• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    地幔橄榄岩中碳酸盐熔体交代作用及其鉴定特征

    邓黎旭 刘勇胜 宗克清 朱律运 胡兆初

    邓黎旭, 刘勇胜, 宗克清, 朱律运, 胡兆初, 2019. 地幔橄榄岩中碳酸盐熔体交代作用及其鉴定特征. 地球科学, 44(4): 1113-1127. doi: 10.3799/dqkx.2018.357
    引用本文: 邓黎旭, 刘勇胜, 宗克清, 朱律运, 胡兆初, 2019. 地幔橄榄岩中碳酸盐熔体交代作用及其鉴定特征. 地球科学, 44(4): 1113-1127. doi: 10.3799/dqkx.2018.357
    Deng Lixu, Liu Yongsheng, Zong Keqing, Zhu Lüyun, Hu Zhaochu, 2019. Carbonate Metasomatism and Its Identification Characteristics in Mantle Peridotite. Earth Science, 44(4): 1113-1127. doi: 10.3799/dqkx.2018.357
    Citation: Deng Lixu, Liu Yongsheng, Zong Keqing, Zhu Lüyun, Hu Zhaochu, 2019. Carbonate Metasomatism and Its Identification Characteristics in Mantle Peridotite. Earth Science, 44(4): 1113-1127. doi: 10.3799/dqkx.2018.357

    地幔橄榄岩中碳酸盐熔体交代作用及其鉴定特征

    doi: 10.3799/dqkx.2018.357
    基金项目: 

    国家自然科学基金项目 41530211

    地质过程与矿产资源国家重点实验室自主研究课题专项经费项目 MSFGPMR01

    详细信息
      作者简介:

      邓黎旭(1986-), 男, 博士, 地球化学专业

      通讯作者:

      刘勇胜

    • 中图分类号: P595;P597

    Carbonate Metasomatism and Its Identification Characteristics in Mantle Peridotite

    • 摘要: 碳酸盐熔体交代作用是指在地幔碳酸盐熔体与橄榄岩之间的相互作用,是改造地幔的重要方式之一.碳酸盐熔体交代会显著改变地幔橄榄岩的岩石学和地球化学特征.首先,碳酸盐熔体交代作用会改变地幔橄榄岩中的矿物组成和比例.尽管碳酸盐熔体与橄榄岩的反应结果受控于初始反应物成分和反应的温压条件,但多数反应会导致橄榄岩中辉石的比例增加,而且有时还会出现磷灰石、独居石等副矿物.另外,在有些受碳酸盐熔体交代显著的橄榄岩的矿物中不仅可发现大量CO2流体包裹体和碳酸盐熔体包裹体,也会出现特殊的反应边结构和熔体囊.其次,碳酸盐熔体在改造地幔橄榄岩过程中,会在地幔矿物中留下明显的地球化学指纹.在主量元素特征上,受到碳酸盐熔体交代的橄榄岩中的单斜辉石往往具有偏高的Mg#和Ca/Al比值(>5);而在微量元素组成特征上的变化更为显著,包括单斜辉石具有高的(La/Yb)N、Eu/Ti、Zr/Hf、Y/Ho比值,并显著亏损HFSE等.另外,值得注意的是,碳酸盐熔体与地幔橄榄岩反应的程度不同也会导致这些地球化学特征存在差异,因此在判别碳酸盐熔体交代作用时要采用岩石学和地球化学特征相结合,多方面对比分析.对于引起地幔碳酸盐熔体交代作用的交代介质来源的识别主要用Mg-Zn-Ca-Sr等多种同位素体系进行示踪研究,尤其是近年来微区Sr同位素分析方法的建立为地幔碳酸盐熔体交代作用研究提供了重要手段.

       

    • 图  1  受碳酸盐熔体交代的地幔橄榄岩中的富CO2流体包裹体(a)和碳酸盐熔体包裹体(b)

      图a为单斜辉石内发育的CO2流体包裹体,白色虚线为矿物边界,引自Liu et al.(2010);图b为橄榄石中包裹的碳酸盐熔体包裹体和富CO2流体包裹体,引自Deng et al.(2017); Cpx.单斜辉石

      Fig.  1.  CO2-rich fulid inclusions (a) and carboantite melt inclusions (b) in mantle peridotite experienced carbonate metasomatism

      图  2  受碳酸盐熔体交代的地幔橄榄岩中发育的熔体囊及其矿物组合

      图a引自Kim et al.(2016);图b引自Ackerman et al.(2013).Sp.尖晶石; Ol.橄榄石; Cpx.单斜辉石; Carb, cb.碳酸盐; ilm.钛铁矿

      Fig.  2.  Melt pockets in mantle peridotite xenoliths which experidenced carbonate metasomatism and minerals assemblages in melt pockets

      图  3  硅不饱和熔体与橄榄岩反应形成围绕斜方辉石的筛状反应边(a)和碳酸盐化地幔橄榄岩中单斜辉石的反应边结构(b)

      图a据王永锋和章军锋(2013);图b据Deng et al.(2017).Opx.斜方辉石; Cpx.单斜辉石; Ol.橄榄石

      Fig.  3.  The sieve-textured reaction rims of orthopyroxene due to the reaction between a silica-understaturated melt and a peridotite (a) and the recation rims of clinopyroxene in mantle peridotite experienced carbonate metasomatism (b)

      图  4  地幔橄榄岩天然样品和高温高压试验样品中单斜辉石CaO、Al2O3和SiO2的变化关系

      硅质熔体与橄榄岩反应的实验数据来自王超等(2010)Yaxley and Green(1998);碳酸盐熔体与橄榄岩反应的实验数据来自Klemme et al.(1995)Sokol et al.(2016)Gervasoni et al.(2017); 典型碳酸盐熔体交代的地幔橄榄岩数据引自Yaxley et al.(1998)Neumann et al.(2002)Sun et al.(2012)Deng et al.(2017)

      Fig.  4.  CaO vs. SiO2 (a) and Al2O3 vs. SiO2 (b) in clinopyroxene from mature and experimental mantle peridotite

