Study on In-Situ Sulfur Isotope Compositions of Sulfides: Implication for the Source of Pb-Zn Mineralized Body of Niutoushan in the Xiangshan Area
-
摘要: 近年来,在相山铀矿田的西部牛头山地区深部发现了铅锌矿化体,其成因机制不明.为探讨牛头山铅锌矿化体物质来源,开展了硫化物原位硫同位素分析研究.根据硫化物矿物之间的充填和包裹关系判断,铅锌矿化体金属硫化物形成的先后顺序是:黄铁矿形成最早,方铅矿和闪锌矿次之,细脉状黄铜矿形成最晚.利用LA-MC-ICP-MS技术对矿化体中几种金属硫化物分别进行了系统的原位硫同位素分析.结果显示:黄铁矿、闪锌矿、方铅矿、细脉状黄铜矿的δ34S值介于-4.8‰~+5.4‰之间,各硫化物矿物之间硫同位素未达到完全平衡分馏,利用黄铁矿δ34S值得到的矿化流体δ34SΣS值(总硫同位素组成)近似为+3.7‰,与共生矿物对(闪锌矿-方铅矿)图解法得到的闪锌矿和方铅矿沉淀时矿化流体的δ34SΣS值(+3.2‰)相近,表明形成牛头山铅锌矿化体的矿化流体δ34SΣS值大约为+3.7‰,为岩浆硫.结合前人的岩浆岩年龄数据,我们判断该铅锌矿化体金属硫化物的硫可能主要来自次火山岩相花岗斑岩岩浆热液.同一薄片中闪锌矿δ34S值高于共生的方铅矿,表明两者硫同位素基本平衡,利用共生矿物对(闪锌矿-方铅矿)硫同位素温度计计算得出平衡温度为197~476℃,与前人通过脉石矿物流体包裹体得到的铅锌矿化流体温度基本一致.相山火山盆地与相邻的北武夷黄岗山、梨子坑等产铅锌矿的火山盆地具有相似的成矿条件及成矿物质来源,使相山火山盆地具有良好的铅锌多金属找矿前景.
-
关键词:
- 铅锌矿化体 /
- LA-MC-ICP-MS /
- 硫同位素 /
- 成矿物质来源 /
- 地球化学
Abstract: In recent years, the Pb-Zn mineralization was discovered in the Niutoushan area in the west part of the Xiangshan volcanic basin. The genetic mechanism of Pb-Zn mineralization is still unclear. In order to reveal the source of the Pb-Zn mineralization, in-situ sulfur isotope analysis using laser altered-inductively coupled plasma spectra(LA-MC-ICP-MS)of sulfides is carried out. Paragenetic and crosscutting relationship between sulfide minerals formed by the hydrothermal fluids suggest that the earliest precipitated mineral was pyrite, followed by galena and sphalerite, and the chalcopyrite in fine vein shape was formed at the latest stage of the hydrothermal fluids. The analytical results of this study indicate that the δ34S values of metal sulfide minerals (pyrite, sphalerite, galena and fine-vine chalcopyrite) range from -4.8‰~+5.4‰. In term of sulfur isotopes, not all the sulfide minerals are in completely isotope equilibrium. The δ34SΣS(total sulfur isotope) value of the mineralized fluid calculated from the δ34S values of pyrite at its formation temperature is +3.7‰, which is basically consistent with hydrothermal δ34SΣSvalue obtained from the δ34S values of the paragenetic mineral pair (sphalerite-galena).Therefore, the δ34SΣSvalue of the mineralization fluid(+3.7‰) in the Niutoushan Pb-Zn mineralization indicates that the mineralization fluid was magmatic in origin. Combined with the published dating data of the magmatic rocks of the Xiangshan volcanic basin, the sulfur isotope data of this study suggest that hydrothermal fluid of the Pb-Zn mineralization may have been mainly derived from the subvolcanic magma of the granitic porphyry. The sulfur isotope values of the sphalerite minerals were higher than those of the paragenetic galena in the mineralized bodies, indicating sulfur isotope equilibrium between these two minerals. The