• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    藏北羌塘盆地中部地壳低速层分布与动力学意义

    严江勇 郑洪伟 贺日政 李娱兰 李瑶 牛潇

    严江勇, 郑洪伟, 贺日政, 李娱兰, 李瑶, 牛潇, 2019. 藏北羌塘盆地中部地壳低速层分布与动力学意义. 地球科学, 44(6): 1784-1796. doi: 10.3799/dqkx.2018.355
    引用本文: 严江勇, 郑洪伟, 贺日政, 李娱兰, 李瑶, 牛潇, 2019. 藏北羌塘盆地中部地壳低速层分布与动力学意义. 地球科学, 44(6): 1784-1796. doi: 10.3799/dqkx.2018.355
    Yan Jiangyong, Zheng Hongwei, He Rizheng, Li Yulan, Li Yao, Niu Xiao, 2019. Low Velocity Layer Investigation in Central Qiangtang in North Tibet and Its Dynamic Implications. Earth Science, 44(6): 1784-1796. doi: 10.3799/dqkx.2018.355
    Citation: Yan Jiangyong, Zheng Hongwei, He Rizheng, Li Yulan, Li Yao, Niu Xiao, 2019. Low Velocity Layer Investigation in Central Qiangtang in North Tibet and Its Dynamic Implications. Earth Science, 44(6): 1784-1796. doi: 10.3799/dqkx.2018.355

    藏北羌塘盆地中部地壳低速层分布与动力学意义

    doi: 10.3799/dqkx.2018.355
    基金项目: 

    国家重点研发计划 2016YFC0600301

    科技部深地资源勘查开采 2016YCF0600301

    科技部深地资源勘查开采 2018YCF0604102

    国家自然基金 41574086

    国家自然基金 41761134094

    中国地质调查项目 DD20160022-05

    详细信息
      作者简介:

      严江勇(1992-), 硕士研究生, 主要从事地震学研究

      通讯作者:

      贺日政

    • 中图分类号: P611

    Low Velocity Layer Investigation in Central Qiangtang in North Tibet and Its Dynamic Implications

    • 摘要: 为了调查羌塘盆地中部壳内低速层分布特征,对布设在羌塘盆地的TITAN-Ⅰ宽频带地震台站所记录的远震波形数据进行接收函数分析,并引入时频域相位滤波技术改善接收函数信噪比,反演得到各台站下方100 km深度范围内的一维S波速度结构.结果表明,时频域相位滤波方法能够显著提高信噪比;羌塘盆地Moho深度为58±6 km,具有较高的泊松比值;中下地壳壳内低速层广泛分布,横向不连续,埋深在20~30 km,层厚6~12 km,剪切波速度为3.4±0.1 km/s;部分地区在埋深为10 km的中上地壳存在一层厚约4 km的低速薄层.羌塘盆地中下地壳壳内低速层是由于上涌的深部软流圈物质与下地壳发生大范围的接触,造成壳内及上地幔部分熔融引起的.

       

    • 图  1  羌塘盆地宽频带地震台站分布

      图中三角形表示TITAN⁃Ⅰ项目台站,将其分为88.5°线、89.5°线以及东西线,其中蓝色三角形代表中下地壳存在低速层的台站;黑色粗实线表示INDEPTH⁃Ⅲ项目台站;BNS.班公湖⁃怒江缝合带,LSS.龙木错-双湖缝合带,LT.拉萨地体,SQT.南羌塘盆地,NQT.北羌塘盆地

      Fig.  1.  Distribution of seismological study in Qiangtang

      图  2  本文研究中远震事件震中分布

      中间红色三角形为本文研究区;周围蓝色圆点为地震事件

      Fig.  2.  The earthquake distribution in this study

      图  3  时频域相位滤波前后对比

      a.C008号台站接收函数;b. C008号台;站时频域相位滤波后接收函数C008号台站R分量P波接收函数S相位滤波前(a)后(b)对比

      Fig.  3.  (a) The receive function of P wave R component of C008; (b) shows phase filter in time⁃frequency domain output of the data from (a)