      图  5  地幔橄榄岩天然样品和高温高压试验样品中单斜辉石(La/Yb)N和Ti/Eu(a)、以及Ca/Al和Mg#(b)的变化关系

      引自宗克清和刘勇胜(2018)

      Fig.  5.  (La/Yb)N vs. Ti/Eu (a) and Ca/Al vs. Mg# (b) in clinopyroxene from mature and experimental mantle peridotite

      表  1  不同成分的碳酸盐熔体与橄榄岩反应

      Table  1.   Reactions between different components of carbonate melt with peridotite

      碳酸盐熔体属性 温压条件 反应产物 参考文献
      富Ca 1.5~2.5 GPa, 930~1 300 ℃ Cpx、Ol、CO2 Dalton and Wood (1993); Green and Wallace (1988); Thibault et al.(1992); Yaxley and Green(1996)
      富Ca 6 GPa, 1 200 ℃ Cpx、Ol、Grt、CO2 Gervasoni et al.(2017)
      富Ca 3.1 GPa, 1 300 ℃6.5 GPa, 1 400 ℃ MrwCpx Sharygin et al.(2018)
      富Ca 5.5~7.0 GPa, 1 200~1 350 ℃ Cpx、富Mg碳酸盐熔体 Sokol et al.(2016)
      富Na、低Ca Ol、Jadeite、CO2Ol、Pargasite、CO2 Yaxley et al.(1991)
      富Mg、低Ca 6.3 GPa,1 350 ℃ Ol、Opx Sokol et al.(2016)
      注:Cpx.单斜辉石;Ol.橄榄石;Opx.斜方辉石;Grt.石榴子石;Mrw.镁硅钙石;Jadeite.硬玉;Pargasite.韭闪石.
      下载: 导出CSV
    • [1] Ackerman, L., Špaček, P., Magna, T., et al., 2013.Alkaline and Carbonate-Rich Melt Metasomatism and Melting of Subcontinental Lithospheric Mantle:Evidence from Mantle Xenoliths, NE Bavaria, Bohemian Massif.Journal of Petrology, 54(12):2597-2633. https://doi.org/10.1093/petrology/egt059
      [2] Akizawa, N., Miyake, A., Ishikawa, A., et al., 2017.Metasomatic PGE Mobilization by Carbonatitic Melt in the Mantle:Evidence from Sub-Mm-Scale Sulfide-Carbonaceous Glass Inclusion in Tahitian Harzburgite Xenolith.Chemical Geology, 475:87-104. https://doi.org/10.1016/j.chemgeo.2017.10.037
      [3] Jr Arevalo, R., McDonough, W.F., 2010.Chemical Variations and Regional Diversity Observed in MORB.Chemical Geology, 271(1-2):70-85. https://doi.org/10.1016/j.chemgeo.2009.12.013
      [4] Bailey, D.K., 1982.Mantle Metasomatism—Continuing Chemical Change within the Earth.Nature, 296(5857):525-530. https://doi.org/10.1038/296525a0
      [5] Bailey, D.K., 1987.Mantle Metasomatism—Perspective and Prospect.Geological Society, London, Special Publications, 30(1):1-13.https://doi.org/10.1144/gsl.sp.1987.030.01.02 doi: 10.1144/GSL.SP.1987.030.01.02
      [6] Bau, M., 1996.Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems:Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect.Contributions to Mineralogy and Petrology, 123(3):323-333.doi: 10.1007/s004100050159
      [7] Bell, K., Blenkinsop, J., Cole, T.J.S., et al., 1982.Evidence from Sr Isotopes for Long-Lived Heterogeneities in the Upper Mantle.Nature, 298(5871):251-253. https://doi.org/10.1038/298251a0
      [8] Bell, K., Simonetti, A., 2010.Source of Parental Melts to Carbonatites-Critical Isotopic Constraints.Mineralogy and Petrology, 98(1-4):77-89. doi: 10.1007/s00710-009-0059-0
      [9] Bellanca, A., Masetti, D., Neri, R., 1997.Rare Earth Elements in Limestone/Marlstone Couplets from the Albian-Cenomanian Cismon Section (Venetian Region, Northern Italy) :Assessing REE Sensitivity to Environmental Changes.Chemical Geology, 141(3-4):141-152.https://doi.org/10.1016/s0009-2541(97)00058-2 doi: 10.1016/S0009-2541(97)00058-2
      [10] Bizimis, M., Salters, V.J.M., Dawson, J.B., 2003.The Brevity of Carbonatite Sources in the Mantle:Evidence from Hf Isotopes.Contributions to Mineralogy and Petrology, 145(3):281-300. https://doi.org/10.1007/s00410-003-0452-3
      [11] Blundy, J., Dalton, J., 2000.Experimental Comparison of Trace Element Partitioning between Clinopyroxene and Melt in Carbonate and Silicate Systems, and Implications for Mantle Metasomatism.Contributions to Mineralogy and Petrology, 139(3):356-371. https://doi.org/10.1007/s004100000139
      [12] Brenan, J.M., 1993.Partitioning of Fluorine and Chlorine between Apatite and Aqueous Fluids at High Pressure and Temperature:Implications for the F and Cl Content of High P-T Fluids.Earth and Planetary Science Letters, 117(1-2):251-263.https://doi.org/10.1016/0012-821x(93)90131-r doi: 10.1016/0012-821X(93)90131-R
      [13] Bühn, B., Rankin, A.H., 1999.Composition of Natural, Volatile-Rich Na-Ca-REE-Sr Carbonatitic Fluids Trapped in Fluid Inclusions.Geochimica et Cosmochimica Acta, 63(22):3781-3797.https://doi.org/10.1016/s0016-7037(99)00180-5 doi: 10.1016/S0016-7037(99)00180-5
      [14] Bulatov, V.K., Brey, G.P., Girnis, A.V., et al., 2014.Carbonated Sediment-Peridotite Interaction and Melting at 7.5-12 GPa.Lithos, 200-201:368-385. https://doi.org/10.1016/j.lithos.2014.05.010
      [15] Chen, C.F., Liu, Y.S., Feng, L.P., et al., 2018.Calcium Isotope Evidence for Subduction-Enriched Lithospheric Mantle under the Northern North China Craton.Geochimica et Cosmochimica Acta, 238:55-67. doi: 10.1016/j.gca.2018.06.038
