Magma Mixing of the Eocene Quxu Batholith from the Gangdese Magmatic Belt, South Tibet: Evidence from Cathodoluminescence Characteristics and Composition Changes of Plagioclase
-
摘要: 斜长石作为主要造岩矿物,是研究岩石成因、示踪岩浆演化和岩浆混合过程的有效工具.对冈底斯带曲水岩基始新世花岗闪长岩、二长花岗岩、闪长岩脉和暗色包体中的斜长石进行了阴极发光图像结构特征、电子探针主量元素和LA-ICP-MS微量元素成分的分析,揭示了斜长石复杂环带的成因和相关的岩浆过程.该区斜长石的阴极发光图像呈现出多种颜色且与其An值相对应,随着An值降低依次为绿色、蓝色和暗灰色或暗红色等,并发育补丁状环带、筛状环带、韵律环带等.花岗闪长岩、二长花岗岩中斜长石的An值具有相似的变化范围(20~55),而闪长岩脉和暗色包体中An值的变化范围较大(25~85),表明曲水岩基经历了复杂的开放过程.微量元素结果表明:花岗闪长岩与闪长岩脉和暗色微粒包体具有相同的Sr含量范围(600×10-6~1 100×10-6);而二长花岗岩的Sr含量(1 000×10-6~2 400×10-6)整体高于前者.以上研究表明,花岗闪长岩中阴极发光呈现绿色的核部或幔部是偏中性岩浆注入寄主岩岩浆混合的结果;具有高Sr含量的二长花岗岩认为是高Sr含量的岩浆结晶形成的;闪长岩脉和暗色微粒包体中的筛状结构斜长石为寄主岩捕掳晶.Abstract: As the main rock-forming mineral, plagioclase is an effective tool for studying petrogenesis, magma evolution and magma mixing. The cathodoluminescence image, electron probe micro-analysis and LA-ICP-MS composition analysis were carried out for the plagioclase from the granodiorite, monzogranite, diorite dykes and mafic microgranular enclaves (MMEs) in the Quxu batholith in the Gangdese magmatic belt, which can reveal the formation mechanisms and relative magma evolution process of plagioclase complex zoning. The cathodoluminescence images of the plagioclase from the Quxu batholith shows that their color displays a corresponding relationship with the An value. With the decreasing with the An values, the colors are green, blue and dark gray or dark red in turn. The plagioclases have obvious three types of zoning:patchy zonation, sieve texture and oscillatory zoned. The An values of plagioclase from the Quxu granodiorite and monzonite have similar ranges (20-55), while the An values in diorite dikes and MMEs vary widely (25-85), all indicating that the Quxu batholith has undergone a complex opening process. Insitu trace elements analyses show that the granodiorite has similar Sr content (600×10-6-1 100×10-6) with the diorite dykes and MMEs; the Sr content of monzogranite (1 000×10-6-2 400×10-6) is higher than the granodiorite, diorite dykes and MMEs. The above studies show that:the green luminescence of cores and mantle in granodiorite is the result of the mixing of the intermediate magma and felsic magma; the high Sr content of monzogranite is considered to be derived from a Sr-enriched melt. The above studies show that the complex zonings of the plagioclase are the result of the injection of mafic magma into felsic magma. The core of sieve texture plagioclase in diorite vein and MMEs could be xenocrystals, which are captured from the host rocks.
