Uplift-Denudation of Orogenic Belts Control on the Formation of Sandstone Type Uranium (U) Deposits in Eastern Junggar, Northwest China: Implications from Apatite Fission Track (AFT)
-
摘要: 通过实测磷灰石裂变径迹方法,并结合前人研究结果,分析了准东构造隆升特征,探讨了其与地层沉积、构造响应及对砂岩型铀成矿的制约.研究表明,210~180 Ma,准东缘卡拉麦里地区持续隆升遭受剥蚀,而卡拉麦里山北部奥克什山地区隆升-剥蚀时间相对较晚,于160~80 Ma快速隆升,该期快速隆升控制了五彩湾-老君庙-将军庙与卡姆斯特地区沉积地层发育、古水流方向、区域不整合与构造掀斜等,从而控制着2个地区的砂岩型铀矿成矿条件.五彩湾-老君庙-将军庙地区下侏罗统物源充足、砂体与氧化发育,是该地区主要找矿目的层,而卡姆斯特地区随着晚侏罗世-晚白垩世,盆地东北部奥克什山乃至青格里底山的隆升,增加了物源供给,下侏罗统沉积地层在该地区表现出了更好的成矿潜力.Abstract: Apatite fission track dating and thermal history modeling were carried out on 12 granite samples collected from Kalamaili and Aokeshi Mountain in Eastern Junngar to investigate the uplift-denudation processes and characteristics of mountains, and then to discuss its control on sandstone U mineralization. Analyses results reveal the tectonic differential uplift-denudation of Kalamaili and Aokeshi Mountain, with Kalamaili area having been uplifting and being eroded since Late Triassic, much earlier than Aokeshi Mountain with uplifting in Late Jurassic, which plays an essential role in sandstone type U mineralization, including U source condition, the formation of tectonic-slope, favorable metallogenic structure and stable groundwater dynamics. The sandstone type U mineralization is different between the areas of Wucaiwan-Laojunmiao-Jiangjunmiao and Kamusite due to the differential uplift-denudation of the mountains under the tectonic background of transition from Indosinian to Yanshanian periods. Generally speaking, the conditions were better in Wucaiwan-Jiangjunmiao area in Early-Middle Jurassic while the conditions were better in the latter in Late Jurassic. Our study is a kind of sandstone type U mineralization which is going to provide the basic geology criteria for U resource prognosis.
-
图 1 准噶尔盆地及邻区构造地质单元与构造格架划分
据何登发等(2012)修改.1.中-新生代覆盖区;2.蛇绿岩或超基性岩带;3.板块碰撞带;4.地壳俯冲带;5.国界线;6.主要断裂编号:①额尔齐斯断裂;②中天山北缘断裂;③中天山南缘断裂;④南天山山脉断裂
Fig. 1. Geotectonic map showing the tectonic geological unit and structural framework of Junngar basin and its adjacent areas
图 2 准噶尔盆地东缘地质构造略图与地质剖面及采样位置
据何登发等(2012)修改.1.新生界;2.白垩系;3.侏罗系;4.三叠系;5.前古生界基底;6.花岗岩;7.逆冲推覆断层;8.断层;9.断裂编号;10.泉水;11.国界;12.采样位置; 其中,D402/1-5为李玮(2007)分析样品
Fig. 2. Sketch geological map and sample locations of Eastern Junggar basin
图 3 准噶尔西北缘、东北缘奥克什山锆石裂变径迹分析数据
Fig. 3. Zircon fission track data of samples from northwestern and northeastern margins of Junggar basin
图 5 准噶尔东缘奥克什山磷灰石裂变径迹单颗粒年龄分布
Fig. 5. Single grain age distribution of apatite fission track of samples from Aokeshi area, Eastern Junngar
图 7 准噶尔东缘奥克什山典型样品磷灰石裂变径迹反演模拟的时间温度曲线
Fig. 7. Temperature-time modeling results of typical samples based on the apatite fission track dating PAZ-partial annealing zone from Aokeshi area, Eastern Junngar
图 9 准噶尔东缘卡拉麦里山南侧至博格达山构造地质剖面
据何登发等(2012)修改;剖面位置见图 2中B-B’所示