      [16] Chen, C.F., Liu, Y.S., Foley, S.F., et al., 2017.Carbonated Sediment Recycling and Its Contribution to Lithospheric Refertilization under the Northern North China Craton.Chemical Geology, 466:641-653.https://doi.org/10.13039/501100001809 doi: 10.1016/j.chemgeo.2017.07.016
      [17] Chen, C.F., Liu, Y.S., Foley, S.F., et al., 2016.Paleo-Asian Oceanic Slab under the North China Craton Revealed by Carbonatites Derived from Subducted Limestones.Geology, 44(12):1039-1042. https://doi.org/10.1130/G38365.1
      [18] Coltorti, M., Bonadiman, C., Hinton, R.W., et al., 1999.Carbonatite Metasomatism of the Oceanic Upper Mantle:Evidence from Clinopyroxenes and Glasses in Ultramafic Xenoliths of Grande Comore, Indian Ocean.Journal of Petrology, 40(1):133-165. https://doi.org/10.1093/petroj/40.1.133
      [19] Dalou, C., Koga, K.T., Hammouda, T., et al., 2009.Trace Element Partitioning between Carbonatitic Melts and Mantle Transition Zone Minerals:Implications for the Source of Carbonatites.Geochimica et Cosmochimica Acta, 73(1):239-255. https://doi.org/10.1016/j.gca.2008.09.020
      [20] Dalton, J.A., Wood, B.J., 1993.The Compositions of Primary Carbonate Melts and Their Evolution through Wallrock Reaction in the Mantle.Earth and Planetary Science Letters, 119(4):511-525.https://doi.org/10.1016/0012-821x(93)90059-i doi: 10.1016/0012-821X(93)90059-I
      [21] Dasgupta, R., Hirschmann, M.M., 2006.Melting in the Earth's Deep Upper Mantle Caused by Carbon Dioxide.Nature, 440(7084):659-662. https://doi.org/10.1038/nature04612
      [22] Dasgupta, R., Hirschmann, M.M., 2007.A Modified Iterative Sandwich Method for Determination of Near-Solidus Partial Melt Compositions.Ⅱ.Application to Determination of Near-Solidus Melt Compositions of Carbonated Peridotite.Contributions to Mineralogy and Petrology, 154(6):647-661. doi: 10.1007/s00410-007-0214-8
      [23] Dasgupta, R., Hirschmann, M.M., McDonough, W.F., et al., 2009.Trace Element Partitioning between Garnet Lherzolite and Carbonatite at 6.6 and 8.6 GPa with Applications to the Geochemistry of the Mantle and of Mantle-Derived Melts.Chemical Geology, 262(1-2):57-77. https://doi.org/10.1016/j.chemgeo.2009.02.004
      [24] Dasgupta, R., Hirschmann, M.M., Smith, N.D., 2007a.Partial Melting Experiments of Peridotite + CO2 at 3 GPa and Genesis of Alkalic Ocean Island Basalts.Journal of Petrology, 48(11):2093-2124. https://doi.org/10.1093/petrology/egm053
      [25] Dasgupta, R., Hirschmann, M.M., Smith, N.D., 2007b.Water Follows Carbon:CO2 Incites Deep Silicate Melting and Dehydration beneath Mid-Ocean Ridges.Geology, 35(2):135-138.https://doi.org/10.1130/g22856a.1 doi: 10.1130/G22856A.1
      [26] Dasgupta, R., Hirschmann, M.M., Withers, A.C., 2004.Deep Global Cycling of Carbon Constrained by the Solidus of Anhydrous, Carbonated Eclogite under Upper Mantle Conditions.Earth and Planetary Science Letters, 227(1-2):73-85. https://doi.org/10.1016/j.epsl.2004.08.004
      [27] Dasgupta, R., Mallik, A., Tsuno, K., et al., 2013.Carbon-Dioxide-Rich Silicate Melt in the Earth's Upper Mantle.Nature, 493(7431):211-215. https://doi.org/10.1038/nature11731
      [28] Dautria, J.M., Dupuy, C., Takherist, D., et al., 1992.Carbonate Metasomatism in the Lithospheric Mantle:Peridotitic Xenoliths from a Melilititic District of the Sahara Basin.Contributions to Mineralogy and Petrology, 111(1):37-52. doi: 10.1007/BF00296576
      [29] Dawson, J.B., 1984.Contrasting Types of Upper-Mantle Metasomatism? Developments in Petrology, 11(2):289-294.https://doi.org/10.1016/B978-0-444-42274-3.50030-5 http://cn.bing.com/academic/profile?id=40d5e7778feb020799e4d84af44f1f73&encoded=0&v=paper_preview&mkt=zh-cn
      [30] Deines, P., 2002.The Carbon Isotope Geochemistry of Mantle Xenoliths.Earth-Science Reviews, 58(3-4):247-278.https://doi.org/10.1016/s0012-8252(02)00064-8 doi: 10.1016/S0012-8252(02)00064-8
      [31] Deng, L.X., Liu, Y.S., Zong, K.Q., et al., 2017.Trace Element and Sr Isotope Records of Multi-Episode Carbonatite Metasomatism on the Eastern Margin of the North China Craton.Geochemistry, Geophysics, Geosystems, 18(1):220-237.https://doi.org/10.1002/2016gc006618 doi: 10.1002/2016GC006618
      [32] Dixon, J., Clague, D.A., Cousens, B., et al., 2008.Carbonatite and Silicate Melt Metasomatism of the Mantle Surrounding the Hawaiian Plume:Evidence from Volatiles, Trace Elements, and Radiogenic Isotopes in Rejuvenated-Stage Lavas from Niihau, Hawaii.Geochemistry, Geophysics, Geosystems, 9(9):Q09005.https://doi.org/10.1029/2008gc002076 http://cn.bing.com/academic/profile?id=9a456672822b0a05f1dfacc7b503151a&encoded=0&v=paper_preview&mkt=zh-cn
