• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    华南幕阜山花岗伟晶岩的矿物化学特征及指示意义

    李乐广 王连训 田洋 马昌前 周芳春

    李乐广, 王连训, 田洋, 马昌前, 周芳春, 2019. 华南幕阜山花岗伟晶岩的矿物化学特征及指示意义. 地球科学, 44(7): 2532-2550. doi: 10.3799/dqkx.2018.378
    引用本文: 李乐广, 王连训, 田洋, 马昌前, 周芳春, 2019. 华南幕阜山花岗伟晶岩的矿物化学特征及指示意义. 地球科学, 44(7): 2532-2550. doi: 10.3799/dqkx.2018.378
    Li Leguang, Wang Lianxun, Tian Yang, Ma Changqian, Zhou Fangchun, 2019. Petrogenesis and Rare-Metal Mineralization of the Mufushan Granitic Pegmatite, South China: Insights from in Situ Mineral Analysis. Earth Science, 44(7): 2532-2550. doi: 10.3799/dqkx.2018.378
    Citation: Li Leguang, Wang Lianxun, Tian Yang, Ma Changqian, Zhou Fangchun, 2019. Petrogenesis and Rare-Metal Mineralization of the Mufushan Granitic Pegmatite, South China: Insights from in Situ Mineral Analysis. Earth Science, 44(7): 2532-2550. doi: 10.3799/dqkx.2018.378

    华南幕阜山花岗伟晶岩的矿物化学特征及指示意义

    doi: 10.3799/dqkx.2018.378
    基金项目: 

    中国地质调查局地质矿产调查项目 DD20160031

    国家自然科学基金项目 41530211

    中国地质大学(武汉)“地学长江计划”重点项目 CUGCJ1711

    国家自然科学基金项目 41502046

    详细信息
      作者简介:

      李乐广(1995-), 男, 硕士研究生, 地质学专业

      通讯作者:

      王连训

    • 中图分类号: P611;P618

    Petrogenesis and Rare-Metal Mineralization of the Mufushan Granitic Pegmatite, South China: Insights from in Situ Mineral Analysis

    • 摘要: 华南晚中生代幕阜山花岗复式岩基内部及周缘广泛发育花岗伟晶岩脉,部分岩脉富含Li-Nb-Ta等元素,形成大型-超大型稀有金属矿床.本文以幕阜山北缘断峰山地区贫锂伟晶岩类和南缘仁里地区新发现的富锂伟晶岩为主要研究对象,通过详细的岩相学和主要及特征矿物(长石、云母、电气石、石榴子石、绿柱石、铌钽铁矿)的微区原位EPMA和LA-ICP-MS主微量元素地球化学的对比分析,深入探讨了伟晶岩的分类、成因演化及成矿潜力.按照特征矿物组合将伟晶岩划分为断峰山地区电气石伟晶岩、电气石-绿柱石伟晶岩、绿柱石伟晶岩、铌钽铁矿-绿柱石伟晶岩和仁里地区的锂电气石-锂云母伟晶岩5类.5类岩脉中的长石、云母、电气石和/或石榴子石的化学成分记录了不同程度花岗伟晶岩脉的演化阶段,按岩浆演化程度由低至高依次为电气石伟晶岩→电气石-绿柱石伟晶岩→绿柱石伟晶岩→铌钽铁矿-绿柱石伟晶岩→锂电气石-锂云母伟晶岩,并分别对应伟晶岩稀有金属富集程度分类中的无矿→(含Be)→富Be→富Be、Nb、Ta→富Li、Be、Nb、Ta阶段.这一结果表明仁里地区伟晶岩已演化至晚期富集多种稀有金属元素阶段,具有Li-Nb-Ta多金属成矿潜力,而断峰山地区的伟晶岩演化程度相对较低.断峰山电气石-绿柱石伟晶岩中的色带电气石晶体发育强烈成分环带,由内向外可明显分为5环,自核部至边部,Li、Zn、Ga、Ge、Nb、Ta、Sn、Pb等不相容元素和金属元素含量逐渐升高,清晰记录了正常岩浆演化序列及稀有金属富集过程.结合前人有关幕阜山花岗岩类的研究资料,本文认为幕阜山伟晶岩为该地区晚中生代巨量花岗质岩浆经历长期结晶分异作用晚期的分异产物.

