岩, 琚宜文, 陆现彩, 等, 2016.从纳米层次重新认识变形的地质体.矿物岩石地球化学通报, 1:52-55, 2. doi: 10.3969/j.issn.1007-2802.2016.01.006 [159] 孙岩, 陆现彩, 琚宜文, 2018. 断裂剪切带中的纳米结构与成矿作用. 高校地质学报, 待刊. [160] 孙岩, 陆现彩, Zhang, X.H., 等, 2009.变质岩透入性面理的纳米结构研究.中国科学:地球科学, 39(8):1140-1147. http://mall.cnki.net/magazine/Article/JDXK200908012.htm [161] 唐孝威, 胡中为, 许胤林, 等, 1991.关于纳米地质和纳米天文.自然杂志, 14(8):563-565. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ199108000.htm [162] 童纯菡, 李巨初, 葛良全, 等, 1998.地气物质纳米微粒的实验观测及其意义.中国科学:地球科学, 28(2):153-156. http://www.oalib.com/paper/4151509 [163] 万泉, 覃宗华, 琚宜文, 等, 2016.纳米地球化学刍析:起源、研究进展和发展方向.矿物岩石地球化学通报, 1:21-27. doi: 10.3969/j.issn.1007-2802.2016.01.002 [164] 王学求, 张必敏, 姚文生, 等, 2014.地球化学探测:从纳米到全球.地学前缘, 21(1):65-74. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201401010.htm [165] 王学求, 张必敏, 叶荣, 2016.纳米地球化学与覆盖区矿产勘查.矿物岩石地球化学通报, 35(1):43-51, 2. http://www.cnki.com.cn/Article/CJFDTotal-WTHT201406011.htm [166] 王焰新, 田熙科, 2016.地学研究的新机遇——纳米地质学.矿物岩石地球化学通报, 01:79-86, 2. doi: 10.3969/j.issn.1007-2802.2016.01.010 [167] 闫二艳, 吴秀玲, 2004.变质岩矿物中纳米级流体包裹体的透射电镜研究.焦作大学学报, (1): 61-64. http://www.cnki.com.cn/Article/CJFDTotal-JZDX200401022.htm [168] 杨毅, 周立旻, 钭斐昀, 等, 2018.纳米颗粒物: 独具特性的地球化学组成.地球科学, 43(5): 1489-1502. http://www.earth-science.net/WebPage/Article.aspx?id=3809 [169] 袁鹏, 2018.纳米结构矿物的特殊结构和表-界面反应性.地球科学, 43(5): 1384-1407. http://www.earth-science.net/WebPage/Article.aspx?id=3801 [170] 章振根, 姜泽春, 1993.纳米矿床学-一门有前途的新科学.矿产与地质, (3): 161-165. http://www.cqvip.com/QK/96866X/199303/1109898.html [171] 朱笑青, 章振根, 1996.矿物、岩石对纳米金吸附作用的实验研究.矿产与地质, (2): 126-130. http://www.cqvip.com/QK/96866X/199602/2137918.html [172] 邹才能, 朱如凯, 白斌, 等, 2011.中国油气储层中纳米孔首次发现及其科学价值.岩石学报, 27(6):1857-1864. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106024.htm