Origin of Diabase Dykes in Mazar Area in West Kunlun Orogenic Belt: Evidences from Zircon U-Pb Dating and Geochemistry
-
摘要: 西昆仑造山带显生宙以来经历了原特提斯洋和古特提斯洋两个重要的演化阶段.目前对古特提斯洋构造过程的认识仍然存在较大争议.通过对麻扎达坂辉绿岩墙进行详细的野外地质、岩石学、锆石U-Pb年代学及岩石地球化学研究,结果表明,辉绿岩锆石U-Pb谐和年龄为287±4.6 Ma,代表了辉绿岩浆的结晶年龄,表明该辉绿岩墙为早二叠世岩浆活动的产物.辉绿岩的SiO2含量为48.29%~50.21%,低Mg#值(0.36~0.39),属亚碱性拉斑系列玄武岩.辉绿岩富集LREE、LILE(如Rb、Ba、Sr),亏损Nb-Ta、P等高场强元素,总体表现出类似岛弧火山岩的地球化学特征.同时,麻扎达坂辉绿岩锆石Hf同位素组成(εHf(t)=4.00~13.71,平均值为7.61,TDM1(Hf)=0.76~0.38 Ga)说明其不是来源于类似N-MORB的亏损地幔源区.区域地质研究表明,西昆仑及以北塔里木克拉通在早二叠世处于伸展构造背景,不存在同期的俯冲消减事件,倾向于认为麻扎达坂辉绿岩墙是在造山后伸展背景下,早期俯冲流体交代的岩石圈地幔部分熔融形成的原始岩浆经过一定程度的分异结晶沿区域性断裂侵位形成的,而与塔里木地幔柱不具有地球动力学上的联系.Abstract: The West Kunlun orogenic belt underwent the tectonic process of Proto-and Paleo-Tethys Oceans since Phanerozoic. However, there is still much controversy over the evolution of the Paleo-Tethys Ocean. Geochemistry and zircon U-Pb and Hf isotopic compositions of the diabase dykes in Mazar, West Kunlun are reported in this paper. Zircon U-Pb dating results give an emplacement age of 287±4.6 Ma for the Mazar diabase. These rocks span a SiO2 range of 48.29%-50.21% and Mg# (0.36-0.39), characterized by moderate LREE/HREE fractionation, strong LILEs (such as Rb, Ba, Sr) enrichment and depleted Nb-Ta, P and weakly Eu depletion. They have more radiogenic zircon Hf isotopic compositions (εHf(t)=4.00-13.71, average value is 7.61) than N-MORB. In combination with the evolution of regional geology, it is suggested that these melts were derived from partial melting of an enriched lithospheric mantle that underwent early subducted fluid metasomatization. The origin of the Mazar diabase dykes indicates that the post-orogenic extension in West Kunlun, from Late Devonian to Early Permian, may be not related to the Tarim mantle plume.
-
Key words:
- diabase dyke /
- zircon U-Pb age /
- geochemistry /
- West Kunlun orogenic belt /
- geochronology
-
图 1 西昆仑造山带(a)和麻扎地区(b)地质简图
据李荣社等(2008)和王超等(2013).OKS.奥依塔格-柯岗断裂带;KQS.库地-其曼于特蛇绿岩带;MKS.麻扎-康西瓦-苏巴什蛇绿岩带;GXF.郭扎错-西金乌兰断裂;KKF.喀喇昆仑断裂;HQS.红山湖-乔尔天山断裂;NKT.昆北地体;SKT.昆南地体;BYT.巴颜喀拉地体;TNT.甜水海-北羌塘地块
Fig. 1. Schematic geological maps of the West Kunlun orogenic belt (a) and Mazar area (b)
图 5 辉绿岩Zr/TiO2-Nb/Y图解(a)和FeOt/MgO-SiO2图解(b)
Fig. 5. Plots of Zr/TiO2 vs.Nb/Y (a) and FeOt/MgO-SiO2 (b) showing diabase sample composition variations
图 7 麻扎大坂辉绿岩稀土元素球粒陨石标准化配分图解(a)与微量元素原始地幔标准化蛛网图(b)
据Taylor and McLennan(1985);Sun and McDonough(1989)
Fig. 7. Chondrite-normalized REE patterns (a) and primitive-mantle normalized spidegram (b) for Mazar diabase
图 9 辉绿岩墙的构造环境判别图
据Pearce and Norry(1979);汪云亮等(2001).Ⅰ.板块离散边缘N-MORB区; Ⅱ.板块汇聚边缘区; Ⅱ1.大洋岛弧玄武岩;Ⅱ2.陆缘岛弧及陆缘火山弧玄武岩); Ⅲ.大洋板内洋岛、海山玄武岩及T-MORB、E-MORB区;Ⅳ.大陆板内(Ⅳ1.陆内裂谷及陆缘裂谷拉斑玄武岩区, Ⅳ2.陆内裂谷碱性玄武岩区, Ⅳ3.大陆裂谷带玄武岩区); Ⅴ.地幔柱玄武岩区
Fig. 9. Zr/Y-Zr and Ta/Hf-Th/Hf discrimination diagrams
表 1 西昆仑麻扎达坂辉绿岩墙(15KD02)锆石LA-ICP-MS同位素测年结果
Table 1. LA-ICP-MS U-Pb dating results of the diabase dykes(15KD02) from Mazar