       

    • 图  1  幕阜山岩体地质简图和伟晶岩脉分布

      据地质部701部队, 1965, 1:5万幕阜山花岗岩区稀有金属矿产普查报告;中国地质调查局武汉地质调查中心, 2018, 湖南1:5万郭镇、白羊田、北港幅区域地质调查报告

      Fig.  1.  Geological map of Mufushan pluton and regional distribution of the pegmatite dykes

      图  2  断峰山矿区(a)和仁里矿区(b)伟晶岩脉分布

      图 2a据地质部701部队, 1965, 1:5万幕阜山花岗岩区稀有金属矿产普查报告;图 2b据湖南省核工业地质局311大队, 2017, 湖南省平江县仁里矿区铌钽多金属矿普查阶段性成果报告,以及刘翔等(2018)

      Fig.  2.  Distribution of the pegmatite dykes in Duanfengshan (a) and Renli (b)

      图  3  断峰山矿区和仁里矿区伟晶岩特征性矿物

      a. Tur-伟晶岩中生长于白云母中的黑电气石;b. Tur-伟晶岩中生长于石英中的黑电气石c. Tur-Brl-伟晶岩中黑电气石;d. Tur-Brl-伟晶岩中色带电气石;e. Tur-Brl-伟晶岩中簇状绿柱石集合体;f. Brl-伟晶岩中绿柱石单晶;g. Col-Brl-伟晶岩中绿柱石巨晶;h. Col-Brl-伟晶岩中铌钽铁矿颗粒;i. Elb-Lpd-伟晶岩中锂电气石;j.锂电气石镜下照片,正交偏光;k. Elb-Lpd-伟晶岩中锂云母;l.锂云母镜下照片,正交偏光;Elb.锂电气石;Lpd.锂云母

      Fig.  3.  Characteristic minerals of the pegmatite in Duanfengshan and Renli diggings

      图  4  幕阜山伟晶岩中电气石分类命名(a~c)、成岩环境(d)和微量元素特征(e、f)

      电气石化学成分与成岩环境判别图d引自Henry and Guidotti(1985).图中1、2区分别表示富Li和贫Li的花岗岩和伟晶岩、细晶岩;9区代表富Ca的变质泥岩、砂岩和钙硅酸盐;10区代表贫Ca的变质泥岩、砂岩和石英-电气石岩;11区代表变质碳酸盐岩;12区代表变质镁铁质岩

      Fig.  4.  Classification of tourmaline (a-c), Ca-Fe-Mg diagram for tourmaline from various rock types (d) and characteristics (e, f) of trace elements in Mufushan pegmatites

      图  5  幕阜山伟晶岩云母化学成分演化图和微量元素特征

      底图据Tischendorf et al.(1997)

      Fig.  5.  Chemical composition evolution of mica and characteristics of trace elements in Mufushan pegmatite

      图  6  幕阜山伟晶岩钾长石、石榴子石、绿柱石和铌钽铁矿化学成分特征

      图a、b为断峰山伟晶岩钾长石Rb/Cs、Be/Li图解;图c为断峰山伟晶岩中石榴子石端元成分图解;图d为断峰山伟晶岩中绿柱石FeO*+MgO-(Li2O+Na2O+K2O+Rb2O)图解;图e、f为铌钽铁矿-绿柱石伟晶岩铌钽铁矿拉曼波峰特征

      Fig.  6.  Chemical composition characteristics of K-feldspar, garnet, beryl and columbite-tantalite in Mufushan pegmatite

      图  9  幕阜山伟晶岩化学演化模式

      改自Černý(1991)

      Fig.  9.  Chemical evolution model of Mufushan pegmatites

      图  7  幕阜山伟晶岩电气石Fe⁃Al和Al/(Al+Fe)⁃Na/(Na+X⁃空位)图解

      改自Selway et al.(2005)

      Fig.  7.  Fe⁃Al and Al/(Al+Fe)⁃Na/(Na+X⁃vac) diagram of tourmaline of pegmatite in Mufushan

      图  8  幕阜山伟晶岩云母(a)、长石(b)、石榴子石(c)演化图解

      底图数据据Selway et al.(2005)

      Fig.  8.  Evolution diagrams for mica (a), K-feldspar (b), garnet (c) in Mufushan pegmatites

