Petrogenesis and Geological Implications of Late Cretaceous Intrusion from Bangbule Pb-Zn-Cu Deposit, Western Gangdese, Tibet
-
摘要: 帮布勒矿床位于念青唐古拉多金属成矿带西段, 为该成矿带已知新发现的最西端大型矽卡岩型Pb-Zn-Cu矿床.矿区内岩浆活动相对单一, 主要发育灰色-浅灰色石英斑岩, 呈岩株、岩脉状产出, 在空间和时间上均与矿化密切相关.为研究石英斑岩的成因及其形成环境, 在详实的野外基础地质工作与室内显微观察基础上, 对其进行岩石地球化学、锆石U-Pb定年、全岩Sr-Nd-Pb及锆石Hf同位素分析.结果显示:石英斑岩的LA-ICP-MS U-Pb年龄为77.2±0.8 Ma和77.3±0.7 Ma, 形成于晚白垩世;石英斑岩SiO2含量变化于72.78%~77.12%, K2O含量为3.80%~5.55%, 铝饱和指数A/CNK为0.88~1.18, 显示高钾钙碱性、偏铝质、高分异I型花岗岩特征;稀土总量变化介于146.89×10-6~247.89×10-6, 具轻稀土相对富集, 重稀土亏损的特点, 同时具有明显的Sr、Eu、Nb、Ta、P等异常, 暗示了其岩浆形成中经历了重要的结晶分异过程.石英斑岩的εHf(t)集中于-7.92~-5.73, 对应的地壳模式年龄为1 651~1 121 Ma;全岩(87Sr/86Sr)i比值为(0.714 8~0.725 8);εNd(t)值(-9.01~-7.32), 其二阶段Nd模式年龄为1 612~1 477 Ma;铅同位素显示206Pb/204Pb、207Pb/204Pb、208Pb/204Pb分别介于18.686~18.781、15.699~15.762和39.131~39.344.帮布勒石英斑岩可能形成于班公湖-怒江洋南向俯冲结束后的后碰撞伸展环境, 与拉萨地块中元古代古老基底部分熔融有关;其发现说明了冈底斯带并不存在绝对意义上的喷发静宁期(80~70 Ma), 暗示了区域岩浆活动的连续性.Abstract: The Bangbule deposit is located in the western part of the Nyainqing Tanggula Pb-Zn-Ag polymetallic metallogenic belt, which is a newly discovered large skarn Pb-Zn-Cu polymetallic deposit in 2010. The magmatic activity in the mining area is relatively simple, with the development of gray-light gray quartz porphyry, which is mainly composed of stock and dyke, and is closely related to the skarn Pb-Zn-Cu mineralization in space and time. In this paper, based on the detailed field basic geological field work and microscopic observation, we study the geochemistry, zircon U-Pb dating, whole rock Sr-Nd-Pb and zircon Hf isotopes of quartz porphyry. The results showed that the LA-ICP-MS U-Pb age of quartz porphyry is 77.2 ±0.8 Ma and 77.3 ±0.7 Ma, which occurred in the Late Cretaceous. The contents of SiO2 in quartz porphyry vary from 72.78% to 77.12%, the contents of K2O are 3.80%~5.55%, and the A/CNK is 0.88-1.18, which showing high-K calc-alkaline, metaluminous and high differentiation I-type granite characteristics. Total REE contents are between 146.89×10-6 and 247.89×10-6, which is characterized by relative enrichment of light rare earth and depletion of heavy rare earth. It has obvious anomalies such as Sr, Eu, Nb, Ta and P, suggesting that the magma experienced an important crystallization differentiation process. The εHf(t) of quartz porphyry is concentrated in the range of -7.92 to -5.73, and the corresponding crustal model is 1 651-1 121 Ma. The (87Sr/86Sr)i and the εNd(t) are 0.714 8-0.725 8 and -9.01 to -7.32, respectively, with the corresponding second Nd model ages (tDM2) of 1 612-1 477 Ma. The lead isotopes show that 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb are 18.686-18.781, 15.699-15.762 and 39.131-39.344, respectively. In summary, the Bangbule quartz porphyry may have been formed by the magma derived from partial melting of the Mesoproterozoic Lhasa block during the extension environment in the post collision after Bangong -Nujiang south subduction. The discovery of the Late Cretaceous quartz porphyry in the Bangbule deposit shows that there is no absolute eruption in the Gangdese belt (80-70 Ma), which suggesting the continuity of the regional magmatic activity.