样品测点 同位素比值 同位素年龄(Ma) 同位素含量(10-6) Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th Th U 15KD02-1 0.053 0.009 0.331 0.057 0.045 0.002 0.013 0.001 328 306 291 43 285 11 262 29 45.70 93.77 0.49 15KD02-5 0.052 0.006 0.316 0.036 0.044 0.001 0.014 0.001 279 204 279 28 278 7 284 17 73.72 136.51 0.54 15KD02-10 0.052 0.006 0.334 0.038 0.046 0.001 0.015 0.001 302 208 293 29 291 7 295 18 51.37 96.23 0.53 15KD02-14 0.053 0.008 0.339 0.052 0.047 0.002 0.016 0.001 311 272 297 39 294 11 313 29 45.56 105.43 0.43 15KD02-15 0.053 0.009 0.315 0.051 0.043 0.002 0.016 0.001 346 286 278 39 270 10 326 29 50.83 106.27 0.48 15KD02-16 0.052 0.006 0.323 0.039 0.045 0.001 0.019 0.001 281 216 284 30 284 8 371 23 47.44 98.68 0.48 15KD02-17 0.053 0.006 0.339 0.037 0.046 0.001 0.017 0.001 325 196 296 28 292 8 331 20 90.69 173.65 0.52 15KD02-18 0.053 0.009 0.342 0.059 0.047 0.002 0.018 0.002 322 304 299 44 296 12 354 33 47.54 93.08 0.51 15KD02-20 0.054 0.007 0.327 0.041 0.044 0.001 0.014 0.001 352 227 287 32 279 9 282 20 76.65 151.51 0.51 15KD02-22 0.054 0.007 0.340 0.044 0.046 0.001 0.017 0.001 369 234 297 33 287 9 344 26 38.37 92.35 0.42 15KD02-23 0.053 0.007 0.339 0.045 0.046 0.002 0.017 0.001 325 241 296 34 293 9 349 25 47.56 105.77 0.45 15KD02-26 0.052 0.008 0.316 0.050 0.044 0.002 0.011 0.001 304 282 279 38 276 10 230 21 60.09 98.67 0.61 15KD02-27 0.054 0.005 0.349 0.033 0.047 0.001 0.013 0.001 370 170 304 25 295 7 270 17 72.04 154.75 0.47 15KD02-29 0.053 0.008 0.345 0.048 0.047 0.002 0.015 0.001 339 252 301 36 296 10 300 24 45.39 87.98 0.52 表 2 麻扎达坂辉绿岩(15KD02)主量元素(%)和微量元素(10-6)含量
Table 2. Major element (%) and trace element (10-6) concentrations of the diabase (15KD02) from Mazar
样品 1 2 3 4 5 6 7 SiO2 50.15 50.15 48.29 50.11 49.75 49.08 50.21 Al2O3 18.14 17.99 19.17 18.17 17.99 18.52 17.72 Fe2O3 2.82 2.56 2.50 3.02 3.46 2.72 3.56 FeO 6.26 6.50 6.88 6.05 5.70 6.75 6.00 CaO 6.70 6.83 5.39 7.18 8.09 6.67 6.94 MgO 5.08 5.13 5.16 4.94 4.46 5.36 4.61 K2O 2.18 1.98 2.69 1.89 1.55 2.08 1.53 Na2O 2.94 2.88 2.88 2.92 3.00 2.67 3.22 TiO2 1.10 1.10 1.12 1.10 1.11 1.13 1.14 P2O5 0.24 0.22 0.23 0.25 0.24 0.23 0.24 MnO 0.18 0.18 0.25 0.18 0.17 0.19 0.19 LOI 4.17 4.41 5.40 4.13 4.41 4.53 4.58 Mg# 0.39 0.39 0.38 0.38 0.36 0.39 0.36 A/CNK 0.75 0.74 0.90 0.72 0.66 0.78 0.72 A/CN 2.52 2.61 2.50 2.65 2.72 2.79 2.55 Total 99.96 99.93 99.96 99.94 99.93 99.93 99.94 La 21.02 18.23 16.74 19.57 18.68 19.00 19.96 Ce 48.47 44.21 38.51 46.21 45.21 44.21 48.21 Pr 6.12 5.49 5.03 5.87 5.88 5.49 6.06 Nd 23.79 21.12 19.54 23.15 23.52 21.42 23.54 Sm 5.49 5.02 4.65 5.36 5.56 5.05 5.40 Eu 1.61 1.51 1.37 1.55 1.62 1.47 1.58 Gd 4.98 4.60 4.28 4.89 4.90 4.55 5.00 Tb 0.77 0.75 0.66 0.75 0.75 0.70 0.77 Dy 4.50 4.35 3.99 4.42 4.35 4.11 4.59 Ho 0.89 0.86 0.77 0.92 0.87 0.84 0.92 Er 2.47 2.28 2.16 2.53 2.44 2.35 2.50 Tm 0.38 0.34 0.33 0.37 0.36 0.36 0.39 Yb 2.45 2.21 2.15 2.41 2.35 2.32 2.51 Lu 0.36 0.32 0.32 0.36 0.35 0.35 0.38 Y 24.98 22.57 20.58 22.83 23.49 22.80 23.85 Cu 29.2 27.9 14.4 27.7 32.7 24.9 