      图  4  时频域相位滤波前后细节对比

      a1、b1、c1为时频域滤波前的记录,分别对应图 3a方框中的部分;a2、b2、c2为滤波后的记录,分别对应图 3b方框中的部分

      Fig.  4.  Detail contrast before and after phase filtering

      图  5  羌塘中部泊松比分布

      黑色圆点是本文的结果;红色菱形是李永华等(2006)用INDEPTH⁃Ⅲ得到的结果;蓝色三角形是刘国成等(2014)H⁃K扫描得到的结果

      Fig.  5.  Poisson ratio in central Qiangtang

      图  6  部分台站接收函数波形拟合结果

      上方波形是垂直分量(V)拟合结果,下方波形是径向分量(R)拟合结果.红色波形是原始波形,黑色波形是拟合波形,上面的数值代表拟合系数

      Fig.  6.  The result of nonlinear inversion for some seismic stations

      图  7  沿88.5°线台站下方地壳S波速度结构

      黑线表示反演的速度结构,红线表示IASPEI91速度模型,台站由南向北排列

      Fig.  7.  The S wave velocity structure along the 88.5° line

      图  8  沿东西线台站下方S波速度结构

      黑线表示反演的速度结构,红线表示IASPEI91速度模型,台站由西向东排列

      Fig.  8.  The S wave velocity structure along the west⁃east line

      图  9  沿89.5°线台站下方地壳S波速度结构

      黑线表示反演的速度结构,红线表示IASPEI91速度模型,台站由南向北排列

      Fig.  9.  The S wave velocity structure along the 89.5° line

      表  1  台站位置及Moho深度和泊松比

      Table  1.   Locations of broadband stations and measured Moho depth and σ

      台站 经度(°E) 纬度(°N) Moho(±2 km) σ(±0.001) 接收函数数量 台站 经度(E) 纬度(N) Moho(±2 km) σ(±0.001) 接收函数数量
      C008 88.49 33.37 61.2 0.265 54 NQT04 89.26 33.12 58.6 0.335 33
      C009 88.39 33.30 61.3 0.215 56 NQT06 89.19 33.20 58.6 0.335 48
      C010 88.59 33.32 58.4 0.270 61 NQT08 88.48 33.47 58.3 0.305 30
      C011 88.33 33.23 58.6 0.250 66 NQT10 88.53 33.56 58.4 0.260 34
      C012 88.08 33.23 53.2 0.350 82 NQT12 88.54 33.66 61.2 0.310 32
      C013 88.22 33.19 55.8 0.325 66 NQT14 88.78 33.83 53.9 0.350 21
      C015 88.30 33.05 61.2 0.295 47 NQT16 88.78 33.93 53.8 0.335 31
      C016 88.45 33.02 58.5 0.350 29 NQT18 88.71 33.96 61.1 0.250 22
      C017 88.47 32.97 53.1 0.345 35 NQT20 88.63 34.03 61.1 0.310 21
      C018 88.42 32.87 53.1 0.340 30 NQT22 88.64 34.11 61.1 0.270 45
      C019 88.48 32.75 61.3 0.285 56 NQT24 88.62 34.23 61.2 0.275 54
      C111 87.90 33.23 61.3 0.310 68 NQT26 88.58 34.31 61.2 0.285 52
      C112 87.92 33.16 64.1 0.265 28 NQT28 88.56 34.41 61.3 0.290 51
      C113 88.74 33.27 60.9 0.300 43 NQT30 88.62 34.50 55.9 0.340 53
      C114 88.67 33.08 61.3 0.280 52 NQT32 88.66 34.61 55.8 0.345 64
      EQT02 88.96 33.11 52.9 0.335 60 NQT34 88.46 34.71 61.3 0.295 52
      EQT04 89.37 33.13 55.7 0.235 64 SEQT02 89.54 32.97 53.9 0.345 23
      EQT06 89.53 33.08 61.1 0.315 44 SEQT04 89.64 32.88 53.0 0.350 24
      EQT08 89.55 33.19 63.9 0.335 41 SEQTO6 89.70 32.78 58.8 0.345 31
      EQT10 89.51 33.32 58.4 0.350 36 SEQT08 89.72 32.68 52.9 0.345 31
      EQT12 89.53 33.41 53.2 0.350 39 SEQT10 89.76 32.59 61.2 0.295 29
      EQT14 89.69 33.09 53.0 0.335 25 SEQT12 89.70 32.48 53.2 0.345 25
      EQT16 89.81 33.13 61.3 0.285 27 SQT01 88.63 32.20 58.8 0.345 106
      EQT18 89.88 33.20 58.5 0.305 26 SQT02 88.64 32.35 61.6 0.275 60
      EQT20 90.02 33.23 61.2 0.295 21 SQT03 88.61 32.47 64.2 0.270 51
      EQT22 90.15 33.25 61.1 0.290 21
      下载: 导出CSV