Fig. 9. Structural geological section from the south side of Kalamaili mountain to the north side of Bogeda mountain, Eastern Junngar
图 10 准噶尔东缘卡拉麦里山北侧卡姆斯特地区构造地质剖面
据赵淑娟等(2014)修改;剖面位置如图 2中A-A’所示
Fig. 10. Structural geological section of Kamusite area on the north side of Kalamaili mountain, Eastern Junngar
表 1 准噶尔盆地东缘样品裂变径迹数据
Table 1. Fission track data of the sample from the eastern margin of Junggar basin
实验编号 原始编号 海拔(m) 样品位置 岩性 颗粒数(个) ρs(105/cm2)Ns ρi(105/cm2)Ni ρd(105/cm2)Nd P(χ2) (%) 中值年龄±1σ (Ma) 池年龄±1σ (Ma) L(μm) N 186 JE14-35 1 205 卡拉麦里山 花岗闪长岩 32 19.049 (4 715) 26.216 (6 489) 10.766 (5 864) 0 158±10 158±8 13.5±2.4 (135) 187 JE14-59 874 凝灰质细砂岩 35 3.184 (776) 3.784 (922) 11.615 (5 864) 99.7 197±13 197±13 13.9±2.1 (100) 188 JE14-60 874 闪长岩 20 3.666 (284) 5.745 (445) 9.487 (5 864) 35.7 123±12 123±11 14.6±1.8 (56) 189 JE14-62 975 闪长玢岩 35 1.62 (491) 2.316 (702) 11.463 (5 864) 85 162±12 162±12 13.4±2.1 (69) 李丽等(2008) 03-45 1 224 花岗岩 24 1.987 (316) 9.98 (1 586) 13.54 (3 372) 0 43.2±4.7 \ 12.37±0.22 (61) 03-46 1 189 24 1.483 (201) 7.71 (1 045) 13.53 (3 369) 0.9 41.6±4.7 \ 12.82±0.26 (60) 03-47-2 1 475 24 16.010 (1 497) 22.01 (2 058) 13.52 (3 366) 8.5 \ 171.0±15.5 12.99±0.23 (62) 李玮(2007) D407-1 1 580 奥克什山 花岗岩 25 1.731 (297) 4.720 (810) 9.340 (10 438) 99.8 66±5 66±5 12.6±2.2 (102) D407-2 1 538 22 2.457 (293) 8.586 (1 024) 9.442 (10 438) 14.1 52±4 52±4 12.8±2.7 (123) D407-3 1 470 24 1.419 (288) 4.257 (864) 9.545 (10 438) 46.8 61±5 61±5 11.7±2.4 (117) D407-4 1 408 25 3.215 (351) 9.984 (1 090) 9.648 (10 438) 99.1 60±4 60±4 11.9±2.6 (77) D407-5 1 328 24 1.998 (321) 6.025 (973) 9.751 (10 438) 72.1 62±4 62±4 11.2±2.6 (104) 注:P(χ2)为自由度(n-1)χ2值的几率,ρs、ρi和ρd分别为自发径迹密度、诱发径迹密度和标准径迹密度;Ns、Ni和Nd分别为自发径迹数、诱发径迹数和标准径迹数;L为径迹长度.样品测试由北京市泽康恩科技有限公司完成,实验条件为:在25 ℃下用7%HNO3蚀刻30 s揭示自发径迹,将低铀白云母外探测器与矿物一并入反应堆辐照,之后再在25 ℃下用40%HF蚀刻20 s揭示诱发径迹,中子注量利用CN5铀玻璃标定. -
[1] Bian, W. H., Hornung, J., Liu, Z. H., et al., 2010. Sedimentary and Palaeoenvironmental Evolution of the Junggar Basin, Xinjiang, Northwest China. Palaeobiodiversity and Palaeoenvironments, 90(3): 175-186. https://doi.org/10.1007/s12549-010-0038-9 [2] Fang, G.Q., Li, Y.C., Liu, D.L., 2000. Sequence Stratigraphy of Lower-Middle Jurassic and Petroleum in the Northeast Junggar Basin, Xinjiang, China. Scientia Geologica Sinica, 35(4):414-421 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx200004004 [3] Gao, J., Long, L.G., Qian, Q., et al., 2006. South Tianshan: A Late Paleozoic or a Triassic Orogeny?. Acta Petrologica Sinica, 22(5):1049-1061 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201801001 [4] Green, P. F., 1981. A New Look at Statistics in Fission-Track Dating. Nuclear Tracks, 5(1/2): 77-86. https://doi.org/10.1016/0191-278x(81)90029-9 doi: 10.1016/0191-278x(81)90029-9 [5] Green, P. F., 1985. Comparison of Zeta Calibration Baselines for Fission-Track Dating of Apatite, Zircon and Sphene. Chemical Geology: Isotope Geoscience Section, 58(1/2): 