20.4 Pb 10.6 9.2 74.6 14 30.7 9.27 12.4 Zn 130 132 190 131 124 138 153 Cr 28.2 31.2 34.0 29.7 28.0 33.4 28.8 Ni 13.4 12.8 11.6 14.0 10.8 13.8 11.3 Co 25.2 26.3 26.1 26.0 24.6 28.4 25.6 Li 105.0 88.6 133.0 100.0 96.6 117.0 112.0 Rb 90.8 99.9 145.0 103.0 87.2 126.0 95.5 Cs 3.2 4.0 4.6 2.9 2.0 4.5 1.6 Sr 739.0 676.0 576.0 839.0 881.0 629.0 816.0 Ba 528.0 430.0 490.0 494.0 467.0 395.0 487.0 V 202.0 207.0 211.0 208.0 200.0 210.0 204.0 Sc 20.0 21.4 21.0 21.8 19.6 21.4 22.9 Nb 8.56 8.35 7.39 8.53 8.42 8.17 8.71 Ta 0.58 0.56 0.45 0.52 0.52 0.51 0.54 Zr 126 123 114 128 137 122 132 Hf 3.38 3.27 3.07 3.47 3.65 3.15 3.44 Ga 18.4 19.7 21.0 20.3 21.2 19.8 22.1 U 0.98 0.95 0.82 1.02 1.02 0.91 1.33 Th 2.86 2.97 2.57 3.24 3.11 2.91 3.31 Ba/La 25.12 23.59 29.27 25.24 25.00 20.79 24.40 Th/Yb 1.17 1.35 1.20 1.34 1.32 1.26 1.32 表 3 麻扎达坂辉绿岩(15KD02)锆石Hf同位素组成
Table 3. Zircon Hf isotopic data of the diabase (15KD02) from Mazar
测点 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf ±2σ εHf(t) TDM1(Ga) TDM2(Ga) fLu/Hf 15KD02-1 0.054 493 0.001 291 0.282 791 0.000 022 6.72 0.66 0.88 -0.96 15KD02-5 0.040 078 0.000 924 0.282 761 0.000 025 5.74 0.70 0.94 -0.97 15KD02-10 0.044 622 0.001 021 0.282 832 0.000 023 8.24 0.60 0.78 -0.97 15KD02-14 0.073 878 0.001 757 0.282 890 0.000 035 10.14 0.52 0.66 -0.95 15KD02-15 0.081 298 0.001 911 0.282 842 0.000 026 8.41 0.60 0.77 -0.94 15KD02-16 0.079 855 0.001 858 0.282 937 0.000 030 11.78 0.46 0.55 -0.94 15KD02-17 0.068 240 0.001 611 0.282 765 0.000 033 5.77 0.70 0.94 -0.95 15KD02-18 0.105 478 0.002 426 0.282 994 0.000 026 13.70 0.38 0.43 -0.93 15KD02-20 0.056 655 0.001 345 0.282 776 0.000 037 6.19 0.68 0.91 -0.96 15KD02-22 0.053 303 0.001 289 0.282 754 0.000 026 5.42 0.71 0.96 -0.96 15KD02-23 0.074 737 0.001 715 0.282 853 0.000 032 8.84 0.58 0.74 -0.95 15KD02-26 0.032 291 0.000 780 0.282 711 0.000 021 4.00 0.76 1.05 -0.98 15KD02-27 0.036 467 0.000 868 0.282 738 0.000 026 4.95 0.73 0.99 -0.97 15KD02-29 0.042 410 0.000 984 0.282 788 0.000 021 6.67 0.66 0.88 -0.97 -
[1] Barry, T. L., Pearce, J. A., Leat, P.T., et al., 2006.Hf Isotope Evidence for Selective Mobility of High-Field-Strength Elements in a Subduction Setting:South Sandwich Islands.Earth and Planetary Science Letters, 252(3-4):223-244. https://doi.org/10.1016/j.epsl.2006.09.034 [2] Chen, N., Wang, J.C., Yang, T., et al., 2016.Age and Tectonic Significance of LA-ICP-MS Zircon U-Pb of the Shangqihan Volcanic Rocks in West Kunlun.Geological Survey of China, 3(3):21-28 (in Chinese with English abstract). https://doi.org/10.19388/j.zgdzdc.2016.03.004 [3] Chen, S.J., Li, R.S., Ji, W.H., et al., 2007.The Deposition Characteristics and Tectono-Paleogeographic Environment of Kunlun Orogenic Belt in Late Devonian.Geotectonica et Metallogenia, 31(1):44-51 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx200701006 [4] Deng, Y.F., Levandowski, W., Kusky, T., 2017.Lithospheric Density Structure beneath the Tarim Basin and Surroundings, Northwestern