      表  2  中下地壳低速层分布情况

      Table  2.   Low velocity layer distribution in the mid⁃lower crust

      台站号 顶面埋深(±0.5 km) 底面埋深(±0.5 km) 厚度(±1.0 km) 台站号 顶面埋深(±0.5 km) 底面埋深(±0.5 km) 厚度(±1.0 km)
      SQT01 20 30 10 NQT20 20 30 10
      SQT02 22 30 8 NQT22 20 29 9
      SQT03 22 30 8 NQT26 20 30 10
      C018 18 29 11 NQT28 24 34 10
      C017 24 30 6 NQT32 19 30 11
      C016 21 32 11 NQT34 19 29 10
      C015 25 35 10 C012 20 30 10
      C011 21 31 10 C013 22 30 8
      C010 20 29 9 NQT06 20 28 8
      C008 23 35 12 NQT04 22 31 9
      NQT08 19 25 6 EQT10 19 31 12
      NQT16 22 30 8
      下载: 导出CSV
    • [1] Ammon, C. J., Randall, G. E., Zandt, G., 1990. On the Nonuniqueness of Receiver Function Inversions. Journal of Geophysical Research, 95(B10):15303-15318. doi: 10.1029/JB095iB10p15303
      [2] Ammon, C.J., Zandt, G., 1993.Receiver Structure beneath the Southern Mojave Block, California. Bulletin of the Seismological Society of America, 83(3):737-755.
      [3] Chi, X.G., Zhang, R., Fan, L.F., et al., 2017.The Formatting Mechanism of Cenozoic Basaltic Volcanic Rocks in the Northern Tibet:Continental Subduction and Slab Breakoff Driven by Mantle Convection and Upwelling. Acta Petrologica Sinica, 33(10):3011-3026(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201710003.htm
      [4] Cui, Z. Z., Yin, Z. X., Gao, E. Y., et al., 1990. The Structure and Tectonics of the Crust and Their Relation with Earthquakes in the Qinghai-Xizang Plateau.Acta Geoscientica Sinica, 11(2):215-232(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB199002020.htm
      [5] Gao, R., Chen, C., Lu, Z.W., et al., 2013.New Constraints on Crustal Structure and Moho Topography in Central Tibet Revealed by SinoProbe Deep Seismic Reflection Profiling. Tectonophysics, 606:160-170. https://doi.org/10.1016/j.tecto.2013.08.006
      [6] Gao, X., Wang, W.M., Yao, Z.X., et al., 2005.Crustal Structure of China Mainland and Its Adjacent Regions. Chinese Journal of Geophysics, 48(3):591-601(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200503017
      [7] Guo, X.F., Zhang, Y.C., Cheng, Q.Y., et al., 1990.Magnetotelluric Studies along Yadong-Golmud Geosciences Transect in Qinghai-Xizang Plateau.Acta Geoscientia Sinica, 22(2):191-202(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dqxb199002018.htm
      [8] Haines, S. S., Klemperer, S. L., Brown, L., et al., 2003. INDEPTH Ⅲ Seismic Data:From Surface Observations to Deep Crustal Processes in Tibet. Tectonics, 22(1):1001. https://doi.org/10.1029/2001tc001305
      [9] He, R.Z., Gao, R., Hou, H.S., et al., 2009.Deep Structure of the Central Uplift Belt in the Qiangtang Terrane, Tibet Plateau from Broadband Seismic Observations and Its Implications. Progress in Geophysics, 24(3):900-908(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz200903012