-
Key words:
- Quxu batholith /
- plagioclase /
- cathodoluminescence image analysis /
- magma evolution /
- magma mixing /
- petrology
-
图 1 (a) 青藏高原地质简图、(b)拉萨地块地质简图和(c)曲水岩基地质图及采样点位置
a据Yin and Harrison(2000)修改;b据Chung et al.(2009)修改;c据Mo et al.(2005)修改
Fig. 1. A geological sketch map of the Tibetan plateau (a), a geological sketch map of the Lhasa block (b) and a geological map of the Quxu and sampling location (c)
图 2 曲水岩基的野外及岩相学特征
a.花岗闪长岩中的包体,呈卵状、水滴状,大小不一,大多数集中在20~30 cm;b.闪长岩脉体侵入花岗闪长岩中;c.D16T01,花岗闪长岩,主要矿物组成为斜长石、石英、钾长石、黑云母、角闪石;d.D16T14-2,似斑状二长花岗岩,斑晶为钾长石,基质为钾长石、石英、斜长石、角闪石、黑云母;e.D16T03,闪长岩,主要矿物组成为斜长石、角闪石、黑云母;f.D16T06,暗色包体,主要矿物组成为斜长石、角闪石、钾长石、黑云母.Qtz.石英;Pl.斜长石;Kfs.钾长石;Bt.黑云母;Hbl.普通角闪石
Fig. 2. Field and petrographic characteristics of the Quxu plution
图 3 花岗闪长岩中的特征斜长石环带阴极发光环带和成分趋势
a.D16T01-2-1,核-边结构,核部绿色斑块An值高,边部暗红色;b.D16T01-3-1,核-幔-边结构,核部和边部均为暗红色,An值相似,微量元素Sr、Ba含量有差别,幔部为蓝色斑块;c.核-边结构,核部蓝色斑块;d~f为电子探针和微区元素含量分析的An值的变化趋势图;g~i为微区元素含量分析Sr、Ba的变化趋势图
Fig. 3. The cathodoluminescence microphotogaphs and composition profiles of plagioclase zoning from granodiorite
图 5 闪长岩脉和暗色包体中的特征斜长石环带阴极发光环带和成分趋势
a.D16T03-1-3,核-边结构,闪长岩脉中原生斜长石,核部亮绿色斑块An值高,可达80,边部暗红色;b.D16T03-4-2,核-幔-边结构,捕掳晶,幔部绿色筛状环带An值较核部和边部高;c.D16T10-7-1,核-幔-边结构,捕掳晶,幔部绿色环带An值较高,核部含有许多细小矿物;d~f为电子探针和微区元素含量分析的An值的变化趋势图;g~i为微区元素含量分析Sr、Ba的变化趋势图
Fig. 5. The cathodoluminescence microphotogaphs and composition profiles of plagiolase zoning from diorite and mafic microgranular enclave
-
[1] Blundy, J. D., Shimizu, N., 1991. Trace Element Evidence for Plagioclase Recycling in Calc-Alkaline Magmas. Earth and Planetary Science Letters, 102(2):178-197. https://doi.org/10.1016/0012-821x(91)90007-5 [2] Blundy, J.D., Wood, B.J., 1991.Crystal-Chemical Controls on the Partitioning of Sr and Ba between Plagioclase Feld-spar, Silicate Melts, and Hydrothermal Solutions.Geochi-mica et Cosmochimica Acta, 55(1):193-209. https://doi.org/10.1016/0016-7037(91)90411-w [3] Browne, B. L., Eichelberger, J. C., Patino, L. C., et al., 2006.Magma Mingling as Indicated by Texture and Sr/Ba Ra-tios of Plagioclase Phenocrysts from Unzen Volcano, SW Japan.Journal of Volcanology and Geothermal Re-search, 154(1-2):103-116. https://doi.org/10.1016/j.jvolgeores.2005.09.022 [4] Castro, A., 2001. Plagioclase Morphologies in Assimilation Experiments. Implications for Disequilibrium Melting in the Generation of Granodiorite Rocks. Mineralogy and Petrology, 71(1-2):31-49. https://doi.org/10.1007/s007100170044 [5] Castro, A., Patiño Douce, A. E., Corretgé, L. G., et al., 1999.Origin of Peraluminous Granites and Granodiorites, Iberi-an Massif, Spain:An Experimental Test of Granite Petro-genesis.Contributions to Mineralogy and Petrology, 135(2-3):255-276. https://doi.org/10.1007/s004100050511 [6] Chen, G. C., Pei, X. Z., Li, R. B., et al., 2017. Components of the Plagioclase of Granitic Batholith in Xiangjiananshan in the Eastern Section of East Kunlun and Their Implica-tions for Magma Evolution and Mixing Effect.Acta Geo-logica Sinica, 91(12):2651-2666(in Chinese with Eng-lish abstract). [7] Chen, G.C., Pei, X.Z., Li, R.B., et