-
Key words:
- petrogenesis /
- geochemistry /
- Bangbule deposit /
- western Gangdese /
- Tibet /
- deposits /
- petrology
-
图 1 (a) 青藏高原构造分区简图;(b)拉萨地体地质简图
N.Gangdese:北冈底斯;M.Gangdese:中冈底斯;GBAFUB:冈底斯弧背断垄带;S.Gangdese:南冈底斯;锆石年龄引自Zhao et al.(2008);高顺宝等(2011);江军华等(2011);吕立娜等(2011);定立等(2012);刘建兵等(2012);李小赛等(2013);丁鹏飞等(2014);王力圆等(2014);关俊雷等(2014);于玉帅等(2015);b图据Zhu et al.(2011)修改
Fig. 1. (a) The Lhasa terrane in the context of the Tibetan Plateau and (b) simplified geologic map of the Lhasa terrane
图 3 (a) 西藏帮布勒矽卡岩型Pb-Zn-Cu矿床矿区全景;(b)矿区中部露头显示了石英斑岩与矿体接触关系;(c)矿区南部石英斑岩露头特征;(d)典型的剖面图显示石英斑岩与矿体及矽卡岩蚀变的分带特征
Cal.方解石;Qz.石英;Act.阳起石;Grt.石榴子石
Fig. 3. (a) Views of the central part of Bangbule Pb-Zn-Cu skarn deposit, including the positions of quartz porphyry samples, (b) the outcrops in central part of Bangbule showing the relationship between the quartz porphyry and orebody, (c) views of the southeast part of Bangbule, (d) typical part of the exploratory trench (NO. TC27) in Bangbule, which showing the relationship between the quartz porphyry and the orebody
图 5 帮布勒矿区石英斑岩元素
a.TAS图解(据Middlemost, 1995;IR系列据Irvine and Baragar, 1971);b.SiO2-K2O图解(实线据Peccerillo and Taylor, 1976;虚线据Middlemost, 1986);c.A/CNK-A/NK图解(据Chappell and White, 2001);d.SiO2-P2O5图解;e.稀土元素配分曲线以及;f.微量元素蛛网图(原始地幔与球粒陨石标准化数据引自Sun and McDonough(1989))
Fig. 5. Discrimination diagrams for the Bangbule quartz porphyry
图 7 西藏拉萨地体晚白垩(80-70 Ma)岩浆岩形成时代直方图
数据引自:Zhao et al.(2008);高顺宝等(2011);江军华等(2011);吕立娜等(2011);定立等(2012);刘建兵等(2012);李小赛等(2013);丁鹏飞等(2014);关俊雷等(2014);王力圆等(2014);于玉帅等(2015)
Fig. 7. Histogram of literature age data of the plutonic rocks in the Lhasa terrane between 80-70 Ma in Late Cre- taceous
图 10 西藏帮布勒石英斑岩Pb同位素组成和Hf同位素图
数据来源:拉萨地块据Gariépy et al.(1985);南冈底斯中新世斑岩引自Hou et al.(2015)
Fig. 10. Pb isotopes of quartz porphyry from the Bangbule deposit and εHf(t) vs. ages diagrams of quartz porphyry from the Bangbule deposit
图 11 帮布勒石英斑岩εNd(t) vs.(87Sr/86Sr)i组成
数据来源:雅鲁藏布江洋中脊玄武岩(亏损地幔端元)来自Miller et al.(1999);侏罗纪弧玄武岩(新生地幔组分)来自Zhu et al.(2008);中-上地壳来自Hou et al.(2015);安多正片麻岩(上地壳)来自Guynn et al.(2006);南冈底斯中新世斑岩来自Hou et al.(2015);冈底斯北带花岗岩和中部拉萨地体花岗岩来自莫宣学等(2005)
Fig. 11. εNd(t) vs. (87Sr /86Sr)i diagram of quartz porphyry from the Bangbule deposit
表 1 西藏帮布勒矿床石英斑岩全岩Pb同位素特征
Table 1. Pb isotopic compositions of whole rocks from the Late Cretaceous quartz porphyry in Bangbule deposit
样品号 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb μ BBL-YTl-bl 18.758 15.762 39.344 9.75 BBL-YTl-b2 18.736 15.703 39.231 9.63 BBL-YTl-b3 18.724 15.72 39.19 9.67 BBL-YT3-bl 18.779 15.746 39.312 9.71 BBL-YT3-b3 18.781 15.724 39.274 9.67 BBL-YT3-M 18.765 15.736 39.282 9.69 BBL-YT4-bl 18.728 15.717 39.249 9.66 BBL-YT4-b2 18.746 15.712 39.298 9.65 BBL-YT4-b4 18.686 15.699 39.131 9.63 -