temperatures calculated by using the sulfur isotopic compositions of these two minerals are between 197℃ and 476℃, which is consistent with the published temperatures from fluid inclusions. The metallogenic conditions and sources of ore-forming materials of the Niutoushan Pb-Zn mineralization in the Xiangshan volcanic basin are similar to those of Pb-Zn ore deposits in the Huanggangshan and Lizikeng volcanic basins in Northern Wuyi area, which hints promising prospects for Pb-Zn deposit prospecting in the Xiangshan volcanic basin.-
Key words:
- Pb-Zn mineralization /
- LA-MC-ICP-MS /
- sulfur isotope /
- ore-forming material sources /
- geochemistry
-
图 2 牛头山26线矿体剖面图(据吴志坚和胡志华,2014修改)
Fig. 2. Cross-section of ore body found in exploration line No.26 in Niutoushan Pb-Zn mineralization
图 3 牛头山铅锌矿化体中主要金属硫化物的分布和结构关系(手标本a-c、显微镜照片d-i)
图中圆圈代表原位硫同位素测点位置;a.黄铁矿;b.块状矿石;c.块状矿石;d.乳滴状黄铜矿与闪锌矿呈“固溶体”出溶结构;e.细脉状黄铜矿充填闪锌矿解理面中;f.方铅矿与闪锌矿紧密共生;;g.闪锌矿交代黄铁矿;h.方铅矿充填交代黄铁矿;i.黄铜矿包裹方铅矿;Py.黄铁矿;Gn.方铅矿;Sp.闪锌矿;Cp.黄铜矿;Apy.毒砂;Sd.菱铁矿;Q.石英.
Fig. 3. Distribution and structure of sulfide minerals from the Niutoushan Pb-Zn mineralization
表 1 牛头山铅锌矿化体金属硫化物硫同位素组成(‰)
Table 1. The sulfur isotope compositions of sulfide minerals from the Pb-Zn mineralization (‰)
序号 样品编号 采样位置(m) 样品类型 测试矿物 δ34S(‰) 1 ZK26-101-2-1 -1 045 细脉状矿石 黄铁矿 +5.3 2 ZK26-101-2-1 -1 045 细脉状矿石 闪锌矿 +3.5 3 ZK26-101-2-2 -1 045 细脉状矿石 方铅矿 -0.2 4 ZK26-101-2-4 -1 045 细脉状矿石 黄铁矿 +3.6 5 ZK26-101-2-5 -1 045 细脉状矿石 闪锌矿 +3.8 6 ZK26-101-2-5 -1 045 细脉状矿石 方铅矿 +1.7 7 ZK26-101-4-1 -1 051 细脉状矿石 黄铁矿 +4.0 8 ZK26-101-4-1 -1 051 细脉状矿石 方铅矿 -1.7 9 ZK26-101-4-2 -1 051 细脉状矿石 黄铁矿 +5.3 10 ZK26-101-4-3 -1 051 细脉状矿石 黄铁矿 +4.5 11 ZK26-101-4-4 -1 051 细脉状矿石 闪锌矿 +4.0 12 ZK26-101-12-1-A -1 074 块状矿石 黄铁矿 +4.0 13 ZK26-101-12-1-B -1 074 块状矿石 黄铁矿 +3.7 14 ZK26-101-12-2 -1 074 块状矿石 黄铁矿 +3.9 15 ZK26-101-12-3 -1 074 块状矿石 黄铁矿 +4.0 17 ZK26-101-12-5 -1 074 块状矿石 黄铁矿 +3.8 18 ZK26-101-14-1 -1 077 块状矿石 方铅矿 +3.9 19 ZK26-101-14-1 -1 077 块状矿石 细脉状黄铜矿 -4.8 20 ZK26-101-14-2 -1 077 块状矿石 闪锌矿 +3.9 21 ZK26-101-14-2 -1 077 块状矿石 方铅矿 +2.6 22 ZK26-101-14-2 -1 077 块状矿石 细脉状黄铜矿 -0.9 23 ZK26-101-14-2 -1 077 块状矿石 闪锌矿 +5.4 24 ZK26-101-14-3 -1 077 块状矿石 黄铁矿 +3.3 25 ZK26-101-14-3 -1 077 块状矿石 细脉状黄铜矿 -3.8 26 ZK26-101-14-4 -1 077 块状矿石 细脉状黄铜矿 +1.9 27 ZK26-101-14-4 -1 077 块状矿石 闪锌矿 +3.5 28 ZK26-101-14-4 -1 077 块状矿石 方铅矿 +2.5 29 ZK26-101-15-1 -1 078 块状矿石 黄铁矿 +3.6 30 ZK26-101-15-2 -1 078 块状矿石 黄铁矿 +3.7 31 ZK26-101-15-2 -1 078 块状矿石 方铅矿 +0.1 32 ZK26-101-15-3 -1 078 块状矿石 闪锌矿 +3.4 33 ZK26-101-15-3 -1 078 块状矿石 细脉状黄铜矿 +1.4 34 ZK26-101-15-4 -1 078 块状矿石 闪锌矿 +3.7 35 ZK26-101-15-4 -1 078 块状矿石 细脉状黄铜矿 +2.6 36 ZK26-101-15-5 -1 078 块状矿石 黄铁矿 +3.6 37 ZK26-101-17-1 -1 080 块状矿石 黄铁矿 +4.4 38 ZK26-101-17-2 -1 080 块状矿石 细脉状黄铜矿 +2.0 39 ZK26-101-17-3 -1 080 块状矿石 方铅矿 +0.9 40 ZK26-101-17-3 -1 080 块状矿石 闪锌矿 +4.2 41 ZK26-101-17-4 -1 080 块状矿石 细脉状黄铜矿 +3.3 表 2 牛头山铅锌矿化体硫同位素地质温度