al., 2018.Magma Mixing in Halagatu Granitic Batholith from Eastern Part of the East Kunlun Orogenic Belt:Constraints from Lithology and Mineralogy.Earth Science, 43(9):3200-3217(in Chi-nese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201809020 [8] Chung, S.L., Chu, M.F., Ji, J.Q., et al., 2009.The Nature and Timing of Crustal Thickening in Southern Tibet:Geo-chemical and Zircon Hf Isotopic Constraints from Post-collisional Adakites. Tectonophysics, 477(1-2):36-48. https://doi.org/10.1016/j.tecto.2009.08.008 [9] Coote, A. C., Shane, P., 2016. Crystal Origins and Magmatic System beneath Ngauruhoe Volcano (New Zealand) Re-vealed by Plagioclase Textures and Compositions. Lith-os, 260:107-119. https://doi.org/10.1016/j.lith-os.2016.05.017 [10] Ginibre, C., Wörner, G., 2007. Variable Parent Magmas and Recharge Regimes of the Parinacota Magma System (N. Chile) Revealed by Fe, Mg and Sr Zoning in Plagioclase.Lithos, 98(1-4):118-140. https://doi.org/10.1016/j.lithos.2007.03.004 [11] Ginibre, C., Wörner, G., Kronz, A., 2002.Minor-and Trace-El-ement Zoning in Plagioclase:Implications for Magma Chamber Processes at Parinacota Volcano, Northern Chile.Contributions to Mineralogy and Petrology, 143(3):300-315. https://doi.org/10.1007/s00410-002-0351-z [12] Higgins, M.D., 2017.Quantitative Investigation of Felsic Rock Textures Using Cathodoluminescence Images and Other Techniques. Lithos, 277:259-268. https://doi.org/10.1016/j.lithos.2016.05.006 [13] Huang, Y., Zhao, Z.D., Zhang, F.Q., et al., 2010.Geochemis-try and Implication of the Gangdese Batholiths from Ren-bu and Lhasa Areas in Southern Gangdese, Tibet. Acta Petrologica Sinica, 26(10):3131-3142(in Chinese with English abstract). [14] Humphreys, M.C.S., Blundy, J.D., Sparks, R.S.J., 2006.Mag-ma Evolution and Open-System Processes at Shiveluch Volcano:Insights from Phenocryst Zoning.Journal of Pe-trology, 47(12):2303-2334. [15] Jeffery, A.J., Gertisser, R., Troll, V.R., et al., 2013.The Pre-Eruptive Magma Plumbing System of the 2007-2008 Dome-Forming Eruption of Kelut Volcano, East Java, In-donesia.Contributions to Mineralogy and Petrology, 166(1):275-308. https://doi.org/10.1007/s00410-013-0875-4 [16] Ji, W.Q., Wu, F.Y., Liu, C.Z., et al., 2009.Geochronology and Petrogenesis of Granitic Rocks in Gangdese Batholith, Southern Tibet. Science China:Earth Sciences, 52(9):1240-1261. doi: 10.1007/s11430-009-0131-y [17] Jiang, W., Mo, X.X., Zhao, C.H., et al., 1999.Geochemistry of Granitoid and Its Mafic Microgranular Enclave in Gang-dise Belt, Qinghai-Xizang Plateau.Acta Petrologica Sini-ca, 15(1):89-97(in Chinese with English abstract). [18] Lai, Y., 1995. Application of Cathodoluminescene to Mineral-ization and Lithogenesis Studying.Acta Scientiarum Nat-uralium Universitatis Pekinensis, 31(5):631-638(in Chi-nese with English abstract). [19] Landi, P., Métrich, N., Bertagnini, A., et al., 2004. Dynamics of Magma Mixing and Degassing Recorded in Plagio-clase at Stromboli (Aeolian Archipelago, Italy).Contribu-tions to Mineralogy Petrology, 