      [33] Dobson, D.P., Jones, A.P., Rabe, R., et al., 1996.In-Situ Measurement of Viscosity and Density of Carbonate Melts at High Pressure.Earth and Planetary Science Letters, 143(1-4):207-215.https://doi.org/10.1016/0012-821x(96)00139-2 doi: 10.1016/0012-821X(96)00139-2
      [34] Du, W., Li, L., Weidner, D.J., 2018.Time Scale of Partial Melting of KLB-1 Peridotite:Constrained from Experimental Observation and Thermodynamic Models.Journal of Earth Science, 29(2):245-254.https://doi.org/10.1007/s12583-018-0839-8 http://d.old.wanfangdata.com.cn/Periodical/dqkx-e201802002
      [35] Ducea, M.N., Saleeby, J., Morrison, J., et al., 2005.Subducted Carbonates, Metasomatism of Mantle Wedges, and Possible Connections to Diamond Formation:An Example from California.American Mineralogist, 90(5-6):864-870. https://doi.org/10.2138/am.2005.1670
      [36] Dupuy, C., Liotard, J.M., Dostal, J., 1992.Zr/Hf Fractionation in Intraplate Basaltic Rocks:Carbonate Metasomatism in the Mantle Source.Geochimica et Cosmochimica Acta, 56(6):2417-2423.https://doi.org/10.1016/0016-7037(92)90198-r doi: 10.1016/0016-7037(92)90198-R
      [37] Fan, H.R., Hu, F.F., Yang, K.F., et al., 2014.Integrated U-Pb and Sm-Nd Geochronology for a REE-Rich Carbonatite Dyke at the Giant Bayan Obo REE Deposit, Northern China.Ore Geology Reviews, 63(2):510-519.https://doi.org/10.1016/j.oregeorev.2014.03.005 http://cn.bing.com/academic/profile?id=ae48cff4302ac38e7a8587e3c35d6ebd&encoded=0&v=paper_preview&mkt=zh-cn
      [38] Fan, H.R., Xie, Y.H., Wang, K.Y., et al., 2001.Carbonatitic Fluids and REE Mineralization.Earth Science Frontiers, 8(4):289-295(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy200104008
      [39] Fischer, T.P., Burnard, P., Marty, B., et al., 2009.Upper-Mantle Volatile Chemistry at Oldoinyo Lengai Volcano and the Origin of Carbonatites.Nature, 459(7243):77-80. https://doi.org/10.1038/nature07977
      [40] Foley, S.F., 2008.Rejuvenation and Erosion of the Cratonic Lithosphere.Nature Geoscience, 1(8):503-510. https://doi.org/10.1038/ngeo261
      [41] Frost, D.J., McCammon, C.A., 2008.The Redox State of Earth's Mantle.Annual Review of Earth and Planetary Sciences, 36(1):389-420. doi: 10.1146/annurev.earth.36.031207.124322
      [42] Gervasoni, F., Klemme, S., Rohrbach, A., et al., 2017.Experimental Constraints on Mantle Metasomatism Caused by Silicate and Carbonate Melts.Lithos, 282-283:173-186. https://doi.org/10.1016/j.lithos.2017.03.004
      [43] Gorring, M.L., Kay, S.M., 2000.Carbonatite Metasomatized Peridotite Xenoliths from Southern Patagonia:Implications for Lithospheric Processes and Neogene Plateau Magmatism.Contributions to Mineralogy and Petrology, 140(1):55-72. https://doi.org/10.1007/s004100000164
      [44] Green, D.H., Wallace, M.E., 1988.Mantle Metasomatism by Ephemeral Carbonatite Melts.Nature, 336(6198):459-462. https://doi.org/10.1038/336459a0
      [45] Green, T.H., Adam, J., Siel, S.H., 1992.Trace Element Partitioning between Silicate Minerals and Carbonatite at 25 kbar and Application to Mantle Metasomatism.Mineralogy and Petrology, 46(3):179-184.https://doi.org/10.1007/bf01164645 doi: 10.1007/BF01164645
      [46] Haggerty, S.E., 1994.Superkimberlites:A Geodynamic Diamond Window to the Earth's Core.Earth and Planetary Science Letters, 122(1-2):57-69.https://doi.org/10.1016/0012-821x(94)90051-5 doi: 10.1016/0012-821X(94)90051-5
      [47] Hamilton, D.L., Freestone, I.C., Dawson, J.B., et al., 1979.Origin of Carbonatites by Liquid Immiscibility.Nature, 279(5708):52-54. https://doi.org/10.1038/279052a0
      [48] Hammouda, T., Laporte, D., 2000.Ultrafast Mantle Impregnation by Carbonatite Melts.Geology, 28(3):283-285. doi: 10.1130/0091-7613(2000)28<283:UMIBCM>2.0.CO;2
      [49] Hauri, E.H., Shimizu, N., Dieu, J.J., et al., 1993.Evidence for Hotspot-Related Carbonatite Metasomatism in the Oceanic Upper Mantle.Nature, 365(6443):221-227. doi: 10.1038/365221a0
      [50] Hawkesworth, C.J., Rogers, N.W., van Calsteren, P.W.C., et al., 1984.Mantle Enrichment Processes.Nature, 311(5984):331-335. https://doi.org/10.1038/311331a0
      [51] Hoernle, K., Tilton, G., Le Bas, M.J., et al., 2002.Geochemistry of Oceanic Carbonatites Compared with Continental Carbonatites:Mantle Recycling of Oceanic Crustal Carbonate.Contributions to Mineralogy and Petrology, 142(5):520-542. https://doi.org/10.1007/s004100100308
      [52] Hou, Z.Q., Liu, Y., Tian, S.H., et al., 2015.Formation of Carbonatite-Related Giant Rare-Earth-Element Deposits by the Recycling of Marine Sediments.Scientific Reports, 5:10231. https://doi.org/10.1038/srep10231