China, from the Joint Inversion of Gravity and Topography.Earth and Planetary Science Letters, 460:244-254. https://doi.org/10.1016/j.epsl.2016.10.051 [5] Dupuy, C., Liotard, J.M., Dostal, J., 1992.Zr/Hf Fractionation in Intraplate Basaltic Rocks:Carbonate Metasomatism in the Mantle Source.Geochimica et Cosmochimica Acta, 56(6):2417-2423. https://doi.org/10.1016/0016-7037(92)90198-r [6] Foley, S., 1992.Vein-Plus-Wall-Rock Melting Mechanisms in the Lithosphere and the Origin of Potassic Alkaline Magmas.Lithos, 28(3-6):435-453. https://doi.org/10.1016/0024-4937(92)90018-t [7] Gao, X.F., Xiao, P.X., Kang, L., et al., 2013a.Origin of Datongxi Pluton in the West Kunlun Orogen:Constraints from Mineralogy, Elemental Geochemistry and Zircon U-Pb Age.Acta Petrologica Sinica, 29(9):3065-3079 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=65fa1626ce382098e557914f4338ddd8&encoded=0&v=paper_preview&mkt=zh-cn [8] Gao, X.F., Xiao, P.X., Kang, L., et al., 2013b.Origin of the Volcanic Rocks from the Ta'axi Region, Taxkorgan Xinjiang and Its Geological Significance.Earth Science, 38(6):1169-1182 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201306002 [9] Gertisser, R., Keller, J., 2003.Trace Element and Sr, Nd, Pb and O Isotope Variations in Medium-K and High-K Volcanic Rocks from Merapi Volcano, Central Java, Indonesia:Evidence for the Involvement of Subducted Sediments in Sunda Arc Magma Genesis.Journal of Petrology, 44(3):457-489. https://doi.org/10.1093/petrology/44.3.457 [10] Han, F.L., Cui, J.T., Ji, W.H., et al., 2004.New Results and Major Progress in Regional Geological Survey of the Yutian County and Bolike Sheets.Geological Bulletin of China, 23(5-6):555-559 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200405026 [11] Hawkesworth, C.J., Lightfoot, P.C., Fedorenko, V.A., et al., 1995.Magma Differentiation and Mineralisation in the Siberian Continental Flood Basalts.Lithos, 34(1-3):61-88. https://doi.org/10.1016/0024-4937(95)90011-x [12] Hooper, P.R., Hawkesworth, C.J., 1993.Isotopic and Geochemical Constraints on the Origin and Evolution of the Columbia River Basalt.Journal of Petrology, 34(6):1203-1246. https://doi.org/10.1093/petrology/34.6.1203 [13] Ji, W.H., Han, F.L., Wang, J.C., et al., 2004.Composition and Geochemistry of the Subashi Ophiolitic Mélange in the West Kunlun and Its Geological Significance.Geological Bulletin of China, 23(12):1196-1201 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200412005 [14] Jiang, C.Y., Zhang, P.B., Lu, D.R., et al., 2004.Petrogenesis and Magma Source of the Ultramafic Rocks at Wajilitag Region, Western Tarim Plate in Xinjiang.Acta Petrologica Sinica, 20(6):1433-1444 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200406013 [15] Kushiro, I., 2001.Partial Melting Experiments on Peridotite and Origin of Mid-Ocean Ridge Basalt.Annual Review of Earth and Planetary Sciences, 29(1):71-107. https://doi.org/10.1146/annurev.earth.29.1.71 [16] Li, B.Q., Yao, J.X., Ji, W.H., et al., 2006.Characteristics and Zircon SHRIMP U-Pb Ages of the Arc Magmatic Rocks in Mazar, Southern Yecheng, West Kunlun Mountains.Geological Bulletin of China, 25(1-2):124-132 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200601019 [17] Li, B.Q., Yao, J.X., Wang, J.C., et al., 2007.Composition, Age and Geological Significance of the Liushitage Volcanics in West Kunlun Mountains.Acta Petrologica Sinica, 23(11):2801-2810 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200711011 [18] Li, H.Y., Huang, X.L., Li, W.X., et al., 2013.Age and Geochemistry of the Early Permian Basalts from Qimugan in the Southwestern Tarim Basin.Acta Petrologica Sinica, 29(10):3353-3368 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201310004 [19] Li, R.S., Ji, W.H., Yang, Y.C., et al., 2008.Geology of Kunlun Mountains and Adjacent Regions.Geological Publishing House, Beijing, 271-317 (in Chinese). [20] Li, R.S., Ji, W.H., Zhao, Z.M., et al., 2007.Progress in the Study of the Early Paleozoic Kunlun Orogenic Belt.Geological Bulletin of China, 26(4):373-382 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200704002 [21] Li, Z.L., Yang, S.F., Chen, H.L., et al., 2008.Chronology and Geochemistry of Taxinan Basalts from the Tarim Basin:Evidence for Permian Plume Magmatism.Acta Petrologica Sinica, 24(5):959-970(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200805004.htm [22] MacDonald, R., Rogers, N.W., Fitton, J.G., et al., 2001.Plume-Lithosphere Interactions in the Generation of the Basalts of the Kenya Rift, East Africa.Journal of Petrology, 42(5):877-900. https://doi.org/10.1093/petrology/42.5.877 [23] Meng, E., Wang, C.Y., Li, Y.G., et al., 2017.Zircon U-Pb-Hf Isotopic and Whole-Rock Geochemical Studies of Paleoproterozoic Metasedimentary Rocks in the Northern Segment of the Jiao-Liao-Ji Belt, China:Implications for Provenance and Regional Tectonic Evolution.Precambrian Research, 298:472-489. https://doi.org/10.1016/j.precamres.2017.07.004 [24] Metcalfe, I., 2013.Gondwana Dispersion and Asian Accretion:Tectonic and Palaeogeographic Evolution of Eastern Tethys.Journal of Asian Earth Sciences, 66:1-33. https://doi.org/10.1016/j.jseaes.2012.12.020 [25] Pearce, J.A., Norry, M.J., 1979.Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks.Contributions to Mineralogy and Petrology, 69(1):33-47. https://doi.org/10.1007/bf00375192 [26] Robinson, A.C., 2015.Mesozoic Tectonics of the Gondwanan Terranes of the Pamir Plateau.Journal of Asian Earth Sciences, 102:170-179. https://doi.org/10.1016/j.jseaes.2014.09.012 [27] Shi, B., Zhu, Y.H., Zhong, Z.Q., et al., 2016.Petrological, Geochemical Characteristics and Geological Significance of the Caledonian Peraluminous Granites in Heihai Region, Eastern Kunlun.Earth Science, 41(1):35-54 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.003 [28] Song, Y., Frey, F.A., Zhi, X.C., 1990.Isotopic Characteristics of Hannuoba