      [10] Huang, J. J., 2001. Structural Characteristics of the Basement of the Qiangtang Basin. Acta Geologica Sinica, 75(3):333-337(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Conference/8633148
      [11] Jiménez-Munt, I., Fernàndez, M., Vergés, J., et al., 2008.Lithosphere Structure underneath the Tibetan Plateau Inferred from Elevation, Gravity and Geoid Anomalies.Earth and Planetary Science Letters, 267(1-2):276-289. https://doi.org/10.1016/j.epsl.2007.11.045
      [12] Kind, R., Ni, J., Zhao, W., et al., 1996. Evidence from Earthquake Data for a Partially Molten Crustal Layer in Southern Tibet. Science, 274(5293):1692-1694. https://doi.org/10.1126/science.274.5293.1692
      [13] Li, C., Dong, Y.S., Zhai, Q.G., et al., 2008.Discovery of Eopaleozoic Ophiolite in the Qiangtang of Tibet Plateau:Evidence from SHRIMP U-Pb Dating and Its Tectonic Implications.Acta Petrologica Sinica, 24(1):31-36(in Chinese with English abstract).
      [14] Li, Y.H., Tian, X.B., Wu, Q.J., et al., 2006.The Poisson Ratio and Crustal Structure of the Central Qinghai-Xizang Inferred from INDEPTH-Ⅲ Teleseismic Waveforms:Geological and Geophysical Implications. Chinese Journal of Geophysics, 49(4):1037-1044(in Chinese with English abstract).
      [15] Liu, Q, Y., 1996.Maximal Likelihood Estimation and Nonlinear Inversion of the Complex Receiver Runction Spectrum Ratio. Chinese Journal of Geophysics, 39(4):500-511(in Chinese with English abstract).
      [16] Liu., G.C., Shang, X.F., He, R.Z., et al., 2014.Topography of Moho beneath the Central Qiangtang in North Tibet and Its Geodynamic Implication.Chinese Journal of Geophysics, 57(7):2043-2053(in Chinese with English abstract).
      [17] Mechie, J., Sobolev, S.V., Ratschbacher, L., et al., 2004.Precise Temperature Estimation in the Tibetan Crust from Seismic Detection of the α-β Quartz Transition.Geology, 32(7):601-604. https://doi.org/10.1130/g20367.1
      [18] Nelson, K. D., Zhao, W., Brown, L. D., et al., 1996. Partially Molten Middle Crust beneath Southern Tibet:Synthesis of Project INDEPTH Results.Science, 274(5293):1684-1688. https://doi.org/10.1126/science.274.5293.1684
      [19] Qu, Z.D., He, R.Z., Zhang, X.H., et al., 2017.The Time-Frequency Domain Phase Filter and Its Application in Noise Suppression of Teleseismic Receiver Functions. Chinese Journal of Geophysics, 60(4):1389-1397(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201704013.htm
      [20] Replumaz, A., Negredo, A.M., Guillot, S., et al., 2010.Multiple Episodes of Continental Subduction during India/Asia Convergence:Insight from Seismic Tomography and Tectonic Reconstruction.Tectonophysics, 483(1-2):125-134. https://doi.org/10.1016/j.tecto.2009.10.007
      [21] Shi, D. N., Zhao, W. J., Brown, L., et al., 2004. Detection of Southward Intracontinental Subduction of Tibetan Lithosphere along the Bangong-Nujiang Suture by P-to-S Converted Waves. Geology, 32(3):209. https://doi.org/10.1130/g19814.1