      图  10  色带电气石化学成分分析点示意图(a)和素描图(b)

      Fig.  10.  Analysis points(a)and drawing(b)of zoning tourmaline

      图  11  色带电气石核部-边部化学成分变化图解

      图a~d为色带电气石主量元素含量(%)变化图解;图e~h为色带电气石微量元素(10-6)变化图解

      Fig.  11.  Chemical composition changes from core to rim in zoning tourmaline

      图  12  幕阜山伟晶岩钾长石K/Rb-Cs与化学演化图解

      底图据Trueman and Černý(1982)

      Fig.  12.  K/Rb-Cs and chemical evolution of K-feldspar in Mufushan pegmatites

      图  13  幕阜山伟晶岩成因模式

      Černý(1991)修改

      Fig.  13.  Genesis model of Mufushan pegmatite

      表  1  幕阜山伟晶岩脉分类

      Table  1.   Classification of pegmatite dykes in Mufushan

      矿区 岩脉名称 岩脉类型 矿物组合
      断峰山 电气石伟晶岩 Tur-伟晶岩 钾长石、钠长石、白云母、石英、石榴子石、电气石
      电气石-绿柱石伟晶岩 Tur-Brl-伟晶岩 钾长石、钠长石、白云母、石英、石榴子石、绿柱石、电气石
      绿柱石伟晶岩 Brl-伟晶岩 钾长石、钠长石、白云母、石英、石榴子石、绿柱石
      铌钽铁矿-绿柱石伟晶岩 Col-Brl-伟晶岩 钾长石、钠长石、石英、白云母、绿柱石、石榴子石、铌钽铁矿
      仁里 锂电气石-锂云母伟晶岩 Elb-Lpd-伟晶岩 钾长石、钠长石、石英、绿柱石、石榴子石、锂电气石、锂云母
      下载: 导出CSV
    • [1] Černý, P., 1991. Rare-Element Granitic Pegmatites. Part Ⅱ:Regional and Global Environments and Petrogenesis. Geoscience Canada, 18(2):68-81.
      [2] Dutrow, B. L., Henry, D. J., 2011. Tourmaline:A Geologic DVD. Elements, 7(5):301-306. https://doi.org/10.2113/gselements.7.5.301
      [3] Henry, D.J., Guidotti, C.V., 1985. Tourmaline as a Petrogenetic Indicator Mineral-An Example from the Staurolite-Grade Metapelites of NW Maine. American Mineralogist, 70(1):1-15. doi: 10.1093-cvr-cvr203/
      [4] Henry, D. J., Novak, M., Hawthorne, F. C., et al., 2011. Nomenclature of the Tourmaline-Supergroup Minerals. American Mineralogist, 96(5/6):895-913. https://doi.org/10.2138/am.2011.3636
      [5] Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. A "Wire" Signal Smoothing Device for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis. Spectrochimica Acta Part B:Atomic Spectroscopy, 78:50-57. https://doi.org/10.1016/j.sab.2012.09.007
      [6] Ji, W. B., Faure, M., Lin., W., et al., 2018a. Multiple Emplacement and Exhumation History of the Late Mesozoic Dayunshan-Mufushan Batholith in Southeast China and Its Tectonic Significance:1. Structural Analysis and Geochronological Constraints. Journal of Geophysical Research:Solid Earth, 123(1):689-710. https://doi.org/10.1002/2017jb014597
      [7] Ji, W. B., Faure, M., Lin.W., et al., 2018b. Multiple Emplacement and Exhumation History of the Late Mesozoic Dayunshan-Mufushan Batholith in Southeast China and Its Tectonic Significance:2. Magnetic Fabrics and Gravity Survey. Journal of Geophysical Research:Solid Earth, 123(1):711-731. https://doi.org/10.1002/2017jb014598
      [8] Ji, W. B., Lin, W., Faure, M., et al., 2017. Origin of the Late Jurassic to Early Cretaceous Peraluminous Granitoids in the Northeastern Hunan Province (middle Yangtze Region), South China:Geodynamic Implications for the Paleo-Pacific Subduction. Journal of Asian Earth Sciences, 141:174-193. https://doi.org/10.1016/j.jseaes.2016.07.005
      [9] Li, J. K., Zou, T. R., Liu, X. F., et al., 2015. The Metallogenetic Regularities of Lithium Deposits in China. Acta Geologica Sinica (English Edition), 89(2):652-670. https://doi.org/10.1111/1755-6724.12453
      [10] Li, P., Li, J. K., Pei, R. F., et al., 2017. Multistage Magmatic Evolution and Cretaceous Peak Metallogenic Epochs of Mufushan Composite Granite Mass:Constrains from Geochronological Evidence. Earth Science, 42(10):1684-1696 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.114