Basalts, Eastern China:Implications for Their Petrogenesis and the Composition of Subcontinental Mantle.Chemical Geology, 88(1/2):35-52. https://doi.org/10.1016/0009-2541(90)90102-d [29] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [30] Takahashi, E., Shimazaki, T., Tsuzaki, Y., et al., 1993.Melting Study of a Peridotite KLB-1 to 6.5 GPa, and the Origin of Basaltic Magmas.Philosophical Transactions of the Royal Society of London Series A:Physical and Engineering Sciences, 342(1663):105-120. https://doi.org/10.1098/rsta.1993.0008 [31] Taylor, S.R., McLennan, S.M., 1985.The Continental Crust:Its Composition and Evolution.Geological Magazine, 122(6):673. https://doi.org/10.1017/s0016756800032167 [32] Vervoort, J.D., Plank, T., Prytulak, J., 2011.The Hf-Nd Isotopic Composition of Marine Sediments.Geochimica et Cosmochimica Acta, 75(20):5903-5926. https://doi.org/10.1016/j.gca.2011.07.046 [33] Wang, C., Liu, L., Che, Z.C., et al., 2009.Zircon U-Pb and Hf Isotopic from the East Segment of Tiekelike Tectonic Belt:Constrains on the Timing of Precambrian Basement at the Southwestern Margin of Tarim, China.Acta Geologica Sinica, 83(11):1647-1656 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx-e201202003 [34] Wang, C., Liu, L., He, S.P., et al., 2013.Early Paleozoic Magmatism in West Kunlun:Constraints from Geochemical and Zircon U-Pb-Hf Isotopic Studies of the Bulong Granite.Chinese Journal of Geology, 48(4):997-1014(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKX201304004.htm [35] Wang, C., Liu, L., Korhonen, F., et al., 2016.Origins of Early Mesozoic Granitoids and Their Enclaves from West Kunlun, NW China:Implications for Evolving Magmatism Related to Closure of the Paleo-Tethys Ocean.International Journal of Earth Sciences, 105(3):941-964. https://doi.org/10.1007/s00531-015-1220-0 [36] Wang, Y.L., Zhang, C.J., Xiu, S.Z., 2001.Th/Hf-Ta/Hf Identification of Tectonic Setting of Basalts.Acta Petrologica Sinica, 17(3):413-421 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200103009 [37] Wang, Z.H., Sun, S., Hou, Q.L., et al., 2001.Effect of Melt-Rock Interaction on Geochemistry in the Kudi Ophiolite (Western Kunlun Mountains, Northwestern China):Implication for Ophiolite Origin.Earth and Planetary Science Letters, 191(1-2):33-48. https://doi.org/10.1016/s0012-821x(01)00400-9 [38] Winchester, J.A., Floyd, P.A., 1977.Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements.Chemical Geology, 20:325-343. https://doi.org/10.1016/0009-2541(77)90057-2 [39] Woodhead, J.D., Hergt, J.M., Davidson, J.P., et al., 2001.Hafnium Isotope Evidence for 'Conservative' Element Mobility during Subduction Zone Processes.Earth and Planetary Science Letters, 192(3):331-346. https://doi.org/10.1016/s0012-821x(01)00453-8 [40] Workman, R.K., Hart, S.R., Jackson, M., et al., 2004.Recycled Metasomatized Lithosphere as the Origin of the Enriched Mantle Ⅱ (EM2) End-Member:Evidence from the Samoan Volcanic