147(5):629-631. https://doi.org/10.1007/s00410-004-0555-5 [20] Li, S.R., Sun, L., Zhang, H.F., 2006.Magma Mixing Genesis of the Qushui Collisional Granitoids, Tibet, China:Evi-dences from Genetic Mineralogy. Acta Petrologica Sini-ca, 22(4):884-894 (in Chinese with English abstract). [21] Li, Y.H., Huang, F., Yu, H.M., et al., 2016.Plagioclase Zon-ing in Submarine Volcano Kick'em Jenny, Lesser Antil-les Arc:Insights into Magma Evolution Processes in Oce-anic Arc Magma Chamber. Acta Petrologica Sinica, 32(2):605-616(in Chinese with English abstract). [22] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 [23] Lu, T.Y., He, Z.Y., Zhang, Z.M., et al., 2016.Magma Mixing of the Nyemo Post-Collisional Granite from the Gang-dese Magmatic Belt, Tibet:Evidence of Microstructures.Acta Petrologica Sinica, 32(12):3613-3623(in Chinese with English abstract). [24] Ma, X. X., Meert, J. G., Xu, Z. Q., et al., 2017. Evidence of Magma Mixing Identified in the Early Eocene Caina Plu-ton from the Gangdese Batholith, Southern Tibet.Lithos, 278-281:126-139. https://doi.org/10.1016/j.lith-os.2017.01.020 [25] Mo, X.X., 2011.Magmatism and Evolution of the Tibetan Pla-teau. Geological Journal of China Universities, 17(3):351-367(in Chinese with English abstract). [26] Mo, X. X., Dong, G. C., Zhao, Z. D., et al., 2005. Timing of Magma Mixing in the Gangdisê Magmatic Belt during the India-Asia Collision:Zircon SHRIMP U-Pb Dating.Acta Geologica Sinica(English Edition), 79(1):66-76. https://doi.org/10.1111/j.1755-6724.2005.tb00868.x [27] Mo, X. X., Dong, G. C., Zhao, Z. D., et al., 2005. Spatial and Temporal Distribution and Characteristics of Granitoids in the Gangdese, Tibet and Implication for Crustal Growth and Evolution.Geological Journal of China Universities, 11(3):281-290(in China with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200503001 [28] Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006.Spatial-Tempo-ral Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3):521-533(in China with English abstract). [29] Pietranik, A., Koepke, J., 2009. Interactions between Dioritic and Granodioritic Magmas in Mingling Zones:Plagioclase Record of Mixing, Mingling and Subsolidus Interactions in the Gęsiniec Intrusion, NE Bohemian Massif, SW Poland. Contributions to Mineralogy and Petrology, 158(1):17-36. https://doi.org/10.1007/s00410-008-0368-z [30] Pietranik, A., Koepke, J., 2014. Plagioclase Transfer from a Host Granodiorite to Mafic Microgranular Enclaves:Di-verse Records of Magma Mixing.Mineralogy and Petrol-ogy, 108(5):681-694. https://doi.org/10.1007/s00710-014-0326-6 [31] Singer, B.S., Dungan, M.A., Layne, G.D., 1995.Textures and Sr, Ba, Mg, Fe, K and Ti Compositional Profiles in Vol-canic Plagioclase Clues to the Dynamics of Calc-Alka-line Magma Chambers.American Mineralogist, 80(7-8):776-798. https://doi.org/10.2138/am-1995-7-815 [32] Tsuchiyama, A., 1985. Dissolution Kinetics of Plagioclase in the Melt of the System Diopside-Albite-Anorthite, and Origin of Dusty Plagioclase in Andesites. Contributions to Mineralogy and Petrology, 