Table 2. Sulfur isotope geo-thermometer of sulfide from the Niutoushan Pb-Zn mineralization
样品编号 岩性 Sp(‰) Gn(‰) △Sp-Gn 平衡温度(℃) ZK26-101-2-5 细脉状矿石 3.8 1.7 2.1 316 ZK-26-101-14-2 块状矿石 3.9 2.6 1.3 476 ZK-26-101-14-2 块状矿石 5.4 2.5 2.9 229 ZK-26-101-17-3 块状矿石 4.2 0.9 3.3 197 表 3 牛头山、生米坑及蔡家坪铅锌矿床基本特征
Table 3. Typical characteristics of Niutoushan, Lengshuikeng and shengminkeng Pb-Zn deposits
矿床 牛头山 生米坑 蔡家坪 岩性 流纹英安岩 粗面斑岩 流纹斑岩 岩石类型 S型 稀土模式 轻重稀土分异明显,轻稀土富集,Eu负异常 成岩年龄 135 Ma 138 Ma 137 Ma 成矿年龄 121 Ma 135 Ma 135 Ma 成矿温度 197~476℃ 302~558℃ 292~490℃ 成矿物质来源(S同位素) 岩浆热液 岩浆热液 岩浆热液 注:牛头山成岩成矿数据引自:杨水源等(2010);成矿年龄数据与刘军港讨论获得;生米坑数据引自:罗平等(2009),张家箐等(2012);蔡家坪数据引自:代堰锫等(2011),徐庆胜等(2014). -
[1] Chen, Z. L., Wang, Y., Zhou, Y. G., et al., 2013. SHIMPR U-Pb Dating of Zircons from Volcanic-Intrusive Complexes in the Xiangshan Uranium Ore Field, Jiangxi Province, and Its Geological Implications. Geology in China, 40(1): 217-231 (in Chinese with English abstract). [2] Donald, J. B., 1969. Bond Strength and Sulfur Isotopic Fractionation in Coexisting Sulfides: A Reply. Economic Geology, 64(8):56-65. https://doi.org/10.2113/gsecongeo.64.8.936 [3] Dai, Y. P., Yu, X. Q., Wu, G. G., et al., 2011. Characteristics of Sulfide Minerals, Genetic Type and Metallogenic Epoch of the Caijiaping Lead-Zinc Deposit, North Wuyi Area, Jiangxi Province. Earth Science Frontiers, 18(2): 321-338(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201102029 [4] Fan, H. H., Ling, H. F., Shen, W. Z., et al., 2001. Nd-Sr-Pb Isotope Geochemistry of the Volcanic-Intrusive Complex at Xiangshan, Jiangxi Province. Acta Petrologica Sinica, 17(3): 395-402(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200103007 [5] Hu, R. Z., Chen, W. T., Xu, D. R., et al., 2017. Reviews and New Metallogenic Models of Mineral Deposits in South China: An Introduction. Journal of Asian Earth Sciences, 137: 1-8. doi: 10.1016/j.jseaes.2017.02.035 [6] Luo, P., Wu, G. G., Zhang, D., et al., 2009. Geochemistry and Genesis of Shengmikeng Lead-Zinc Deposit in Northern Wuyi, Eastern China. Journal of Geomechanics, 15(4):349-362(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb200904004 [7] Liu, J.G., Li, Z. Y., Nie, J. T., 2017.Thesulfur Isotope Geochemical Characteristics and Its Geological Implications of Lead-Zinc Polymetalic Mineralization in Xiangshan Ore Field, Jiangxi Province. Geological Review, 63(Suppl.):237-238(in Chinese with English abstract). [8] Liu, G. Q., Zhao, K. D., Jiang, S. Y., et al., 2018. In-Situ Sulfur Isotope and Trace Element Analysis of Pyrite from the Xiwang Uranium Ore Deposit