      [53] Humphreys, E.R., Bailey, K., Hawkesworth, C.J., et al., 2015.Carbonate Inclusions in Mantle Olivines:Mantle Carbonatite.Geochmica et Cosmochimica Acta, 100(13):155-168. http://cn.bing.com/academic/profile?id=b744a7b13fe4139398fdd91c95773972&encoded=0&v=paper_preview&mkt=zh-cn
      [54] Ionov, D.A., 1998.Trace Element Composition of Mantle-Derived Carbonates and Coexisting Phasesin Peridotite Xenoliths from Alkali Basalts.Journal of Petrology, 39(11-12):1931-1941. https://doi.org/10.1093/petroj/39.11-12.1931
      [55] Ionov, D.A., Chanefo, I., Bodinier, J.L., 2005.Origin of Fe-Rich Lherzolites and Wehrlites from Tok, SE Siberia by Reactive Melt Percolation in Refractory Mantle Peridotites.Contributions to Mineralogy and Petrology, 150(3):335-353. https://doi.org/10.1007/s00410-005-0026-7
      [56] Ionov, D.A., Dupuy, C., O'Reilly, S.Y., et al., 1993.Carbonated Peridotite Xenoliths from Spitsbergen:Implications for Trace Element Signature of Mantle Carbonate Metasomatism.Earth and Planetary Science Letters, 119(3):283-297.https://doi.org/10.1016/0012-821x(93)90139-z doi: 10.1016/0012-821X(93)90139-Z
      [57] Ionov, D.A., O'Reilly, S.Y., Genshaft, Y.S., et al., 1996.Carbonate-Bearing Mantle Peridotite Xenoliths from Spitsbergen:Phase Relationships, Mineral Compositions and Trace-Element Residence.Contributions to Mineralogy and Petrology, 125(4):375-392. https://doi.org/10.1007/s004100050229
      [58] Irber, W., 1999.The Lanthanide Tetrad Effect and Its Correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of Evolving Peraluminous Granite Suites.Geochimica et Cosmochimica Acta, 63(3-4):489-508.https://doi.org/10.1016/s0016-7037(99)00027-7 doi: 10.1016/S0016-7037(99)00027-7
      [59] Jochum, K.P., McDonough, W.F., Palme, H., et al., 1989.Compositional Constraints on the Continental Lithospheric Mantle from Trace Elements in Spinel Peridotite Xenoliths.Nature, 340(6234):548-550. https://doi.org/10.1038/340548a0
      [60] Jochum, K.P., Seufert, H.M., Spettel, B., et al., 1986.The Solar-System Abundances of Nb, Ta, and Y, and the Relative Abundances of Refractory Lithophile Elements in Differentiated Planetary Bodies.Geochimica et Cosmochimica Acta, 50(6):1173-1183.https://doi.org/10.1016/0016-7037(86)90400-x doi: 10.1016/0016-7037(86)90400-X
      [61] Kalfoun, F., Ionov, D., Merlet, C., 2002.HFSE Residence and Nb/Ta Ratios in Metasomatised, Rutile-Bearing Mantle Peridotites.Earth and Planetary Science Letters, 199(1-2):49-65.https://doi.org/10.1016/s0012-821x(02)00555-1 doi: 10.1016/S0012-821X(02)00555-1
      [62] Kim, N.K., Choi, S.H., Dale, C.W., 2016.Sulfide-Scale Insights into Platinum-Group Element Behavior during Carbonate Mantle Metasomatism and Evolution of Spitsbergen Lithospheric Mantle.Lithos, 246-247:182-196. doi: 10.1016/j.lithos.2015.11.033
      [63] Klemme, S., van der Laan, S.R., Foley, S.F., et al., 1995.Experimentally Determined Trace and Minor Element Partitioning between Clinopyroxene and Carbonatite Melt under Upper Mantle Conditions.Earth and Planetary Science Letters, 133(3-4):439-448.https://doi.org/10.1016/0012-821x(95)00098-w doi: 10.1016/0012-821X(95)00098-W
      [64] Kogiso, T., Tatsumi, Y., Nakano, S., 1997.Trace Element Transport during Dehydration Processes in the Subducted Oceanic Crust:1.Experiments and Implications for the Origin of Ocean Island Basalts.Earth and Planetary Science Letters, 148(1-2):193-205.https://doi.org/10.1016/s0012-821x(97)00018-6 doi: 10.1016/S0012-821X(97)00018-6
      [65] Laurora, A., Mazzucchelli, M., Rivalenti, G., et al., 2001.Metasomatism and Melting in Carbonated Peridotite Xenoliths from the Mantle Wedge:The Gobernador Gregores Case (Southern Patagonia).Journal of Petrology, 42(1):69-87. https://doi.org/10.1093/petrology/42.1.69
      [66] Li, S.G., Wang, Y., 2018.Formation Time of the Big Mantle Wedge beneath Eastern China and a New Lithospheric Thinning Mechanism of the North China Craton—Geodynamic Effects of Deep Recycled Carbon.Science China Earth Sciences, 61(7):853-868. https://doi.org/10.1007/s11430-017-9217-7
      [67] Ling, M.X., Liu, Y.L., Williams, I.S., et al., 2013.Formation of the World's Largest REE Deposit through Protracted Fluxing of Carbonatite by Subduction-Derived Fluids.Scientific Reports, 3:1776. doi: 10.1038/srep01776
      [68] Liu, J.Q., Chen, L.H., Ni, P., 2010.Fluid/Melt Inclusions in Cenozoic Mantle Xenoliths from Linqu, Shandong Province, Eastern China:Implications for Asthenosphere-Lithosphere Interactions.Chinese Science Bulletin, 55(11):1067-1076. https://doi.org/10.1007/s11434-009-0622-4
      [69] Liu, S.A., Wang, Z.Z., Li, S.G., et al., 2016.Zinc Isotope Evidence for a Large-Scale Carbonated Mantle beneath Eastern China.Earth and Planetary Science Letters, 444:169-178. doi: 10.1016/j.epsl.2016.03.051