[1] Amelin, Y., Lee, D.C., Halliday, A.N., et al., 1999.Nature of the Earth's Earliest Crust from Hafnium Isotopes in Sin-gle Detrital Zircons.Nature, 399(6733):252-255. doi: 10.1038/20426 [2] Blichert-Toft, J., Albarède, F., 1997.The Lu-Hf Isotope Geo-chemistry of Chondrites and the Evolution of the Mantle-Crust System.Earth and Planetary Science Letters, 148(1-2):243-258. https://doi.org/10.1016/s0012-821x(97)00040-x [3] Cao, S.H., Li, D.W., Yu, Z.Z., et al., 2007.Metallogenic and Geological Characteristics of the Nixiong Superlarge Magnetite Deposit in Gangdese, Tibet. Geotectonica et Metallogenia, 31(3):328-334(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx200703009 [4] Chappell, B.W., White, A.J.R., 1992.I-and S-Type Granites in the Lachlan Fold Belt. The Geological Society of America, 272:1-26. doi: 10.1130/SPE272 [5] Chappell, B.W., White, A.J.R., 2001.Two Contrasting Gran-ite Types:25 Years Later. Australian Journal of Earth Sciences, 48(4):489-499. doi: 10.1046/j.1440-0952.2001.00882.x [6] Chen, W., Ma, C.Q., Bian, Q.J., et al., 2010.Subduction-Relat-ed Late Cretaceous Granitoids in Demingding Area, East of Middle Gangdese, Tibet:Evidence from Zircon U-Pb Geochronology and Geochemistry.Journal of Miner-al and Petrology. 30(1):83-92(in Chinese with English abstract). [7] Chu, N.C., Taylor, R.N., Chavagnac, V., et al., 2002.Hf Iso-tope Ratio Analysis Using Multi-Collector Inductively Coupled Plasma Mass Spectrometry:An Evaluation of Isobaric Interference Corrections. Journal of Analytical Atomic Spectrometry, 17(12):1567-1574. doi: 10.1039/b206707b [8] Collins, W.J., Beams, S.D., White, A.J.R., et al., 1982.Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2):189-200. doi: 10.1007/BF00374895 [9] Ding, L., Kapp, P., Zhong, D., et al., 2003. Cenozoic Volca-nism in Tibet:Evidence for a Transition from Oceanic to Continental Subduction. Journal of Petrology, 44(10):1833-1865. doi: 10.1093/petrology/egg061 [10] Ding, L., Zhao, Y.Y., Yang, Y.Q., et al., 2012.LA-ICP-MS Zircon U-Pb Dating and Geochemical Characteristics of Ore-Bearing Granite in Skarn-Type Iron Polymetallic Deposits of Duoba Area, Baingoin County, Tibet, and Their Significance.Acta Petrologica et Mineralogica, 31(4):479-496(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201204002 [11] Ding, P. F., Wei, Q. R., Wang, C., et al., 2014. Chronology, Geochemical Characteristics and Tectonic Settings of the Late Yanshanian Granitoids in Zexue Area, Tibet.Geological Science and Technology Information, 33(4):37-45, 59(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201404007 [12] Dong, Y.H., Xu, J.F., Zeng, Q.G., et al., 2006.Is There a Neo-Tethys' Subduction Record Earlier than Arc Volcanic Rocks in the Sangri Group? Acta Petrologica Sinica, 22(3):661-668.(in Chinese with English abstract). [13] Du, D. D., Qu, X. M., Wang, G. H., et al., 2011. Bidirectional Subduction of the Middle Tethys Oceanic Basin in the West Segment of Bangonghu-Nujiang Suture, Tibet:Evi-dence from Zircon U-Pb LA-ICP-MS Dating and Petro-geochemistry of Arc Granites. Acta Petrologica Sinica, 27(7):1993-2002(in Chinese with English abstract). [14] Foley, S. F., Barth, M. G., Jenner, G. A., 2000. Rutile/Melt Partition Coefficients for Trace Elements and an Assess-ment of the Influence of Rutile on the Trace Element Characteristics of Subduction Zone Magmas.Geochimica et Cosmochimica Acta, 64(5):933-938. https://doi.org/10.1016/s0016-7037(99)00355-5 [15] Gao, S.B., Zheng, Y.Y., Xie, M.C., et al., 2011.Geodynamic Setting and Mineralizational Implication of the Xueru In-trusion in Ban' ge, Tibet.Earth Science, 36(4):729-739(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2011.073 [16] Gao, Y.F., Hou, Z.Q., Wei, R.H., 2003.Neogene Porphyries from Gangdese:Petrological, Geochemical Characteris-tics and Geodynamic Significances.Acta Petrologica Si-nica, 19(3):418-428(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200303004.htm [17] Gariépy, C., Allègre, C. J., Xu, R. H., 1985. The Pb-Isotope Geochemistry of Granitoids from the Himalaya-Tibet Collision Zone:Implications for Crustal Evolution.Earth and Planetary Science Letters, 74(2-3):220-234. https://doi.org/10.1016/0012-821x(85)90023-8 [18] Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites.Geochimica et Cosmochimica Acta, 64(1):133-147. https://doi.org/10.1016/s0016-7037(99)00343-9 [19] Guan, J.L., Geng, Q.R., Wang, G.Z., et al., 2014.Geochemi-cal, Zircon U-Pb Dating and Hf Isotope Compositions Studies of the Granite in Ritu County-Lameila Pass Ar-ea, North Gangdse, Tibe.Acta Petrologica Sinica, 30(6):1666-1684(in Chinese with English abstract). [20] Guynn, J.H., Kapp, P., Pullen, A., et al., 2006.Tibetan Base-ment Rocks near Amdo Reveal "Missing" Mesozoic Tectonism along the Bangong Suture, Central Tibet.Ge-ology, 34(6):505. https://doi.org/10.1130/g22453.1 [21] He, Z.H., Yang, D.M., Wang, T.W., et al., 2005.SHRIMP U-Pb Dating of Zircons from Two-Mica Granite in Baga Area in Gangdise Belt.Journal of Jilin University (Earth Science Edition), 35(3):302-307(in Chinese with Eng-lish abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb200503005 [22] Hou, Z.Q., Duan, L.F., Lu, Y.J., et al., 2015.Lithospheric Ar-chitecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6):1541-1575. https://doi.org/10.2113/econgeo.110.6.1541 [23] Hou, Z.Q., Yang, Z.S., Xu, W.Y., et al., 2006.Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅰ.Mineralization in Main Collisional Orogenic Setting. Mineral Deposits, 25(4):337-358(in Chinese with English abstract). [24] Huang, J.Q., Chen, B.W., 1993.Geological Evolution of Teth-ys Sea Around China and It Adjacent Areas. Geological Publishing House, Beijing(in Chinese). [25] Irvine, T.N., Baragar, W.R.A.F., 1971.A Guide to the Chemi-cal Classification of the Common Volcanic Rocks.Cana-dian Journal of Earth Sciences, 8(5):523-548. doi: 10.1139/e71-055 [26] Ji, W.Q., Wu, F.Y., Chung, S.L., et al., 2009a.Zircon U-Pb Geochronology and Hf Isotopic Constraints on Petrogen-esis of the Gangdese Batholith, Southern Tibet. Chemi-cal Geology, 262(3-4):229-245. https://doi.org/10.1016/j.chemgeo.2009.01.020 [27] Ji, W. Q., Wu, F. Y., Liu, C. Z., et al., 2009b. Geochronology and Petrogenesis of Granitic Rocks in Gangdese Batho-lith, Southern Tibet. Science in China (Series D), 52(9):1240-1261. https://doi.org/10.1007/s11430-009-0131-y [28] Ji, W.Q., Wu, F.Y., Chung, S.L., et al., 2014.The Gangdese Magmatic Constraints on a Latest Cretaceous Litho-spheric Delamination of the