in South China: Implication for Ore Genesis. Journal of Geochemical Exploration, 195: 49-65. doi: 10.1016/j.gexplo.2018.07.012 [9] Mao, J. W., Xie, G. Q., Li, X. F., et al., 2004. Mesozoic large scale mineralization and multiple lithospheric extensions in South China. Earth Science Frontiers, 11(1): 45-55(in Chinese with English abstract). [10] Mao, J. W., Chen, M. H., Yuan, S. D., et al., 2011. Geological Characteristics of the Qinhang (or Shihang) South China and Spatial-Temporal Distribution Metallogenic Belt in Regularity of Mineral Deposits. Acta Geologica Sinica, 85(5): 636-658(in Chinese with English abstract). [11] Ohmoto, H., 1972. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits. Economic Geology, 67(5): 551-578. https://doi.org/10.2113/gsecongeo.67.5.551 [12] Ohmoto, H., Rye, R. O., 1979. Isotope of Sulfur and Carbon. In: Barnes, H.L., ed., Geochemistry of Hydrothermal Ore Deposits. John Wiley and Sons, New York, 509-567. [13] Ohmoto, H., Goldhaber, M. B., 1997. Sulfur and Carbon Isotopes. In: Barnes, H.L., ed., Geochemistry of Hydrothermal Ore Deposits, Third Edition. John Wiley and Sons, New York, 509-567. [14] Pinckney, D. M., Rafter, T. A., 1972. Fractionation of Sulfur Isotopes during Ore Deposition in the Upper Mississippi Valley Zinc-Lead District. Economic Geology, 67(3): 315-328. https://doi.org/10.2113/gsecongeo.67.3.315 [15] Seal, R. R., 2006. Sulfur Isotope Geochemistry of Sulfide Minerals. Reviews in Mineralogy and Geochemistry, 61(1): 633-677. https://doi.org/10.2138/rmg.2006.61.12 [16] Wu, Z. J., Hu, Z. H., 2014. Uranium-Polymetallic Metallogenic Characteristics and Prospecting Direction of Niutoushan Uranium Deposit in Xiangshan Ore-Field. Word Nuclear Geoscience, 31(2):89-94(in Chinese with English abstract). [17] Wu, R. G., 1999. The Features of Volcanic Formation in Ruyiting Profile of Xiangshan. Journal of East China Geological Institute, 22(3): 201-208 (in Chinese with English abstract). [18] Wang, Y. J., 2015. Characteristics of Granite Porphyry and Intermediate-Basic Dykes and Their Relationship with Uranium Mineralization in the Xiangshan(Dissertation). Beijing Research Institute of Uranium Geology, Beijing (in Chinese with English abstract). [19] Wang, J., Nie, J. T., Guo, J., et al., 2016. Characteristics of Deep Polymetallic Mineralization in the Xiangshan Uranium Ore Field of Jiangxi Province. Geology and Exploration, 52(1): 47-59 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzykt201601005 [20] Xia, L. Q., Xia, Z. C., Zhang, C., et al., 1992.Differentiation Mechanism and Evolution of High Level Magma Reservoir from Xiangshan, China. Acta Petrologica Sinica, 8(3): 205-221(in Chinese with English