1-22. https://doi.org/10.1016/0168-9622(85)90023-5 doi: 10.1016/0168-9622(85)90023-5 [6] Gong, H.L., Chen, Z.L., Hu, Y.Q., et al., 2007. Cretaceous Denudation of the Ili Basin as Revealed by Fission-Track Thermochronology. Journal of Geomechanics, 13(1):42-50 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb200701006 [7] Guo, Z.J., Chen, Z.L., Shu, L.S., et al., 2006a. Mesozoic-Cenozoic Intra-Continental Orogeny of Asian Type and Sandstone Type Uranium Mineralization in Western China. Geological Publishing House, Beijing (in Chinese). [8] Guo, Z.J., Zhang, Z.C., Wu, C.D., et al., 2006b. The Mesozoic and Cenozoic Exhumation History of Tianshan and Comparative Studies to the Junngar and Altai Mountains. Acta Geologica Sinica, 80(1):1-15 (in Chinese with English abstract). doi: 10.1111/j.1755-6724.2006.tb00788.x [9] Han, B.F., He, G.Q., Wang, S.G., 1999. Study on the Post-Collisional Mantle Magmatism, Udermattress and Basement Properties of Junggar Basin. Science in China (Series D: Earth Sciences), 29(1):16-21 (in Chinese). [10] Han, B.F., He, G.Q., Wang, S.G., et al., 1998. Postcollisional Mantle-Derived Magmatism and Vertical Growth of the Continental Crust in North Xinjiang. Geological Review, 44(4):396-406 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000002461 [11] Han, B.F., Ji, J.Q., Song, B., et al., 2006. Late Paleozoic Vertical Growth of Continental Crust around the Junggar Basin, Xinjiang, China (Part Ⅰ): Timing of Post- Collisional Plutonism. Acta Petrologica Sinica, 22(5):1077-1086 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=d16f6ffe47059ee3eb9a4bd3a11bdff8&encoded=0&v=paper_preview&mkt=zh-cn [12] Han, B. F., Wang, S. G., Jahn, B. M., et al., 1997. Depleted-Mantle Source for the Ulungur River A-Type Granites from North Xinjiang, China: Geochemistry and Nd–Sr Isotopic Evidence, and Implications for Phanerozoic Crustal Growth. Chemical Geology, 138(3/4): 135-159. https://doi.org/10.1016/s0009-2541(97)00003-x http://www.sciencedirect.com/science/article/pii/S000925419700003X [13] Han, X.Z., Li, S.X., Cai, Y. Q., et al., 2008. Uplift-Denudation in the South Margin and Its Sedimentary Response in the Southern Yili Basin: Analysis Apatite Fission Track Method. Acta Petrologica Sinica, 24(10): 2447-2455 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=77c91269d870024d13ac442986495034&encoded=0&v=paper_preview&mkt=zh-cn [14] He, D.F., Zhai, G.M., Kuang, J., 2005. Distribution and Tectonic Features of Paleo-Uplifts in the Junggar Basin. Chinese Journal of Geology, 40(2): 248-261 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx200502009 [15] He, D.F., Zhou, L., Wu, X.Z., 2012. Evolution of Paleouplift and Hydrocarbon Accumulation in Junggar Basin. Petroleum Industry Press, Beijing (in Chinese). [16] Hendrix, M. S., Dumitru, T. A., Graham, S. A., 1994. Late Oligocene-Early Miocene Unroofing in the Chinese Tian Shan: An Early Effect of the