Lhasa Terrane, Southern Ti-bet. Lithos, 210-211:168-180. https://doi.org/10.1016/j.lithos.2014.10.001 [29] Jia, J. C., Wen, C. S., Wang, G. H., et al., 2005. Geochemical Characteristics and Geodynamic Significance of the Linzizong Group Volcanic Rocks in the Gangdise Area.Geology in China, 32(3):396-404(in Chinese with Eng-lish abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200503007 [30] Jiang, J.H., Wang, R.J., Qu, X.M., et al., 2011.Crustal Exten-sion of the Bangong Lake Arc Zone, Western Tibetan Plateau, after the Closure of the Tethys Oceanic Basin. Earth Science, 36(6):1021-1026(in Chinese with Eng-lish abstract). [31] Kapp, P., Murphy, M. A., Yin, A., et al., 2003. Mesozoic and Cenozoic Tectonic Evolution of the Shiquanhe Area of Western Tibet. Tectonics, 22(4):1029. https://doi.org/10.1029/2001tc001332 [32] Kelemen, P. B., Hanghøj, K., Greene, A. R., 2007. One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Low-er Crust.Treatise on Geochemistry, 3:1-70. https://www.sciencedirect.com/science/article/pii/B0080437516030358 [33] Keto, L. S., Jacobsen, S. B., 1987. Nd and Sr Isotopic Varia-tions of Early Paleozoic Oceans. Earth and Planetary Science Letters, 84(1):27-41. https://doi.org/10.1016/0012-821x(87)90173-7 [34] Li, T.D., 2002.New Progress in the Geoscience Study of the Qinghai-Tibet Plateau.Geological Bulletin of China, 21(7):370-376(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200207002 [35] Li, X. S., Zhao, Y. Y., Wang, J. P., et al., 2013. Geochemical Characteristics, Chronology and Significance of Gengnai Skarn-Type Iron Polymetallic Deposit, Tibet.Acta Geo-logica Sinica, 87(11):1679-1693(in Chinese with Eng-lish abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201311004 [36] Liu, J. B., Na, X. H., Zhang, Z., et al., 2012. Dating and Geo-chemistry of the Late Cretaceous Granitoids near Menba Area in Gangdise Belt and Their Tectonic Setting.Glob-al Geology, 31(4):638-647(in Chinese with English ab-stract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SJDZ201204004.htm [37] Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010.Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Ele-ment Analyses by LA-ICP-MS. Chinese Science Bulle-tin, 55(15):1535-1546. https://doi.org/10.1007/s11434-010-3052-4 [38] Ludwig, K. R., 2003. Isoplot 3.0:A Geochronological Toolkit for Microsoft Excel:Berkeley.Geochronology Center Spe-cial Publication 4:1-70. doi: 10.1016-j.immuni.2011.10.010/ [39] Lv, L.N., Zhao, Y.Y., Song, L., et al., 2011.Characteristics of C, Si, O, S and Pb Isotopes of the Fe-Rich and Cu(Au) Deposits in the Western Bangong-Nujiang Metallogenic Belt, Tibet, and their Geological Significance.Acta Geo-logica Sinica, 85(8):1291-1304(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201108005 [40] Middlemost, E.A.K., 1986.Magmas and Magmatic Rocks:An Introduction to Igneous Petrology. Mineralogical Maga-zine, 50(355):185-186. https://www.researchgate.net/publication/236367046_Magmas_and_Magmatic_Rocks_an_introduction_to_igneous_petrology [41] Middlemost, E.A.K., 1994.Naming Materials in the