      [70] Liu, Y.S., He, D.T., Gao, C.G., et al., 2015.First Direct Evidence of Sedimentary Carbonate Recycling in Subduction-Related Xenoliths.Scientific Reports, 5(1):11547. doi: 10.1038/srep11547
      [71] Malaspina, N., Scambelluri, M., Poli, S., et al., 2010.The Oxidation State of Mantle Wedge Majoritic Garnet Websterites Metasomatised by C-Bearing Subduction Fluids.Earth and Planetary Science Letters, 298(3-4):417-426. https://doi.org/10.1016/j.epsl.2010.08.022
      [72] McDonough, W.F., Sun, S.S., 1995.The Composition of the Earth.Chemical Geology, 120(3-4):223-253. https://doi.org/10.1016/0009-2541(94)00140-4
      [73] Nasir, S., Al-Khirbash, S., Rollinson, H., et al., 2011.Petrogenesis of Early Cretaceous Carbonatite and Ultramafic Lamprophyres in a Diatreme in the Batain Nappes, Eastern Oman Continental Margin.Contributions to Mineralogy and Petrology, 161(1):47-74. https://doi.org/10.1007/s00410-010-0521-3
      [74] Neumann, E.R., Wulff-Pedersen, E., Pearson, N.J., et al., 2002.Mantle Xenoliths from Tenerife (Canary Islands):Evidence for Reactions between Mantle Peridotites and Silicic Carbonatite Melts Inducing Ca Metasomatism.Journal of Petrology, 43(5):825-857. https://doi.org/10.1093/petrology/43.5.825
      [75] O'Reilly, S.Y., Griffin, W.L., 2012.Mantle Metasomatism.In: O'Reilly, S.Y., Griffin, W.L., eds., Lecture Notes in Earth System Sciences.Springer Berlin Heidelberg, Berlin: 471-533.https: //doi.org/10.1007/978-3-642-28394-9_12
      [76] Rudnick, R.L., McDonough, W.F., Chappell, B.W., 1993.Carbonatite Metasomatism in the Northern Tanzanian Mantle:Petrographic and Geochemical Characteristics.Earth and Planetary Science Letters, 114(4):463-475.https://doi.org/10.1016/0012-821x(93)90076-l doi: 10.1016/0012-821X(93)90076-L
      [77] Sasada, T., Hiyagon, H., Bell, K., et al., 1997.Mantle-Derived Noble Gases in Carbonatites.Geochimica et Cosmochimica Acta, 61(19):4219-4228.https://doi.org/10.1016/s0016-7037(97)00202-0 doi: 10.1016/S0016-7037(97)00202-0
      [78] Scott, J.M., Hodgkinson, A., Palin, J.M., et al., 2014a.Ancient Melt Depletion Overprinted by Young Carbonatitic Metasomatism in the New Zealand Lithospheric Mantle.Contributions to Mineralogy and Petrology, 167(1):1-17.https://doi.org/10.1007/s00410-014-0963-0 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0293edbb0b693b0ee37e524888817823
      [79] Scott, J.M., Waight, T.E., van der Meer, Q.H.A., et al., 2014b.Metasomatized Ancient Lithospheric Mantle beneath the Young Zealandia Microcontinent and Its Role in HIMU-Like Intraplate Magmatism.Geochemistry, Geophysics, Geosystems, 15(9):3477-3501.https://doi.org/10.1002/2014gc005300 doi: 10.1002/2014GC005300
      [80] Sharygin, I.S., Shatskiy, A., Litasov, K.D., et al., 2018.Interaction of Peridotite with Ca-Rich Carbonatite Melt at 3.1 and 6.5 GPa:Implication for Merwinite Formation in Upper Mantle, and for the Metasomatic Origin of Sublithospheric Diamonds with Ca-Rich Suite of Inclusions.Contributions to Mineralogy and Petrology, 173(3):22. https://doi.org/10.1007/s00410-017-1432-3
      [81] Shaw, C.S.J., Dingwell, D.B., 2008.Experimental Peridotite-Melt Reaction at One Atmosphere:A Textural and Chemical Study.Contributions to Mineralogy and Petrology, 155(2):199-214. https://doi.org/10.1007/s00410-007-0237-1
      [82] Shaw, C.S.J., Heidelbach, F., Dingwell, D.B., 2006.The Origin of Reaction Textures in Mantle Peridotite Xenoliths from Sal Island, Cape Verde:The Case for "Metasomatism" by the Host Lava.Contributions to Mineralogy and Petrology, 151(6):681-697. https://doi.org/10.1007/s00410-006-0087-2
      [83] Sokol, A.G., Kruk, A.N., Chebotarev, D.A., et al., 2016.Carbonatite Melt-Peridotite Interaction at 5.5-7.0 GPa:Implications for Metasomatism in Lithospheric Mantle.Lithos, 248-251:66-79.https://doi.org/10.13039/501100006769 doi: 10.1016/j.lithos.2016.01.013
      [84] Song, W.L., Xu, C., Smith, M.P., et al., 2018.Genesis of the World's Largest Rare Earth Element Deposit, Bayan Obo, China:Protracted Mineralization Evolution over ~1 b.y.Geology, 46(4):323-326. doi: 10.1130/G39801.1
      [85] Stagno, V., Frost, D.J., 2010.Carbon Speciation in the Asthenosphere:Experimental Measurements of the Redox Conditions at Which Carbonate-Bearing Melts Coexist with Graphite or Diamond in Peridotite Assemblages.Earth and Planetary Science Letters, 300(1-2):72-84. https://doi.org/10.1016/j.epsl.2010.09.038