abstract). [21] Xie, G. F., Yao, Y. J., Hu, Z. H., et al., 2014. Distribution Feature of Uranium Deposit in the West of Xiangshan Volcanic Basin. Uranium Geology, 6:328-334 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykdz201406002 [22] Xu, Q. S., Wei, Y. W., Huang, A. J., et al., 2014. Geochemical Features, Zircon U-Pb Ages and Relationship to Pb-Zn Mineralization of the Subvolcanic Rocks in Lizikeng Volcanic Basin, Shangrao, Jiangxi. Geological Review, 60(4):933-944(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201404023 [23] Yang, S. Y., Jiang, S. Y., Jiang, Y. H., et al., 2010. Zircon U-Pb Geochronology, Hf Isotopic Composition and Geological Implications of the Rhyodacite and Rhyodacitic Porphyry in the Xiangshan Uranium Ore Field, Jiangxi Province, China. Science China Earth Sciences, 53(10): 1411-1426(in Chinese with English abstract). doi: 10.1007/s11430-010-4058-0 [24] Yang, S. Y., Jiang, S. Y., Jiang, Y. H., et al., 2011. Geochemical, Zircon U-Pb Dating and Sr-Nd-Hf Isotopic Constraints on the Age and Petrogenesis of an Early Cretaceous Volcanic-Intrusive Complex at Xiangshan, Southeast China. Mineralogy and Petrology, 101(1/2): 21-48(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0e542e2ab04e6482902ba42f632a6da8 [25] Yang, S. Y., Jiang, S. Y., Zhao, K. D., et al., 2012. Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopic Compositions of the Rhyolite Porphyry from the Zhoujiashan Deposit in Xiangshan Uranium Ore Field, Jiangxi Province, SE China. Acta Petrologica Sinica, 28(12): 3915-3928(in Chinese with English abstract). [26] Yang, Q. K., Huang, Q. T., Sun, Q. Z., 2015. Geological Characteristics of Sulfur and Lead Isotope in the Xiangshan Ore Field. Bulletin of Mineralogy, Petrology and Geochemistry, 34(4): 756-762 (in Chinese with English abstract). [27] Yang, Q. K., Huang, Q. T., Luo, Y., H., et al., 2017. The Characteristics of Metallogenic Fluid Evolution of Lead-Zinc Polymetallic in Xiangshan Ore Field, Jiangxi Province. Science Technology and Engineering, 17(2): 1671-1815 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxjsygc201705022 [28] Zhang, W.H., Chen, Z.Y., 1993. Fluid Inclusions. China University of Geosciences Press, Wuhan, 24-126(in Chinese with English abstract). [29] Zhou, X. M., Li, W. X., 2000. Origin of Late Mesozoic Igneous Rocks in Southeastern China: Implications for Lithosphere Subduction and Underplating of Mafic Magmas. Tectonophysics, 326(3/4): 269-287. https://doi.org/10.1016/s0040-1951(00)00120-7 [30] Zhang, J. Q., Wang, D. H., Liu, S. B., et al., 2012. Geochronology and Isotopic Compositions of the Huangbi Lead-Zinc Deposits, Jiangxi, China. Acta Petrologica Sinica, 28(10): 3325-3333(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201210019 [31] Zhang, W. L., Zou, M. Q., 2014. Analysis on Uranium-Polymetallic Mineralization Conditions of Xiangshan Ore Field. Uranium Geology, 30(3): 172-179(in Chinese with English abstract). [32] 陈正乐, 王永, 周永贵, 等, 2013.