India-Asia Collision. Geology, 22(6): 487-490. https://doi.org/10.1130/0091-7613(1994)022 < 0487:loemui > 2.3.co; 2 doi: 10.1130/0091-7613(1994)022<0487:LOEMUI>2.3.CO;2 [17] Hu, S.B., Wang, J.Y., 1995. Principles and Progresses on Thermal Regime of Sedimentary Basins—An Overview. Earth Science Frontiers, 2(3-4): 171-180 (in Chinese with English abstract). [18] Hurford, A. J., Green, P. F., 1982. A Users' Guide to Fission Track Dating Calibration. Earth and Planetary Science Letters, 59(2): 343-354. https://doi.org/10.1016/0012-821x(82)90136-4 doi: 10.1016/0012-821X(82)90136-4 [19] Jiang, C.F., 2009. Consistently Insist on Scientific and Technological Innovation—Review the Innovation Opinions of China's Tectonics. Acta Geologica Sinica, 83(11): 1772-1778 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=8d297209d08a9dcf0de8db9802901f92&encoded=0&v=paper_preview&mkt=zh-cn [20] Jiang, R.B., Chen, X.H., Dang, Y.Q., et al., 2008. Apatite Fission Track Evidence for Two Phases Mesozoic- Cenozoic Thrust Faulting in Eastern Qaidam Basin. Chinese Journal of Geophysics, 51(1):116-124 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=b1178433f829ed79b2ad19b297d6c284&encoded=0&v=paper_preview&mkt=zh-cn [21] Li, L., Chen, Z.L., Qi, W.X., et al., 2008. Apatite Fission Track Evidence for Uplifting-Exhumation Processes of Mountains Surrounding the Junggar Basin. Acta Petrologica Sinica, 24(5):1011-1020 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200805007 [22] Li, W., 2007. The Mechanic and Tectonic Evolution of Mesozoic Basins in Northestern Junggar Orogenic Belt (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract). [23] Luo, T., Chen, S., Liao, Q.A., et al., 2016. Geochronology, Geochemistry and Geological Significance of the Late Carboniferous Bimodal Volcanic Rocks in the Eastern Junggar. Earth Science, 41(11):1845-1862 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201611003 [24] Ma, Q., Shu, L.S., Zhu, W.B., et al., 2006. Mesozoic-Cenozoic Burial, Uplift and Exhumation: A Profile along the Urumqi-Korla Highway in the Tianshan Mountains. Xinjiang Geology, 24(2):99-104 (in Chinese with English abstract). [25] Ma, Z.J., Qu, G.S., Chen, X.F., 2008a. Tectonic Framework and Division in Junggar Basin. Xinjiang Petroleum Geology, 29(1):1-5 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=066e3727494fa0a46cbdb48e44329368&encoded=0&v=paper_preview&mkt=zh-cn [26] Ma, Z.J., Qu, G.S., Li, T., et al., 2008b. Tectonic Coupling and Segmentation of Marginal Structural Belt in Junggar Basin. Xinjiang Petroleum Geology, 29:271-277 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjsydz200803001 [27] Reiners, P.W., Brandon, M.T., 2006. Using Thermochronology to Understand Orogenic Erosion. Annual Review of Earth and Planetary Sciences, 34(1): 419-466. https://doi.org/10.1146/annurev.earth.34.031405.125202 [28] Sobel, E. R., Dumitru, T. A., 