      [22] Stockwell, R.G., 1999.S-Transform Analysis of Gravity Wave Activity from a Small Scale Network of Airglow Imagers.The University of Western Ontario, Canada, 4662.
      [23] Sun, M., Chen, W., Qu, X.M., et al., 2018.Petrogenesis of the Late Cretaceous Jiangba Volcanic Rocks and Its Indications for the Thinning of the Thickened Crust in Xiongmei Area, Tibet.Earth Science, 43(9):3234-3251(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201809022
      [24] Tarantola, A. P., 1987. Inverse Problem Theory:Methods for Data Fitting and Model Parameter Estimation.Physics of the Earth & Planetary Interiors, 57(3):350-351.
      [25] Teng, J.W., Ruan, X.M., Zhang, Y.Q., et al., 2012.The Stratifficational Velocity Structure of Crust and Covering Strata of Upper Mantle and the Orbit of Deep Interaquifer Substance Locus of Movement for Tibetan Plateau.Acta Petrologica Sinica, 28(12):4077-4100(in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201212022.htm
      [26] Wang, C.S., Hu, C.Z., Wu, R.Z., et al., 1987.Significance of the Discovery of Chasang-Chabu Rift in Northern Xizang(Tibet). Journal of Chengdu College of Geology, 14(2):33-46(in Chinese with English abstract).
      [27] Wang, W., Gao, X., Li, Y. Y., et al., 2011. Crustal Velocity Structure of S-Wave beneath Tibetan Plateau with Transform Function Method-Hi-Climb Profile. Chinese Journal of Geophysics, 54(6):766-776. https://doi.org/10.1002/cjg2.1660
      [28] Watanabe, T., 1993.Effects of Water and Melt on Seismic Velocities and Their Application to Characterization of Seismic Reflectors. Geophysical Research Letters, 20(24):2933-2936. https://doi.org/10.1029/93gl03170
      [29] Wu, G. J., Xiao, X. C., Li, T. D., 1989. The Yadong-Golmud Geoscience Section on the Qinghai-Tibet Plateau. Acta Geologica Sinica, 63(4):285-296(in Chinese with Eng-lish abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE198904000.htm
      [30] Wu, Q.J., Zeng, R.S., 1998.The Crustal Structure of QinghaiXizang Plateau Inferred from Broadband Teleseismic Waveform. Chinese Journal of Geophysics, 41(5):669-679(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX199805010.htm
      [31] Wu, W., Liu, Q. Y., He, R. Z., et al., 2017. Waveform Inversion of S-Wave Velocity Model in the Central Qiangtang in North Tibet and Its Geological Implications. Chinese Journal of Geophysics, 60(3):941-952(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQWX201703010.htm
      [32] Zhang, S. Y., Zhang, X. J., 1996. Magnetotelluric Sounding in the Qiangtang Basin of Xizang (Tibet).Earth Science, 21(2):98-102(in Chinese with English abstract).
      [33] Zhao, Z., Lu, L., Wu, Z.H., et al., 2018.Charactreistics of the Late Triassic Jiangai Granite Mass and the Slab Breakoff in Central Qiangtang, Tibet. Earth Science, 43(Suppl.1):225-242(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S1021.htm
