An Improved Approach in Modeling Injection-Withdraw Test of the Partially Penetrating Well
-
摘要: 单井注抽试验(SWIW试验)具有成本低、耗时短、易操作等优点,被广泛用于获取野外含水层的弥散度等物理化学参数.然而,井筒附近的流场变化复杂,给模型求解带来不便,尤其是非完整井问题.针对非完整井SWIW试验问题,MODFLOW/MT3DMS软件中包含3种模块:传统WELL模块、高渗透性WELL模块和MNW模块,分别代表 3种常规的数值模拟方法.研究表明现有的这3个模块都存在一些假设条件,野外试验条件可能难以满足.为此,本研究提出一种新的计算方法,即将MNW模块中考虑井中溶质混溶的公式运用到高渗透性WELL模块上,通过一个参数反求案例的分析,证明SWIW试验模拟结果的精度得到提高.基于改进后的模型,探究传统模型中常用的两个假设条件的影响:忽略滤水管空间位置和假设试验过程中流场是稳定.结果表明:(1)非完整井井筒滤水管的位置对浓度结果的影响不可忽略;(2)含水层渗透系数与储水系数的比值较小时,稳定流场这个假设条件会带来误差.Abstract: Single Well Injection-Withdraw (SWIW) test has been widely used to estimate physical and chemical parameters of aquifer due to its advantages of low budget, less time consuming and easy to operate. However, the complex flow fields near the wellbore pose challenges in solving the model of the SWIW test, especially for partially penetrating wells. Currently, three methods included in MODFLOW/MT3DMSwere used to deal with this problem:traditional WELL module, high permeability WELL module and MNW module, which respectively represent three types of commonly used numerical methods. However, it was found that all of these models were based on assumptions which might not be satisfied in the actual applications. In this study, a new method was developed by coupling the MNW module and high permeability WELL module. The case studies demonstrated the accuracy of the new model of the SWIW test. Meanwhile, we employed the new model to investigate two assumptions included in the previous studies, and found that:(1) the influence of the well screen location on the results was not negligible. (2) The assumption of the steady-flow field used in the traditional mathematical model of SWIW will cause non-negligible errors when the ratio of permeability coefficient to storage coefficient is small.
-
图 1 单井注抽试验概念模型示意图(Wang et al., 2017)
a.注入过程;b.抽取过程(初期);B为厚度(m);黑色箭头表示井筒附近水流方向,蓝色箭头表示距离井较远的含水层水流方向,红色深浅表示溶质浓度的高低
Fig. 1. The conceptual model of single well injection and extraction test
表 1 3种模块反求的参数
Table 1. Parameters estimated by the three modules
孔隙度 弥散度(m) COMSOL模型 0.3 0.62 改进后的高渗CW模型 0.3 0.60 Huang et al.(2010)的解析解 0.5 0.59 MNW模型 0.3 0.45 -
[1] Chen, C., Wen, Z., Liang, X., et al., 2017. Estimation of Hydrogeological Parameters for Representative Aquifers in Jianghan Plain. Earth Science, 42(5):743-750(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201705007.htm [2] Cvetkovic, V., Cheng, H., 2011. Evaluation of Single-Well Injection-Withdrawal Tests in Swedish Crystalline Rock Using the Lagrangian Travel Time Approach. Water Resources Research, 47(2):1-11. https://doi.org/10.1029/2010WR009627 [3] Gelhar, L.W., Collins, M.A., 1971. General Analysis of Longitudinal Dispersion in Nonuniform Flow. Water Resources Research, 7(6):1511-1521. https://doi.org/10.1029/WR007i006p01511 [4] Gouze, P., Le Borgne, T., Leprovost, R., et al., 2008. Non-Fickian Dispersion in Porous Media:1. Multiscale Measurements Using Single-Well Injection Withdrawal