Magma/Igneous Rock System.Earth-Science Reviews, 37(3-4):215-224. doi: 10.1016/0012-8252(94)90029-9 [42] Miller, C., Schuster, R., Klötzli, U., et al., 1999. Post-Colli-sional Potassic and Ultrapotassic Magmatism in SW Ti-bet:Geochemical and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis.Journal of Petrology, 40(9):1399-1424. doi: 10.1093/petroj/40.9.1399 [43] Mo, X. X., Dong, G. C., Zhao, Z. D., et al., 2005. Spatial and Temporal Distribution and Characteristics of Granitoids in the Gangdese, Tibet and Implication for Crustal Growth and Evolution.Geological Journal of China Uni-versities, 11(3):281-290(in Chinese with an English ab-stract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200503001 [44] Mo, X. X., Zhao, Z. D., Deng, J. F., et al., 2003. Response of Volcanism to the India-Asia Collision. Earth Science Frontiers, 10(3):135-148 (in Chinese with English ab-stract). [45] Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006.Spatial-Tempo-ral Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3):521-533(in Chinese with English abstract). [46] Pan, G. T., Zhu, D. C., Wang, L. Q., et al., 2004. Bangong Lake-Nu River Suture Zone-The Northern Boundary of Gondwanaland:Evidence from Geology and Geophys-ics. Earth Science Frontiers, 11(4):371-382(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200404005.htm [47] Pan, G.T., Wang, L.Q., Li, R.S., et al., 2012.Tectonic Evolu-tion of the Qinghai-Tibet Plateau.Journal of Asian Earth Sciences, 53:3-14. https://doi.org/10.1016/j.jseaes.2011.12.018 [48] Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Ar-ea, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1):63-81. doi: 10.1007/BF00384745 [49] Qu, X.M., Hou, Z.Q., Huang, W., 2001.Is Gangdese Porphy-ry Copper Belt the Second "Yulong" Copper Belt? Min-eral Deposits, 20(4):355-366 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ200104009.htm [50] Qu, X. M., Wang, R. J., Dai, J. J., et al., 2012. Discovery of Xiongmei Porphyry Copper Deposit in Middle Segment of Bangonghu-Nujiang Suture Zone and Its Significance.Mineral Deposits, 31(1):1-12(in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201201001 [51] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [52] Taylor, S. R., Rudnick, R. L., McLennan, S. M., et al., 1986. Rare Earth Element Patterns in Archean High-Grade Metasediments and Their Tectonic Significance.Geochimica et Cosmochimica Acta, 50(10):2267-2279. doi: 10.1016/0016-7037(86)90081-5 [53] Wang, J.P., Zhao, Y.Y., Cui, Y.B., et al., 2012.LA-ICP-MS Zircon U-Pb Dating of Important Skarn Type Iron (Cop-per) Polymetallic Deposits in Baingoin County of Tibet and Geochemical Characteristics of Granites. Geological Bulletin of China, 31(9):1435-1450(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201209008.htm [54] Wang, L.Y., Zheng, Y.Y., Gao, S.B., et al., 2014.The Upper Cretaceous Magmatism from Gangzai Pluton in Middle-Gangdese, Jiwa, Tibet and Its Tectonic Significance.Journal of Central South University(Science and Tech-nology), 45(8):2740-2751(in Chinese with English