      [34] Zou, C.Q., He, R.Z., Gao, R., et al., 2012.Deep Structure of the Central Uplift Belt in the Qiangtang Terrane Tibetan Plateau from Teleseismic P-Wave Tomography.Chinese Science Bulletin, 57(28-29):2729-2739(in Chinese). doi: 10.1360/972011-2430
      [35] 迟效国, 张蕊, 范乐夫, 等, 2017.藏北新生代玄武质火山岩起源的深部机制:大陆俯冲和板片断离驱动的地幔对流上涌模式.岩石学报, 33(10):3011-3026. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201710003
      [36] 崔作舟, 尹周勋, 高恩元, 等, 1990.青藏高原地壳结构构造及其与地震的关系.地球学报, 11(2):221-232. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HY000001812316
      [37] 高星, 王卫民, 姚振兴, 等, 2005.中国及邻近地区地壳结构.地球物理学报, 48(3):591-601. doi: 10.3321/j.issn:0001-5733.2005.03.017
      [38] 郭新峰, 张元丑, 程庆云, 等, 1990.青藏高原亚东-格尔木地学断面岩石圈电性研究.地球学报, 22(2):191-202. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HY000002240792
      [39] 贺日政, 高锐, 侯贺晟, 等, 2009.羌塘中央隆起带深部结构特征研究及其意义.地球物理学进展, 24(3):900-908. doi: 10.3969/j.issn.1004-2903.2009.03.012
      [40] 黄继钧, 2001.羌塘盆地基底构造特征.地质学报, 75(3):333-337. doi: 10.3321/j.issn:0001-5717.2001.03.006
      [41] 李才, 董永胜, 翟庆国, 等, 2008.青藏高原羌塘早古生代蛇绿岩:堆晶辉长岩的锆石SHRIMP定年及其意义.岩石学报, 24(1):31-36. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200801002
      [42] 李永华, 田小波, 吴庆举, 等, 2006.青藏高原INDEPTH-Ⅲ剖面地壳厚度与泊松比:地质与地球物理含义.地球物理学报, 49(4):1037-1044. doi: 10.3321/j.issn:0001-5733.2006.04.015
      [43] 刘国成, 尚学峰, 贺日政, 等, 2014.藏北羌塘盆地中部莫霍面形态及其动力学成因.地球物理学报, 57(7):2043-2053.
      [44] 刘启元, 1996.接收函数复谱比的最大或然性估计及非线性反演.地球物理学报, 39(4):500-511. doi: 10.3321/j.issn:0001-5733.1996.04.008
      [45] 曲中党, 贺日政, 张训华, 等, 2017.时频域相位滤波在远震接收函数噪声压制中的应用.地球物理学报, 60(4):1389-1397. http://www.cnki.com.cn/Article/CJFDTotal-DQWX201704013.htm
      [46] 孙渺, 陈伟, 曲晓明, 等, 2018.西藏雄梅地区晚白垩世江巴组火山岩岩石成因及对加厚地壳减薄的指示.地球科学, 43(9):3234-3251. http://earth-science.net/WebPage/Article.aspx?id=3939
      [47] 滕吉文, 阮小敏, 张永谦, 等, 2012.青藏高原地壳与上地幔成层速度结构与深部层间物质的运移轨迹.岩石学报, 28(12):4077-4100. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201212022
      [48] 王成善, 胡承祖, 吴瑞忠, 等, 1987.西藏北部查桑-茶布裂谷的发现及其地质意义.成都地质学院学报, 14(2):33-46. http://www.cnki.com.cn/Article/CJFDTotal-CDLG198702003.htm
      [49] 吴功建, 肖序常, 李廷栋, 1989.青藏高原亚东-格尔木地学断面.地质学报, 63(4):285-296. doi: 10.3321/j.issn:0001-5717.1989.04.003
      [50] 吴庆举, 曾融生, 1998.用宽频带远震接收函数研究青藏高原的地壳结构.地球物理学报, 41(5):669-679. doi: 10.3321/j.issn:0001-5733.1998.05.010
      [51] 吴蔚, 刘启元, 贺日政, 等, 2017.羌塘盆地中部地区地壳S波速度结构及构造意义.地球物理学报, 60(3):941-952. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201703010.htm
      [52] 张胜业, 张先觉, 1996.西藏羌塘盆地大地电磁测深研究.地球科学, 21(2):98-102. http://earth-science.net/WebPage/Article.aspx?id=369
      [53] 赵珍, 陆露, 吴珍汉, 等, 2018.羌塘中部晚三叠世江爱岩体特征与板片断离作用.地球科学, 43(增刊1):225-242. http://earth-science.net/WebPage/Article.aspx?id=3961
      [54] 邹长桥, 贺日政, 高锐, 等, 2012.远震P波层析成像研究羌塘中央隆起带深部结构.科学通报, 57(28-29):2729-2739. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201228009
    • 加载中
    图(9) / 表(2)
    计量
    • 文章访问数:  4540
    • HTML全文浏览量:  1481
    • PDF下载量:  35
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-08-27
    • 刊出日期:  2019-06-15

    目录

      /

      返回文章
      返回