1997. Thrusting and Exhumation around the Margins of the Western Tarim Basin during the India-Asia Collision. Journal of Geophysical Research: Solid Earth, 102(B3): 5043-5063. https://doi.org/10.1029/96jb03267 doi: 10.1029/96JB03267 [29] Song, J.Y., 2014. Study on Junggar Basement Characteristics and Its Relationship with Sandstone Type Uranium Mineralization (Dissertation). Beijing Research Institute of Uranium Geology, CNNC, Beijing (in Chinese with English abstract). [30] Song, J.Y., Qin, M.K., Cai, Y.Q., et al., 2015. Basement Characteristics of Junggar Basin and Its Effect on Sandstone-Type Uranium Metallogenesis. Geological Review, 61(1):128-138 (in Chinese with English abstract). [31] Spotila, J. A., 2005. Applications of Low-Temperature Thermochronometry to Quantification of Recent Exhumation in Mountain Belts. Reviews in Mineralogy and Geochemistry, 58(1): 449-466. https://doi.org/10.2138/rmg.2005.58.17 [32] Su, Y.P., Tang, H.F., Liu, C.Q., et al., 2006. The Determination and a Preliminary Study of Sujiquan Aluminous A-Type Granites in East Junggar, Xinjiang. Acta Petrologica et Mineralogica, 25(3):175-184 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz200603002 [33] Sun, W.J., Zhao, S.J., Li, S.Z., et al., 2004. Mesozoic Tectonic Migration in the Eastern Junggar Basin. Geotectonica et Metallogenia, 38(1):52-61 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201401006 [34] Sun, Z.C., 1998. Mesozoic-Cenozoic Foreland Basins and Their Hydrocarbon Prospect in Middle and Western Parts of China, as Well as Division of Internal Texture Units in Gunnggar Basin. MOPC, 4(3):16-30 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HXYQ199804006.htm [35] Suo, Y.H., Li, S.Z., Dai, L.M., et al., 2012. Cenozoic Tectonic Migration and Basin Evolution in East Asia and Its Continental Margins. Acta Petrologica Sinica, 28(8):2602-2618 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201208025 [36] Wagner, G., van Den, H.P., 1992. Fission Track Dating. Kluwer Academic Publishers, Dordrecht, 1-275. [37] Wagner, G. A., Gleadow, A. J. W., Fitzgerald, P. G., 1989. The Significance of the Partial Annealing Zone in Apatite Fission-Track Analysis: Projected Track Length Measurements and Uplift Chronology of the Transantarctic Mountains. Chemical Geology: Isotope Geoscience Section, 79(4): 295-305. https://doi.org/10.1016/ 0168-9622(89)90035-3 doi: 10.1016/0168-9622(89)90035-3 [38] Wan, T.F., 2011. Geotectonics of China. Geological Publishing House, Beijing (in Chinese). [39] Wang, Z.X., Li, T., Zhou, G.Z., et al., 2003. Geological Record of the Late-Carboniferous Orogeny in Bogedashan, Northern Tianshan Moutains, Northwest China. Earth Science Frontiers, 10(1):63-69 (in Chinese with English abstract). [40] Wu, Y.P., Qin, M.K., Liu, Z.Y., et al., 2012. The Preliminary Study on the Relationship between Oil and Uranium Mineralization of the Adegang Ore