89(1):1-16. https://doi.org/10.1007/bf01177585 [33] Viccaro, M., Giacomoni, P.P., Ferlito, C., et al., 2010.Dynam-ics of Magma Supply at Mt.Etna Volcano (Southern Ita-ly) as Revealed by Textural and Compositional Features of Plagioclase Phenocrysts. Lithos, 116(1-2):77-91. https://doi.org/10.1016/j.lithos.2009.12.012 [34] Wen, D. R., Liu, D. Y., Chung, S. L., et al., 2008. Zircon SHRIMP U-Pb Ages of the Gangdese Batholith and Im-plications for Neotethyan Subduction in Southern Tibet.Chemical Geology, 252(3-4):191-201. https://doi.org/10.1016/j.chemgeo.2008.03.003 [35] Xie, L., Wang, D.Z., Wang, R.C., et al., 2004.Complex Zon-ing Texture in Plagioclases from the Quartz Diorite En-clave in the Putuo Granitic Complex, Zhejiang Province:Record of Magma Mixing. Acta Petrologica Sinica, 20(6):1397-1408(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200406008.htm [36] Xu, H. F., Chen, T., 1987. Application of Cathodolumines-cence to Metamorphic and Granitic Rocks. Acta Petro-logica et Mineralogica, 6(3):279-284, 286(in Chinese with English abstract) [37] Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Hi-malayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28:211-280. https://doi.org/10.1146/annurev.earth.28.1.211 [38] Zou, J. Q., Yu, H. X., Wang, B. D., et al., 2018. Petrogenesis and Geological Implications of Early Jurassic Granodio-rites in Renqinze Area, Central Part of Southern Lhasa Subterrane. Earth Science, 43(8):2795-2810(in Chinese with English abstract). [39] 陈国超, 裴先治, 李瑞保, 等, 2017.东昆仑东段香加南山花岗岩基斜长石成分组成与岩浆演化和混合作用.地质学报, 91(12):2651-2666. doi: 10.3969/j.issn.0001-5717.2017.12.005 [40] 陈国超, 裴先治, 李瑞宝, 等, 2018.东昆仑东段哈拉尕吐花岗岩基混合作用:来自岩石学和矿物学约束.地球科学, 43(9):3200-3217. http://earth-science.net/WebPage/Article.aspx?id=3922 [41] 黄玉, 赵志丹, 张凤琴, 等, 2010.西藏冈底斯仁布-拉萨一带花岗岩基的地球化学及其意义.岩石学报, 26(10):3131-3142. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201010024 [42] 江万, 莫宣学, 赵崇贺, 等, 1999.西藏高原冈底斯中段花岗岩及其铁镁质微粒包体地球化学特征.岩石学报, 15(1):89-97. [43] 赖勇, 1995.阴极发光技术在成岩成矿作用研究中的应用.北京大学学报:自然科学版, 31(5):631-638. [44] 李胜荣, 孙丽, 张华峰, 2006.西藏曲水碰撞花岗岩的混合成因:来自成因矿物学证据.岩石学报, 22(4):884-894. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200604012 [45] 李原鸿, 黄方, 于慧敏, 等, 2016.加勒比海小安德烈岛弧Kick' em Jenny海底火山岩的斜长石成分环带:示踪大洋岛弧岩浆房的演化.岩石学报, 32(2):605-616. [46] 陆天宇, 贺振宇, 张泽明, 等, 2016.西藏冈底斯尼木后碰撞花岗岩的岩浆混合作用:显微结构证据.岩石学报, 32(12):3613-3623. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201612004.htm [47] 莫宣学, 2011.岩浆作用与青藏高原演化.高校地质学报, 17(3):351-367. doi: 10.3969/j.issn.1006-7493.2011.03.001 [48] 莫宣学, 董国臣, 赵志丹, 等, 2005.西藏冈底斯花岗岩的时空分布特征及地壳生长演化信息.高校地质学报, 11(3):281-290. doi: 10.3969/j.issn.1006-7493.2005.03.001 [49] 潘桂堂, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001 [50] 谢磊, 王德滋, 王汝成, 等, 2004.浙江普陀花岗杂岩体中的石英闪长岩质包体:斜长石内部复杂环带研究与岩浆混合史纪录.岩石学报, 20(6):1397-1408. [51] 徐惠芬, 陈涛, 1987.阴极发光仪在变质岩和花岗岩类岩石中的应用.矿物岩石学杂志, 6(3):279-284, 286. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW198703008.htm [52] 邹洁琼, 余红霞, 王保弟, 等, 2018.南拉萨地块中部早侏罗世仁钦则花岗闪长岩成因及其地质意义.地球科学, 43(8):2795-2810. http://earth-science.net/WebPage/Article.aspx?id=3913 -
dqkx-44-6-1834-Table.pdf