      [86] Su, B.X., Zhang, H.F., Sakyi, P.A., et al., 2010.The Origin of Spongy Texture in Minerals of Mantle Xenoliths from the Western Qinling, Central China.Contributions to Mineralogy and Petrology, 161(3):465-482.https://doi.org/10.1007/s00410-010-0543-x http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1572eb5329075b02c95000c20e445fea
      [87] Su, B.X., Zhang, H.F., Ying, J.F., et al., 2012.Metasomatized Lithospheric Mantle beneath the Western Qinling, Central China:Insight into Carbonatite Melts in the Mantle.The Journal of Geology, 120(6):671-681. https://doi.org/10.1086/667956
      [88] Sun, J., Liu, C.Z., Wu, F.Y., et al., 2012.Metasomatic Origin of Clinopyroxene in Archean Mantle Xenoliths from Hebi, North China Craton:Trace-Element and Sr-Isotope Constraints.Chemical Geology, 328:123-136. https://doi.org/10.1016/j.chemgeo.2012.03.014
      [89] Sun, J., Zhu, X.K., Fang, N., et al., 2012.Magnesium Isotopic Constraint on the Genesis of Bayan Obo Ore Deposit.Mineral Deposits, 31(S1):977-978 (in Chinese).
      [90] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345.https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/GSL.SP.1989.042.01.19
      [91] Sweeney, R.J., Green, D.H., Sie, S.H., 1992.Trace and Minor Element Partitioning between Garnet and Amphibole and Carbonatitic Melt.Earth and Planetary Science Letters, 113(1-2):1-14.https://doi.org/10.1016/0012-821x(92)90207-c doi: 10.1016/0012-821X(92)90207-C
      [92] Sweeney, R.J., Prozesky, V., Przybylowicz, W., 1995.Selected Trace and Minor Element Partitioning between Peridotite Minerals and Carbonatite Melts at 18-46 kb Pressure.Geochimica et Cosmochimica Acta, 59(18):3671-3683.https://doi.org/10.1016/0016-7037(95)00270-a doi: 10.1016/0016-7037(95)00270-A
      [93] Tanaka, K., Miura, N., Asahara, Y., et al., 2003.Rare Earth Element and Strontium Isotopic Study of Seamount-Type Limestones in Mesozoic Accretionary Complex of Southern Chichibu Terrane, Central Japan:Implication for Incorporation Process of Seawater REE into Limestones.Geochemical Journal, 37(2):163-180. https://doi.org/10.2343/geochemj.37.163
      [94] Tappe, S., Romer, R.L., Stracke, A., et al., 2017.Sources and Mobility of Carbonate Melts beneath Cratons, with Implications for Deep Carbon Cycling, Metasomatism and Rift Initiation.Earth and Planetary Science Letters, 466:152-167. doi: 10.1016/j.epsl.2017.03.011
      [95] Thibault, Y., Edgar, A.D., Lloyd, F.E., 1992.Experimental Investigation of Melts from a Carbonated Phlogopite Lherzolite; Implications for Metasomatism in the Continental Lithospheric Mantle.American Mineralogist, 77(7):784-794. http://rruff.info/doclib/am/vol77/AM77_784.pdf
      [96] Treiman, A.H., Schedl, A., 1983.Properties of Carbonatite Magma and Processes in Carbonatite Magma Chambers.The Journal of Geology, 91(4):437-447. doi: 10.1086/628789
      [97] Wallace, M.E., Green, D.H., 1988.An Experimental Determination of Primary Carbonatite Magma Composition.Nature, 335(6188):343-346. https://doi.org/10.1038/335343a0
      [98] Walter, M.J., Bulanova, G.P., Armstrong, L.S., et al., 2008.Primary Carbonatite Melt from Deeply Subducted Oceanic Crust.Nature, 454(7204):622-625. https://doi.org/10.1038/nature07132
      [99] Wang, C., Jin, Z.M., Gao, S., et al., 2010.Eclogite-Melt/Peridotite Reaction:Experimental Constrains on the Destruction Mechanism of the North China Craton.Science China Earth Sciences, 40(5):541-555 (in Chinese). http://cn.bing.com/academic/profile?id=7d82b4325258d89047e1157bab441d3e&encoded=0&v=paper_preview&mkt=zh-cn
      [100] Wang, C., Liu, Y.S., Zhang, J.F., et al., 2016a.Carbonate Melt form Subduction Zone: The Key for Craton Destruction.Goldschmidt Conference Abstracts, 3307.
      [101] Wang, C.Y., Liu, Y.S., Min, N., et al., 2016b.Paleo-Asian Oceanic Subduction-Related Modification of the Lithospheric Mantle under the North China Craton:Evidence from Peridotite Xenoliths in the Datong Basalts.Lithos, 261:109-127. doi: 10.1016/j.lithos.2015.12.011
      [102] Wang, R.X., Liu, Y.S., Zong, K.Q., et al., 2017.In-Situ Trace Elements and Sr Isotopes in Peridotite Xenoliths from Jining:Implications for Lithospheric Mantle Evolution.Earth Science, 42(4):511-526(in Chinese with English abstract).
      [103] Wang, X.J., Chen, L.H., Hofmann, A.W., et al., 2018.Recycled Ancient Ghost Carbonate in the Pitcairn Mantle Plume.Proceedings of the National Academy of Sciences of the United States of America, 115(35):8682-8687. doi: 10.1073/pnas.1719570115
      [104] Wang, Y.F., Zhang, J.F., 2013.The Reaction Mechanism of Sieve-Textured Orthopyroxene:Implications for Lithospheric Mantle Rejuvenation.Acta Petrologica et Mineralogica, 32(5):604-612(in Chinese with English abstract).