Occurrence in the South Margin of Junggar Basin. Report of Beijing Research Institute of Uranium Geology, Beijing (in Chinese with English abstract). [41] Yang, X. F., He, D. F., Wang, Q. C., et al., 2012a. Provenance and Tectonic Setting of the Carboniferous Sedimentary Rocks of the East Junggar Basin, China: Evidence from Geochemistry and U-Pb Zircon Geochronology. Gondwana Research, 22(2): 567-584. https://doi.org/10.1016/j.gr.2011.11.001 [42] Yang, X. F., He, D. F., Wang, Q. C., et al., 2012b. Tectonostratigraphic Evolution of the Carboniferous Arc- Related Basin in the East Junggar Basin, Northwest China: Insights into Its Link with the Subduction Process. Gondwana Research, 22(3/4): 1030-1046. https://doi.org/10.1016/j.gr.2012.02.009 [43] Zhang, J.D., Li, Z.Y., Li, Y.L., et al., 2010. The Potential Evaluation on the Sandstone Type Uranium Resource in Junngar Basin. Report of Beijing Research Institute of Uranium Geology, Beijing (in Chinese with English abstract). [44] Zhang, Z.C., Wang, X.S., 2004. The Issues of Application for the Fission Track Dating and Its Geological Significance. Acta Scientianum Naturalium Universitis Pekinensis, 40(6): 898-905 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=eba8aa88084821579a4390d295de8bb7&encoded=0&v=paper_preview&mkt=zh-cn [45] Zhao, H., Liao, Q.A., Luo, T., et al., 2018. Geochemistry and Geological Implications of Two Sets of Devonian Volcanic Rocks in South Margin of East Junngar. Earth Science, 43(2): 371-388 (in Chinese with English abstract). [46] Zhao, S.J., Li, S.Z., Liu, X., et al., 2014. Structures of the Eastern Junggar Basin: Intracontinental Trasition between the North Tianshan and the Altai Orogens. Science in China (Series D: Earth Sciences), 44(10):2130-2141 (in Chinese). http://cn.bing.com/academic/profile?id=a98c529b0c612ad661ba30ac0ac6fb69&encoded=0&v=paper_preview&mkt=zh-cn [47] Zheng, D.W., Zhang, P.Z., Wan, J.L., et al., 2005. Apatite Fission Track Evidence for the Thermal History of the Liupanshan Basin. Chinese Journal of Geophysics, 48(1):157-164 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/cjg2.637 [48] 方国庆, 李育慈, 刘德良, 2000.准噶尔盆地东北缘中-下侏罗统层序地层与油气.地质科学, 35(4):414-421. doi: 10.3321/j.issn:0563-5020.2000.04.004 [49] 高俊, 龙灵利, 钱青, 等, 2006.南天山:晚古生代还是三叠纪碰撞造山带?.岩石学报, 22(5): 1049-1061. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200812010 [50] 宫红良, 陈正乐, 胡远清, 等, 2007.伊犁盆地白垩纪剥露事件的裂变径迹证据.地质力学学报, 13(1): 42-50. doi: 10.3969/j.issn.1006-6616.2007.01.006 [51] 郭召杰, 陈正乐, 舒良树, 等, 2006a.中国西部中亚型造山带中新生代陆内造山过程与砂岩型铀矿成矿作用.北京:地质出版社. [52] 郭召杰, 张志诚, 吴朝东, 等, 2006b.中、新生代天山抬升过程及其与准噶尔、阿尔泰比较研究.地质学报, 80(1): 1-15. http://www.cnki.com.cn/Article/CJFDTotal-DZXE200601000.htm [53] 韩宝福, 何国琦, 王世洸, 1999.后碰撞岩浆活动、底垫作用及准噶尔盆地基底性质.中国科学(D辑:地球科学), 29(1): 16-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd199901003 [54] 韩宝福, 何国琦, 王世洸, 等, 1998.新疆北部后碰撞幔源岩浆活动与陆壳纵生长.