江西相山火山侵入杂岩体锆石SHRIMP定年及其地质意义.中国地质, 40(1):217-231. doi: 10.3969/j.issn.1000-3657.2013.01.015 [33] 代堰锫, 余心起, 吴淦国, 等, 2011.北武夷蔡家坪铅锌矿床硫化物特征、矿床成因类型及成矿时代.地学前缘, 18(2):321-338. http://d.old.wanfangdata.com.cn/Periodical/dxqy201102029 [34] 范洪海, 凌洪飞, 沈渭洲, 等, 2001.相山火山-侵入杂岩Nd-Sr-Pb同位素地球化学特征.岩石学报, 17(3):395-402. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200103007 [35] 罗平, 吴淦国, 张达, 等, 2009.北武夷生米坑铅锌矿床地质地球化学特征与成因探讨.地质力学学报, 15(4):349-362. doi: 10.3969/j.issn.1006-6616.2009.04.004 [36] 刘军港, 李子颖, 聂江涛, 2017.相山深部铅锌多金属矿化S同位素特征及其地质意义.地质论评, 63(增刊):237-238. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9146553 [37] 毛景文, 谢桂青, 李晓峰, 等, 2004.华南地区中生代大规模成矿作用与岩石圈多阶段伸展.地学前缘, 11(1):45-55. doi: 10.3321/j.issn:1005-2321.2004.01.003 [38] 毛景文, 谢桂青, 袁顺达, 等, 2011.华南地区钦杭成矿带地质特征和矿床时空分布规律.地质学报, 85(5):636-658. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201105004 [39] 吴仁贵, 1999.相山地区如意亭剖面火山建造特征.华东地质学院学报, 22(3):201-208. [40] 吴志坚, 胡志华, 2014.相山矿田牛头山铀矿床铀-多金属成矿地质特征及找矿方向.世界核地质科学, 31(2):89-94. doi: 10.3969/j.issn.1672-0636.2014.02.005 [41] 王勇剑, 2015.相山花岗斑岩和中基性脉岩特征及其与铀成矿关系(硕士学位论文).北京: 核工业北京地质研究院. [42] 王健, 聂江涛, 郭建, 等, 2016.江西相山矿田深部多金属矿化特征.地质与勘探, 52(1):47-59. doi: 10.3969/j.issn.1001-1986.2016.01.009 [43] 夏林圻, 夏祖春, 张诚, 等, 1992.相山高位岩浆房分异机制和演化.岩石学报, 8(3):205-221. doi: 10.3321/j.issn:1000-0569.1992.03.001 [44] 谢国发, 姚亦军, 胡志华, 等, 2014.相山火山盆地西部铀矿床分布特征.铀矿地质, 30(6):329-334. http://d.old.wanfangdata.com.cn/Periodical/ykdz201406002 [45] 徐庆胜, 魏英文, 黄安杰, 等, 2014.江西上饶梨子坑火山盆地潜火山岩地球化学特征、锆石U-Pb年龄及其与铅锌矿成矿关系.地质论评, 60(4):933-944. http://d.old.wanfangdata.com.cn/Periodical/dzlp201404023 [46] 杨水源, 蒋少涌, 姜耀辉, 等, 2010.江西相山流纹英安岩和流纹英安斑岩锆石U-Pb年代学和Hf同位素组成及其地质意义.中国科学:地球科学, 40(8):953-969. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201008001 [47] 杨水源, 蒋少涌, 赵葵东, 等, 2012.江西相山铀矿田邹家山矿床中流纹斑岩的锆石U-Pb年代学、岩石地球化学与Sr-Nd-Hf同位素组成.岩石学报, 28(12):3915-3928. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201212010 [48] 杨庆坤, 黄强太, 孙清钟, 2015.江西相山矿田硫铅同位素地球化学特征.矿物岩石地球化学通报, 34(4):756-762. http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb201504015 [49] 杨庆坤, 黄强太, 罗勇, 等, 2017.江西相山铀矿田深部铅锌矿成矿流体演化特征.科学技术与工程, 17(5):132-141. doi: 10.3969/j.issn.1671-1815.2017.05.022 [50] 张文淮, 陈紫英, 1993.流体包裹体地质学.武汉:中国地质大学出版社, 24-126. [51] 张家菁, 王登红, 刘善宝, 等, 2012.江西省铅山县篁碧铅锌矿区同位素年代学和稳定同位素组成.岩石学报, 28(10):3325-3333. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201210019 [52] 张万良, 邹茂卿, 2014.相山矿田铀多金属成矿条件分析.铀矿地质, 30(3):172-179. doi: 10.3969/j.issn.1000-0658.2014.03.008