      [11] Liu, L. J., Wang, ,D. H., Liu, X. F., et al., 2017. The Main Types, Distribution Features and Present Situation of Exploration and Development for Domestic and Foreign Lithium Mine. Geology in China, 44(2):263-278 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201702004
      [12] Liu, X., Zhou, F. C., Huang, Z. B., et al., 2018. Discovery of Renli Superlarge Pegmatite-Type Nb-Ta Polymetallic Deposit in Pingjiang, Hunan Province and Its Significances. Geotectonica et Metallogenia, 42(2):235-243 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201802004
      [13] Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      [14] London, D., Morgan, G. B., Hervig, R. L., 1989. Vapor-Undersaturated Experiments with Macusani Glass+H2O at 200 MPa, and the Internal Differentiation of Granitic Pegmatites. Contributions to Mineralogy and Petrology, 102(1):1-17. https://doi.org/10.1007/bf01160186
      [15] Monier, G., Robert, J. L., 1986. Evolution of the Miscibility Gap between Muscovite and Biotite Solid Solutions with Increasing Lithium Content:An Experimental Study in the System K2O-Li2O-MgO-FeO-Al2O3-SiO2-H2O-HF at 600℃, 2 kbar PH2O:Comparison with Natural Lithium Micas. Mineralogical Magazine, 50(358):641-651. https://doi.org/10.1180/minmag.1986.050.358.09
      [16] Rao, C., Wang, R. C., Zhang, A. C., et al., 2012. The Corundum Plus Tourmaline Nodules Related to Hydrothermal Alteration of Spodumene in the Nanping No. 31 Pegmatite Dyke, Fujian Province, Southeastern China. Canadian Mineralogist, 50(6), 1623-1635. https://doi.org/10.3749/canmin.50.6.1623
      [17] Samadi, R., Miller, N. R., Mirnejad, H., et al., 2014. Origin of Garnet in Aplite and Pegmatite from Khajeh Morad in Northeastern Iran:A Major, Trace Element, and Oxygen Isotope Approach. Lithos, 208-209:378-392. https://doi.org/10.1016/j.lithos.2014.08.023
      [18] Selway, J. B., 2005. A Review of Rare-Element (Li-Cs-Ta) Pegmatite Exploration Techniques for the Superior Province, Canada, and Large Worldwide Tantalum Deposits. Exploration and Mining Geology, 14(1-4):1-30. https://doi.org/10.2113/gsemg.14.1-4.1
      [19] Shearer, C. K., Papike, J. J., Jolliff, B. L., 1992. Petrogenetic Links among Granites and Pegmatites in the Harney Peak Rare-Element Granite-Pegmatite System, Black Hills, South Dakota. Canadian Mineralogist, 30(3):785-809.
      [20] Tindle, A. G., Webb, P. C., 1990. Estimation of Lithium Contents in Trioctahedral Micas Using Microprobe Data:Application to Micas from Granitic Rocks. European Journal of Mineralogy, 2(5):595-610. https://doi.org/10.1127/ejm/2/5/0595
      [21] Tischendorf, G., Gottesmann, B., Förster, H. J., et al., 1997. On Li-Bearing Micas:Estimating Li from Electron Microprobe Analyses and an Improved Diagram for Graphical Representation. Mineralogical Magazine, 61(409):809-834. https://doi.org/10.1180/minmag.1997.061.409.05
      [22] Trueman, D., Černý, P., 1982. Exploration for Rare-Element Granitic Pegmatites. In: Černý, P., ed., Granitic Pegmatites in Science and Industry. Mineralogical Association of Canada, Québec.