Tracer Tests. Water Resources Research, 44(6):1-11. https://doi.org/10.1029/2007wr006278 [5] Harbaugh, A.W., 2005. The US Geological Survey Modular Ground-Water Model: the Ground-Water Flow Process. US Geological Survey, Reston VA, 253. [6] Huang, J.Q., Christ, J.A., Goltz, M.N., 2010. Analytical Solutions for Efficient Interpretation of Single-Well Push-Pull Tracer Tests. Water Resources Research, 46(8). https://doi.org/10.1029/2008wr007647 [7] Istok, J.D., 2013. Push-Pull Tests for Site Characterization. Springer-Verlag Berlin Heidelberg, New York. [8] Li, M., Liu, W.B., Chen, C.X., 2003. Can MODFLOW Simulating the Groundwater Flow of Mixing Well? Hydrogeology & Engineering Geology, 30(5):116-117 (in Chinese). [9] Li, X., Wen, Z., Liang, X., et al., 2017. Aquifer Parameter Estimation of Transient Pumping Test Based on Analytical and Numerical Method. Earth Science, 42(5):743-750 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201705009.htm [10] Mathias, S.A., Todman, L.C., 2010.Step-Drawdown Tests and the Forchheimer Equation. Water Resources Research, 46(7). https://doi.org/10.1029/2009WR008635 [11] McDonald, B., Harbaugh, A.W., 1988. MODFLOW, A Modular Three-Dimensional Finite Difference Ground-Water Flow Model, US Geological Survey, Reston VA, 588. [12] Neville, C.J., Tonkin, M.J., 2004. Modeling Multiaquifer Wells with MODFLOW. Ground Water, 42(6):910-919. https://doi.org/10.1111/j.1745-6584.2004.t01-9-.x [13] Peaceman, D.W., 1983. Interpretation of Well-Block Pressures in Numerical Reservoir Simulation with Nonsquare Grid Blocks and Anisotropic Permeability. SPE Journal, 23(03):531-543. https://doi.org/10.2118/10528-pa [14] Rorabaugh, M.I., 1953. Graphical and Theoretical Analysis of Step-Drawdown Test of Artesian Well. Proceedings of American Society of Civil Engineers, 79(362). [15] Schroth, M.H., Istok, J.D., 2005. Approximate Solution for Solute Transport during Spherical-Flow Push-Pull Tests. Ground Water, 43(2):280-284. https://doi.org/10.1111/j.1745-6584.2005.0002.x [16] Tsang, Y.W., 1995. Study of Alternative Tracer Tests in Characterizing Transport in Fractured Rocks. Geophysical Research Letters, 22(11):1421-1424. https://doi.org/10.1029/95gl01093 [17] Wang, Q.R., Zhan, H.B., Wang, Y.X., 2017. Single-Well Push-Pull Test in Transient Forchheimer Flow Field. Journal of Hydrology, 549:125-132. doi: 10.1016/j.jhydrol.2017.03.066 [18] Zheng, C.M., Wang, P.P., 1999. MT3DMS:A Modular Three-Dimensional Multispecies Transport Model.Army Corps of Engineers, 169(4):1196-1197. https://doi.org/10.2214/ajr.169.4.9308495 [19] Zheng, C.M., 2010. MT3DMS v5.3 Supplemental User's Guide.U.S. Army Corps of Engineers, Washington DC, 51. [20] 陈晨, 文章, 梁杏等, 2017.江汉平原典型含水层水文地质参数反演.地球科学, 42(5):728-733. doi: 10.3799/dqkx.2017.060 [21] 黎明, 刘文波, 陈崇希, 2003.MODFLOW能模拟地下水混合井流吗?水文地质工程地质, 30(5):116-117. doi: 10.3969/j.issn.1000-3665.2003.05.029 [22] 李霞, 文章, 梁杏等, 2017.基于解析法和数值法的非稳定流抽水试验参数反演.地球科学, 42(5):743-750. doi: 10.3799/dqkx.2017.062