地质论评, 44(4): 396-406. doi: 10.3321/j.issn:0371-5736.1998.04.009 [55] 韩宝福, 季建清, 宋彪, 等, 2006.新疆准噶尔晚古生代陆壳垂向生长(Ⅰ):后碰深成岩浆活动的时限.岩石学报, 22(5): 1077-1086. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200605003 [56] 韩效忠, 李胜祥, 蔡煜琦, 等, 2008.伊犁盆地南缘隆升剥蚀及其盆地南部的沉积响应——利用磷灰石裂变径迹分析.岩石学报, 24(10): 2447-2455. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200810026 [57] 何登发, 翟光明, 况军, 等, 2005.准噶尔盆地古隆起的分布与基本特征.地质科学, 40(2): 248-261. doi: 10.3321/j.issn:0563-5020.2005.02.009 [58] 何登发, 周路, 吴晓智, 2012.准噶尔盆地古隆起形成演化与油气聚集.北京:石油工业出版社. [59] 胡圣标, 汪集旸, 1995.沉积盆地热体质研究的基本原理和进展.地学前缘, 2(3-4): 171-180. [60] 姜春发, 2009.科技创新、贵在坚持——对我国大地构造中某些创新观点的回顾与反思.地质学报, 83(11):1772-1778. doi: 10.3321/j.issn:0001-5717.2009.11.019 [61] 蒋荣宝, 陈宣华, 党玉琪, 等, 2008.柴达木盆地东部中新生代两期逆冲断层作用的FT定年.地球物理学报, 51(1):116-124. doi: 10.3321/j.issn:0001-5733.2008.01.015 [62] 李丽, 陈正乐, 祁万修, 等, 2008.准噶尔盆地周缘山脉抬升-剥露过程的FT证据.岩石学报, 24(5): 1011-1020. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200805007 [63] 李玮, 2007.准噶尔西北缘造山带中生代盆地形成机制及构造演化(博士学位论文).北京: 中国地质科学院. http://cdmd.cnki.com.cn/article/cdmd-82501-2007213357.htm [64] 罗婷, 陈帅, 廖群安, 等, 2016.东准噶尔晚石炭世双峰式火山岩年代学、地球化学及其构造意义.地球科学, 41(11):1845-1862. doi: 10.3799/dqkx.2016.128 [65] 马前, 舒良树, 朱文斌, 等, 2006.天山乌-库公路剖面中、新生代埋藏、隆升及剥露史研究.新疆地质, 24(2): 99-104. doi: 10.3969/j.issn.1000-8845.2006.02.001 [66] 马宗晋, 曲国胜, 陈新发, 2008a.准噶尔盆地构造格架及分区.新疆石油地质, 29(1): 1-5. http://d.old.wanfangdata.com.cn/Periodical/xjsydz200801001 [67] 马宗晋, 曲国胜, 李涛, 等, 2008b.准噶尔地盆山构造耦合与分段性.新疆石油地质, 29:271-277. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjsydz200803001 [68] 宋继叶, 2014.准噶尔盆地基底特征与砂岩型铀矿成矿作用(博士学位论文).北京: 核工业北京地质研究院. [69] 宋继叶, 秦明宽, 蔡煜琦, 等, 2015.准噶尔盆地基底结构特征及其对砂岩型铀矿成矿的影响.地质论评, 61(1): 128-138. http://d.old.wanfangdata.com.cn/Periodical/dzlp201501013 [70] 苏玉平, 唐红峰, 刘丛强, 等, 2006.新疆东准噶尔苏吉泉铝质A型花岗岩的确立及其初步研究.岩石矿物学杂志, 25(3):175-184. doi: 10.3969/j.issn.1000-6524.2006.03.002 [71] 孙文军, 赵淑娟, 李三忠, 等, 2004.准噶尔盆地东部中生代构造迁移规律.大地构造与成矿学, 38(1): 52-61. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201401006 [72] 孙肇才, 1998.中国中西部中‒新生代前陆盆地及其含油气性——兼论准噶尔盆地内部结构构造单元划分.海相油气地质, 4(3):16-30. [73] 索艳慧, 李三忠, 戴黎明, 等, 2012.东亚及其大陆边缘新生代构造迁移与盆地演化.岩石学报, 28(8): 2602-2618. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201208025 [74] 万天丰, 2011.中国大地构造学.北京:地质出版社. [75] 王宗秀, 李涛, 周高志, 等, 2003.博格达山晚石炭纪造山活动的变形地质记录.地学前缘, 10(1):63-69. doi: 10.3321/j.issn:1005-2321.2003.01.008 [76] 吴亚平, 秦明宽, 刘章月, 等, 2012.准噶尔盆地南缘阿德岗矿点油气还原与铀成矿的关系初探.北京: 全国铀矿大基地建设学术研讨会论文集. [77] 张金带, 李子颖, 李友良, 等, 2010.准噶尔盆地砂岩型铀矿资源潜力评价.北京: 核工业北京地质研究院科研报告. [78] 张志诚, 王雪松, 2004.裂变径迹定年资料应用中的问题及其地质意义.北京大学学报, 40(6): 898-905. doi: 10.3321/j.issn:0479-8023.2004.06.007 [79] 赵浩, 廖群安, 罗婷, 等, 2018.东准噶尔南缘两套泥盆纪火山岩地球化学特征对比及其地质意义.地球科学, 43(2):371-388. doi: 10.3799/dqkx.2018.021 [80] 赵淑娟, 李三忠, 刘鑫, 等, 2014.准噶尔盆地东缘构造:阿尔泰与天山造山带交接转换的陆内过程.中国科学(D辑:地球科学), 44(10):2130-2141. http://d.old.wanfangdata.com.cn/Periodical/dzkx201204002 [81] 郑德文, 张培震, 万景林, 等, 2005.六盘山盆地热历史的裂变径迹证据.地球物理学报, 48(1): 157-164. doi: 10.3321/j.issn:0001-5733.2005.01.021