      [23] Wang, D. H., Wang, R. J., Li, J. K., et al., 2013. The Progress in the Strategic Research and Survey of Rare Earth, Rare Metal and Rare-Scattered Elements Mineral Resources. Geology in China, 40(2):361-370 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201302002.htm
      [24] Wang, D. H., Zhao, T., He, H. H., et al., 2016. Review of Three Rare Mineral Resources Investigation and Progress in Central-South China. Journal of Guilin University of Technology, 36(1):1-8 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=glgxy201601001
      [25] Wang, H., Li, P., Ma, H. D., et al., 2017. Discovery of the Bailongshan Superlarge Lithium-Rubidium Deposit in Karakorum, Hetian, Xinjiang, and Its Prospecting Implication. Geotectonica et Metallogenia, 41(6):1053-1062 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201706005
      [26] Wang, L. X., Ma, C. Q., Zhang, C., et al., 2014. Genesis of Leucogranite by Prolonged Fractional Crystallization:A Case Study of the Mufushan Complex, South China. Lithos, 206-207:147-163. https://doi.org/10.1016/j.lithos.2014.07.026
      [27] Wang, P., Pan, Z. L., Weng, L. B., et al., 1982. System Mineralogy (Middle). Geological Publishing House, Beijing, 155 (in Chinese).
      [28] Wang, R., C., Che, X. D., Zhang, W. L., et al., 2009. Geochemical Evolution and Late Re-Equilibration of Na-Cs-Rich Beryl from the Koktokay #3 Pegmatite (Altai, NW China). European Journal of Mineralogy, 21(4):795-809. https://doi.org/10.1127/0935-1221/2009/0021-1936
      [29] Wang, Z. P., Liu, S. B., Ma, S. C., et al., 2018. Metallogenic Regularity, Deep and Periphery Prospecting of Dangba Superlarge Spodumene Deposit in Aba, Sichuan Province. Earth Science, 43(6):2029-2041 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.604
      [30] Wen, C. H., Chen, J. F., Luo, X, Y., et al., 2016. Geochemical Features of the Chuanziyuan Rare Metal Pegmatite in Northeastern Hunan, China. Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):171-177 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201601020
      [31] Xiong, Q., Zheng, J. P., Griffin, W. L., et al., 2011. Zircons in the Shenglikou Ultrahigh-Pressure Garnet Peridotite Massif and Its Country Rocks from the North Qaidam Terrane (Western China):Meso-Neoproterozoic Crust-Mantle Coupling and Early Paleozoic Convergent Plate-Margin Processes. Precambrian Research, 187(1-2):33-57. https://doi.org/10.1016/j.precamres.2011.02.003
      [32] Xu, Z. Q., Wang, Q. C., Zhao, Z. B., et al., 2018. On the Structural Backgrounds of the Large-Scale "Hard-Rock Type" Lithium Ore Belts in China. Acta Geologica Sinica, 92(6):1091-1106 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dizhixb201806001
      [33] Yang, S. Y., Jiang, S. Y., 2012. Chemical and Boron Isotopic Composition of Tourmaline in the Xiangshan Volcanic- Intrusive Complex, Southeast China:Evidence for Boron Mobilization and Infiltration during Magmatic- Hydrothermal Processes. Chemical Geology, 312-313:177-189. https://doi.org/10.1016/j.chemgeo.2012.04.026
      [34] Yang, S. Y., Jiang, S. Y., Palmer, M. R., 2015a. Chemical and Boron Isotopic Compositions of Tourmaline from the Nyalam Leucogranites, South Tibetan Himalaya:Implication for Their Formation from B-Rich Melt to Hydrothermal Fluids. Chemical Geology, 419:102-113. https://doi.org/10.1016/j.chemgeo.2015.10.026