      [105] Woo, Y., Yang, K., Kil, Y., et al., 2014.Silica- and LREE-Enriched Spinel Peridotite Xenoliths from the Quaternary Intraplate Alkali Basalt, Jeju Island, South Korea:Old Subarc Fragments?.Lithos, 208-209:312-323. https://doi.org/10.1016/j.lithos.2014.09.003
      [106] Woolley, A.R., Kjarsgaard, B.A., 2008.Carbonatite Occurrences of the World:Map and Database.Geological Survey of Canada, 5796:1-28. https://academic.oup.com/petrology/article/50/1/195/1467741
      [107] Wu, D., Liu, Y.S., Chen, C.F., et al., 2017.In-Situ Trace Element and Sr Isotopic Compositions of Mantle Xenoliths Constrain Two-Stage Metasomatism beneath the Northern North China Craton.Lithos, 288-289:338-351. doi: 10.1016/j.lithos.2017.07.018
      [108] Xiao, Y., Zhang, H.F., Fan, W.M., et al., 2010.Evolution of Lithospheric Mantle beneath the Tan-Lu Fault Zone, Eastern North China Craton:Evidence from Petrology and Geochemistry of Peridotite Xenoliths.Lithos, 117(1-4):229-246. https://doi.org/10.1016/j.lithos.2010.02.017
      [109] Yaxley, G.M., Crawford, A.J., Green, D.H., 1991.Evidence for Carbonatite Metasomatism in Spinel Peridotite Xenoliths from Western Victoria, Australia.Earth and Planetary Science Letters, 107(2):305-317.https://doi.org/10.1016/0012-821x(91)90078-v doi: 10.1016/0012-821X(91)90078-V
      [110] Yaxley, G.M., Green, D.H., 1996.Experimental Reconstruction of Sodic Dolomitic Carbonatite Melts from Metasomatised Lithosphere.Contributions to Mineralogy and Petrology, 124(3-4):359-369. https://doi.org/10.1007/s004100050196
      [111] Yaxley, G.M., Green, D.H., Kamenetsky, V., 1998.Carbonatite Metasomatism in the Southeastern Australian Lithosphere.Journal of Petrology, 39(11-12):1917-1930. https://doi.org/10.1093/petroj/39.11-12.1917
      [112] Yaxley, G., Kamenetsky, V., Green, D., et al., 1997.Glasses in Mantle Xenoliths from Western Victoria, Australia, and Their Relevance to Mantle Processes.Earth and Planetary Science Letters, 148(3-4):433-446.https://doi.org/10.1016/s0012-821x(97)00058-7 doi: 10.1016/S0012-821X(97)00058-7
      [113] Young, E.D., Galy, A., 2004.The Isotope Geochemistry and Cosmochemistry of Magnesium.Reviews in Mineralogy and Geochemistry, 55(1):197-230. https://doi.org/10.2138/gsrmg.55.1.197
      [114] Zhang, G.L., Chen, L.H., Jackson, M.G., et al., 2017.Evolution of Carbonated Melt to Alkali Basalt in the South China Sea.Nature Geoscience, 10(3):229-235.https://doi.org/10.1038/ngeo2877 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=daa04982aca2218c36a92be985f73200
      [115] Zhang, H.M., Li, S.G., 2012.Deep Carbon Recycling and Isotope Trcing:Review and Prospect.Science China Earth Sciences, 42(10):1459-1472 (in Chinese). http://cn.bing.com/academic/profile?id=4eac2b7d4d1bc906418abbea79cd2f08&encoded=0&v=paper_preview&mkt=zh-cn
      [116] Zhang, J.F., Wang, C.G., Xu, H.J., et al., 2015.Partial Melting and Crust-Mantle Interaction in Subduction Channels:Constraints from Experimental Petrology.Science China:Earth Sciences, 45(9):1270-1284(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201803002
      [117] Zong, K.Q., Liu, Y.S., 2018.Carbonate Metasomatism in the Lithospheric Mantle:Implications for Cratonic Destruction in North China.Science China Earth Sciences, 48(6):732-752(in Chinese). http://cn.bing.com/academic/profile?id=8c6e27de8c27f1aded6d69a2d96b107a&encoded=0&v=paper_preview&mkt=zh-cn
      [118] 范宏瑞, 谢奕汉, 王凯怡, 等, 2001.碳酸岩流体及其稀土成矿作用.地学前缘, 8(4):289-295. doi: 10.3321/j.issn:1005-2321.2001.04.008
      [119] 孙剑, 朱祥坤, 房楠, 等, 2012.白云鄂博矿床成因的Mg同位素制约.矿床地质, 31(S1):977-978. http://d.old.wanfangdata.com.cn/Conference/7864825
      [120] 王超, 金振民, 高山, 等, 2010.华北克拉通岩石圈破坏的榴辉岩熔体-橄榄岩反应机制:实验约束.中国科学:地球科学, 40(5):541-555. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201005004.htm
      [121] 王瑞雪, 刘勇胜, 宗克清, 等, 2017.内蒙古集宁橄榄岩包体微区微量元素与Sr同位素特征及其岩石圈地幔演化的指示意义.地球科学, 42(4):511-526. http://earth-science.net/WebPage/Article.aspx?id=3561
      [122] 王永锋, 章军锋, 2013.斜方辉石筛状反应边的成因机制及其对岩石圈地幔性质转变的意义.岩石矿物学杂志, 32(5):604-612. doi: 10.3969/j.issn.1000-6524.2013.05.005
      [123] 张洪铭, 李曙光, 2012.深部碳循环及同位素示踪:回顾与展望.中国科学:地球科学, 42(10):1459-1472. http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb201702002
      [124] 章军锋, 王春光, 续海金, 等, 2015.俯冲隧道中的部分熔融和壳幔相互作用:实验岩石学制约.中国科学:地球科学, 45(9):1270-1284. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201509002.htm
      [125] 宗克清, 刘勇胜, 2018.华北克拉通东部岩石圈地幔碳酸盐熔体交代作用与克拉通破坏.中国科学:地球科学, 48(6):732-752. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201806006
    • 加载中
    图(5) / 表(1)
    计量
    • 文章访问数:  3727
    • HTML全文浏览量:  1808
    • PDF下载量:  103
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-10-07
    • 刊出日期:  2019-04-15

    目录

      /

      返回文章
      返回