ab-stract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zngydxxb201408027 [55] Yu, Y. S., Yang, Z. S., Dai, P. Y., et al. 2015. Geochronology and Genesis of the Magmatism in the Ri' a Copper Polymetallic Deposit of the Nixiong Orefield, Coqen, Ti-bet. Geology in China, 42(1):118-133(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201501009.htm [56] Zhang, X.Q., Zhu, D.C., Zhao, Z.D., et al., 2010.Petrogenesis of the Nixiong Pluton in Coqen, Tibet and Its Potential Significance for the Nixiong Fe-Rich Mineralization.Ac-ta Petrologica Sinica, 26(6):1793-1804(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201006014 [57] Zhao, T.P., Zhou, M.F., Zhao, J.H., et al., 2008.Geochronolo-gy and Geochemistry of the ca. 80 Ma Rutog Granitic Pluton, Northwestern Tibet:Implications for the Tecton-ic Evolution of the Lhasa Terrane.Geological Magazine, 145(6):845-857. [58] Zhao, Z. D., Mo, X. X., Dong, G. C., et al., 2007. Pb Isotopic Geochemistry of Tibetan Plateau and Its Implications.Geoscience, 21(2):265-274(in Chinese with English ab-stract). http://d.old.wanfangdata.com.cn/Periodical/dqkx-e201603007 [59] Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2012. Cambrian Bi-modal Volcanism in the Lhasa Terrane, Southern Tibet:Record of an Early Paleozoic Andean-Type Magmatic Arc in the Australian Proto-Tethyan Margin. Chemical Geology, 328:290-308. https://doi.org/10.1016/j.chemgeo.2011.12.024 [60] Zhu, D.C., Li, S.M., Cawood, P.A., et al., 2016.Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction.Lithos, 245:7-17. https://doi.org/10.1016/j.lithos.2015.06.023 [61] Zhu, D.C., Mo, X.X., Wang, L.Q., et al., 2008.Hotspot-Ridge Interaction for the Evolution of Neo-Tethys:Insights from the Late Jurassic-Early Cretaceous Magmatism in South Tibet. Acta Petrological Sinica, 24(2):225-237(in Chinese with English abstract). [62] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011.The Lhasa Ter-rane:Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2):241-255. https://doi.org/10.1016/j.epsl.2010.11.005 [63] Zhu, D. C., Zhao, Z. D., Pan, G. T., et al., 2009. Early Creta-ceous Subduction-Related Adakite-Like Rocks of the Gangdese Belt, Southern Tibet:Products of Slab Melting and Subsequent Melt-Peridotite Interaction? Journal of Asian Earth Sciences, 34(3):298-309. doi: 10.1016/j.jseaes.2008.05.003 [64] 曹圣华, 李德威, 余忠珍, 等, 2007.西藏冈底斯尼雄超大型富铁矿的成矿地质特征.大地构造与成矿学, 31(3):328-334. doi: 10.3969/j.issn.1001-1552.2007.03.009 [65] 陈炜, 马昌前, 边秋绢, 等, 2010.西藏冈底斯带中段以东得明顶地区晚白垩世花岗岩类锆石U-Pb年代学和地球化学证据.矿物岩石, 30(1):83-92. http://d.old.wanfangdata.com.cn/Periodical/kwys201001014 [66] 定立, 赵元艺, 杨永强, 等, 2012.西藏班戈县多巴区矽卡岩型铁多金属矿床含矿花岗岩LA-ICP-MS锆石U-Pb定年、地球化学及意义.岩石矿物学杂志, 31(4):479-496. doi: 10.3969/j.issn.1000-6524.2012.04.002 [67] 丁鹏飞, 魏启荣, 王程, 等, 2014.西藏则学地区俄穷瓦二长岩体的年代学、岩石地球化学特征及构造环境分析.地质科技情报, 33(4):37-45, 59. doi: 10.3969/j.issn.1009-6248.2014.04.005 [68] 董彦辉, 许继峰, 曾庆高, 等, 2006.存在比桑日群弧火山岩更早的新特提斯洋俯冲记录么?岩石学报, 22(3):661-668. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603015 [69] 杜德道, 曲晓明, 王根厚, 等, 2011.西藏班公湖-怒江缝合带西段中特提斯洋盆的双向俯冲:来自岛弧型花岗岩锆石U-Pb年龄和元素地球化学的证据.岩石学报, 27(7):1993-2002. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107008 [70] 高顺宝, 郑有业, 谢名臣, 等, 2011.西藏班戈地区雪如岩体的形成环境及成矿意义.地球科学, 36(4):729-739. https://doi.org/10.3799/dqkx.2011.073 [71] 高永丰, 侯增谦, 魏瑞华, 等, 2003.冈底斯晚第三纪斑岩的岩石学、地球化学及其地球动力学意义.岩石学报, 19(3):418-428. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200303005 [72] 关俊雷, 耿全如, 王国芝, 等, 2014.北冈底斯带日土县-拉梅拉山口花岗岩体的岩石地球化学特征、锆石U-Pb测年及Hf同位素组成.岩石学报, 30(6):1666-1684. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201406010 [73] 和钟铧, 杨德明, 王天武, 等, 2005.冈底斯带巴嘎区二云母花岗岩SHRIMP锆石U-Pb定年.吉林大学学报(地球科学版), 35(3):302-307. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb200503005 [74] 侯增谦, 杨竹森, 徐文艺, 等, 2006.青藏高原碰撞造山带:I.主碰撞造山成矿作用.矿床地质, 25(4):337-358. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001 [75] 黄汲清, 陈炳蔚, 1993.中国及邻区特提斯海的演化.北京:地质出版社. [76] 贾建称, 温长顺, 王根厚, 等, 2005.冈底斯地区林子宗群火山岩岩石地球化学特征及地球动力学意义.中国地质, 32(3):396-404. doi: 10.3969/j.issn.1000-3657.2005.03.007 [77] 江军华, 王瑞江, 曲晓明, 等, 2011.青藏高原西部班公湖岛弧带特提斯洋盆闭合后的地壳伸展作用.地球科学, 36(6):1021-1026. http://www.earth-science.net/WebPage/Article.aspx?id=2178 [78] 李廷栋, 2002.青藏高原地质科学研究的新进展.地质通报, 21(7):370-376. doi: 10.3969/j.issn.1671-2552.2002.07.002 [79] 李小赛, 赵元艺, 王江朋, 等, 2013.西藏更乃矽卡岩型铁多金属矿床地球化学特征、年代学及意义.地质学报, 87(11):1679-1693. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201311004 [80] 刘建兵, 那晓红, 张忠, 等, 2012.冈底斯带门巴区晚白垩世花岗岩年代学、地球化学及构造背景.世界地质, 31(4):638-647. doi: 10.3969/j.issn.1004-5589.2012.04.003 [81] 吕立娜, 赵元艺, 宋亮, 等, 2011.西藏班公湖-怒江成矿带西段富铁矿与铜(金)矿C、Si、O、S和Pb同位素特征及地质意义.地质学报, 85(8):1291-1304. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201108005 [82] 莫宣学, 董国臣, 赵志丹, 等, 2005.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息.高校地质学报, 11(3):281-290. doi: 10.3969/j.issn.1006-7493.2005.03.001 [83] 莫宣学, 赵志丹, 邓晋福, 等, 2003.印度-亚洲大陆主碰撞过程的火山作用响应.地学前缘, 10(3):135-148. doi: 10.3321/j.issn:1005-2321.2003.03.013 [84] 潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001 [85] 潘桂棠, 朱弟成, 王立全, 等, 2004.班公湖-怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据.地学前缘, 11(4):371-382. doi: 10.3321/j.issn:1005-2321.2004.04.004 [86] 曲晓明, 侯增谦, 黄卫, 2001.冈底斯斑岩铜矿(化)带:西藏第二条"玉龙"铜矿带?矿床地质, 20(4):355-366. doi: 10.3969/j.issn.0258-7106.2001.04.009 [87] 曲晓明, 王瑞江, 代晶晶, 等, 2012.西藏班公湖-怒江缝合带中段雄梅斑岩铜矿的发现及意义.矿床地质, 31(1):1-12. doi: 10.3969/j.issn.0258-7106.2012.01.001 [88] 王江朋, 赵元艺, 崔玉斌, 等, 2012.西藏班戈地区重要矽卡岩型铁(铜)多金属矿床LA-ICP-MS锆石U-Pb测年与花岗岩地球化学特征.地质通报, 31(9):1435-1450. doi: 10.3969/j.issn.1671-2552.2012.09.008 [89] 王力圆, 郑有业, 高顺宝, 等, 2014.西藏吉瓦地区中冈底斯带岗在岩体晚白垩世的岩浆作用及构造意义.中南大学学报(自然科学版), 45(8):2740-2751. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zngydxxb201408027 [90] 于玉帅, 杨竹森, 戴平云, 等, 2015.西藏措勤尼雄矿田日阿铜多金属矿床岩浆活动时代及成因.中国地质, 42(1):118-133. doi: 10.3969/j.issn.1000-3657.2015.01.010 [91] 张晓倩, 朱弟成, 赵志丹, 等, 2010.西藏措勤尼雄岩体的岩石成因及其对富Fe成矿作用的潜在意义.岩石学报, 26(6):1793-1804. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201006014 [92] 赵志丹, 莫宣学, 董国臣, 等, 2007.青藏高原Pb同位素地球化学及其意义.现代地质, 21(2):265-274. doi: 10.3969/j.issn.1000-8527.2007.02.011 [93] 朱弟成, 莫宣学, 王立全, 等, 2008.新特提斯演化的热点与洋脊相互作用:西藏南部晚侏罗世-早白垩世岩浆作用推论.岩石学报, 24(2):225-237. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200802004 -
dqkx-44-6-1905-Table.pdf