      [35] Yang, S. Y., Jiang, S. Y., Zhao, K. D., et al., 2015b. Tourmaline as a Recorder of Magmatic-Hydrothermal Evolution:An in Situ Major and Trace Element Analysis of Tourmaline from the Qitianling Batholith, South China. Contributions to Mineralogy and Petrology, 170(5-6):42. https://doi.org/10.1007/s00410-015-1195-7
      [36] Yang, Y. Q., Ni, Y. X., Guo, Y. Q., et al., 1987. Rock- Rorming and Ore Forming Characteristics of the Xikeng Granitic Pegmatites in Fujian Province. Mineral Deposits, 6(3):12-23 (in Chinese with English abstract).
      [37] Zhang, A. C., Wang, R. C., Jiang, S. Y., et al., 2008. Chemical and Textural Features of Tourmaline from the Spodumene-Subtype Koktokay No. 3 Pegmatite, Altai, Northwestern China:A Record of Magmatic to Hydrothermal Evolution. Canadian Mineralogist, 46(1):41-58. https://doi.org/10.3749/canmin.46.1.41
      [38] Zhang, R. X., Yang, S. Y., 2016. A Mathematical Model for Determining Carbon Coating Thickness and Its Application in Electron Probe Microanalysis. Microscopy and Microanalysis, 22(6):1374-1380. https://doi.org/10.1017/s143192761601182x
      [39] Zhu, J.C., Wu, C. N., Liu, C. S., et al., 2000. Magmatic-Hydrothermal Evolution and Genesis of Koktokay No.3 Rare Metal Pegmatite Dyke, Altai, China. Geological Journal of China Universities, 6(1):40-52 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200001006
      [40] Zou, T. R., Xu, J. G., 1975. On the Origin and Classification of Granite Pegmatites. Geochimica, 4(3):161-174 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000257704
      [41] 李鹏, 李建康, 裴荣富, 等, 2017.幕阜山复式花岗岩体多期次演化与白垩纪稀有金属成矿高峰:年代学依据.地球科学, 42(10):1684-1696. http://earth-science.net/WebPage/Article.aspx?id=3668
      [42] 刘丽君, 王登红, 刘喜方, 等, 2017.国内外锂矿主要类型、分布特点及勘查开发现状.中国地质, 44(2):263-278. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201702004
      [43] 刘翔, 周芳春, 黄志飚, 等, 2018.湖南平江县仁里超大型伟晶岩型铌钽多金属矿床的发现及其意义.大地构造与成矿学.42(2):235-243. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201802004
      [44] 王登红, 王瑞江, 李建康, 等, 2013.中国三稀矿产资源战略调查研究进展综述.中国地质, 40(2):361-370. doi: 10.3969/j.issn.1000-3657.2013.02.001
      [45] 王登红, 赵汀, 何晗晗, 等, 2016.中南地区三稀矿产资源调查研究及开发利用进展综述.桂林理工大学学报, 36(1):1-8. doi: 10.3969/j.issn.1674-9057.2016.01.001
      [46] 王核, 李沛, 马华东, 等, 2017.新疆和田县白龙山超大型伟晶岩型锂铷多金属矿床的发现及其意义.大地构造与成矿学, 41(6):1053-1062. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201706005
      [47] 王濮, 潘兆橹, 翁玲宝, 等, 1982.系统矿物学(中).北京:地质出版社, 155.
      [48] 王子平, 刘善宝, 马圣钞, 等, 2018.四川阿坝州党坝超大型锂辉石矿床成矿规律及深部和外围找矿方向.地球科学, 43(6):2029-2041. http://earth-science.net/WebPage/Article.aspx?id=3864
      [49] 文春华, 陈剑锋, 罗小亚, 等, 2016.湘东北传梓源稀有金属花岗伟晶岩地球化学特征.矿物岩石地球化学通报, 35(1):171-177. doi: 10.3969/j.issn.1007-2802.2016.01.020
      [50] 许志琴, 王汝成, 赵中宝, 等, 2018.试论中国大陆"硬岩型"大型锂矿带的构造背景.地质学报, 92(6):1091-1106. doi: 10.3969/j.issn.0001-5717.2018.06.001
      [51] 杨岳清, 倪云翔, 郭永泉, 等, 1987.福建西坑花岗伟晶岩成岩成矿特征.矿床地质, 6(3):12-23. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198703002.htm
      [52] 朱金初, 吴长年, 刘昌实, 等, 2000.新疆阿尔泰可可托海3号伟晶岩脉岩浆-热液演化和成因.高校地质学报, 6(1):40-52. doi: 10.3969/j.issn.1006-7493.2000.01.006
      [53] 邹天人, 徐建国, 1975.论花岗伟晶岩的成因和类型的划分.地球化学, 4(3):161-174. doi: 10.3321/j.issn:0379-1726.1975.03.001
    • 加载中
    图(13) / 表(1)
    计量
    • 文章访问数:  4021
    • HTML全文浏览量:  1531
    • PDF下载量:  121
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-12-05
    • 刊出日期:  2019-07-15

    目录

      /

      返回文章
      返回