Chain.Geochemistry, Geophysics, Geosystems, 5(4):Q04008. https://doi.org/10.1029/2003gc000623 [41] Xiao, W.J., Windley, B.F., Chen, H.L., et al., 2002.Carboniferous-Triassic Subduction and Accretion in the Western Kunlun, China:Implications for the Collisional and Accretionary Tectonics of the Northern Tibetan Plateau.Geology, 30(4):295-298.https://doi.org/10.1130/0091-7613(2002)030<0295:ctsaai>2.0.co;2 doi: 10.1130/0091-7613(2002)030<0295:ctsaai>2.0.co;2 [42] Xiao, W.J., Windley, B.F., Liu, D.Y., et al., 2005.Accretionary Tectonics of the Western Kunlun Orogen, China:A Paleozoic-Early Mesozoic, Long-Lived Active Continental Margin with Implications for the Growth of Southern Eurasia.The Journal of Geology, 113(6):687-705. https://doi.org/10.1086/449326 [43] Xu, Y.G., He, B., Luo, Z.Y., et al., 2013.Study on Mantle Plume and Large Igneous Provinces in China:An Overview and Perspectives.Bulletin of Mineralogy, Petrology and Geochemistry, 32(1):25-39 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=2abd8eb7429c54082a81efb95a2c864d&encoded=0&v=paper_preview&mkt=zh-cn [44] Yang, J., Cai, K.K., Zhao, Z.Q., et al., 2015.Genesis and Tectonic Significance of the Kuda Ophiolites in Western Kunlun Mountains, Xinjiang.Sedimentary Geology and Tethyan Geology, 35(2):88-96 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl201502012 [45] Yang, S.F., Li, Z.L., Chen, H.L., et al., 2007.Permian Bimodal Dyke of Tarim Basin, NW China:Geochemical Characteristics and Tectonic Implications.Gondwana Research, 12(1-2):113-120. https://doi.org/10.1016/j.gr.2006.10.018 [46] Yun, J., Gao, X.F., Xiao, P.X., et al., 2015.Geochemical Characteristics of the Lower Carboniferous Volcanic Rocks of the Wuluate Formation in the Western Kunlun Mountains and Their Geological Significance.Geology in China, 42(3):587-600 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201503014 [47] Zha, X.F., Gu, P.Y., Dong, Z.C., et al., 2016.Geological Record of Tectono-Thermal Event at Early Paleozoic and Its Tectonic Setting in West Segment of the North Qaidam.Earth Science, 41(4):586-604 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.048 [48] Zha, X.F., Ji, W.H., Zhang, H.D., et al., 2012.A Discussion on the Deformation Phases and Tectonic Process of the Southern Kunlun Accretionary Complex Belt, in Central Qinghai.Geological Bulletin of China, 31(12):2015-2024 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201212010 [49] Zhang, C.L., Dong, Y.G., Zhao, Y., et al., 2003.Geochemistry of Mesoproterozoic Volcanic Rocks in the Western Kunlun Mountains:Evidence for Plate Tectonic Evolution.Acta Geologica Sinica (English Edition), 77(2):237-245. https://doi.org/10.1111/j.1755-6724.2003.tb00567.x [50] Zhang, C.L., Santosh, M., Zhu, Q.B., et al., 2015.The Gondwana Connection of South China:Evidence from Monazite and Zircon Geochronology in the Cathaysia Block.Gondwana Research, 28(3):1137-1151. https://doi.org/10.1016/j.gr.2014.09.007 [51] Zhang, C.L., Xu, Y.G., Li, Z.X., et al., 2010.Diverse Permian Magmatism in the Tarim Block, NW China:Genetically Linked to the Permian Tarim Mantle Plume? Lithos, 119(3/4):537-552. https://doi.org/10.1016/j.lithos.2010.08.007 [52] Zhang, C.L., Zou, H.B., Ye, X.T., et al., 2018.Tectonic Evolution of the NE Section of the Pamir Plateau:New Evidence from Field Observations and Zircon U-Pb Geochronology.Tectonophysics, 723:27-40. https://doi.org/10.1016/j.tecto.2017.11.036 [53] Zhang, H.F., 2006.Peridotite-Melt Interaction:An Important Mechanism for the Compositional Transformation of Lithospheric Mantle.Earth Science Frontiers, 13(2):65-75 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dxqy200602006.htm [54] Zhang, H.S., He, S.P., Ji, W.H., et al., 2016.Implications of Late Cambrian Granite in Tianshuihai Massif for the Evolution of Proto-Tethy Ocean:Evidences from Zircon Geochronology and Geochemistry.Acta Geologica Sinica, 90(10):2582-2602 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201610005.htm [55] Zhang, L., Long, X.P., Zhang, R., et al., 2017.Source Characteristics and Provenance of Metasedimentary Rocks from the Kangxiwa Group in the Western Kunlun Orogenic Belt, NW China:Implications for Tectonic Setting and Crustal Growth.Gondwana Research, 46:43-56. https://doi.org/10.1016/j.gr.2017.02.014 [56] Zhang, Y., Niu, Y.L., Hu, Y., et al., 2016.The Syncollisional Granitoid Magmatism and Continental Crust Growth in the West Kunlun Orogen, China-Evidence from Geochronology and Geochemistry of the Arkarz Pluton.Lithos, 245:191-204. https://doi.org/10.1016/j.lithos.2015.05.007 [57] Zhi, X.C., Song, Y., Frey, F.A., et al., 1990.Geochemistry of Hannuoba Basalts, Eastern China:Constraints on the Origin of Continental Alkalic and Tholeiitic Basalt.Chemical Geology, 88(1-2):1-33. https://doi.org/10.1016/0009-2541(90)90101-c [58] 陈宁, 王炬川, 杨涛, 等, 2016.西昆仑上其汗地区火山岩LA-ICP-MS锆石U-Pb年龄及构造意义.中国地质调查, 3(3):21-28. http://d.old.wanfangdata.com.cn/Periodical/zgdzdc201603004 [59] 陈守建, 李荣社, 计文化, 等, 2007.昆仑造山带晚泥盆世沉积特征及构造古地理环境.大地构造与成矿学, 31(1):44-51. doi: 10.3969/j.issn.1001-1552.2007.01.006 [60] 高晓峰, 校培喜, 康磊, 等, 2013a.西昆仑大同西岩体成因:矿物学、地球化学和锆石U-Pb年代学制约.岩石学报, 29(9):3065-3079. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201602011 [61] 高晓峰, 校培喜, 康磊, 等, 2013b.新疆塔什库尔干塔阿西一带火山岩成因及地质意义.地球科学, 38(6):1169-1182. http://earth-science.net/WebPage/Article.aspx?id=2796 [62] 韩芳林, 崔建堂, 计文化, 等, 2004.于田县幅、伯力克幅地质调查新成果及主要进展.地质通报, 23(5-6):555-559. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200405026 [63] 计文化, 韩芳林, 王炬川, 等, 2004.西昆仑于田南部苏巴什蛇绿混杂岩的组成、地球化学特征及地质意义.地质通报, 23(12):1196-1201. doi: 10.3969/j.issn.1671-2552.2004.12.005 [64] 姜常义, 张蓬勃, 卢登荣, 等, 2004.新疆塔里木板块西部瓦吉里塔格地区二叠纪超镁铁岩的岩石成因与岩浆源区.岩石学报, 20(6):1433-1444. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200406013 [65] 李博秦, 姚建新, 计文化, 等, 2006.西昆仑叶城南部麻扎地区弧火成岩的特征及其锆石SHRIMP U-Pb测年.地质通报, 25(1-2):124-132. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200601019 [66] 李博秦, 姚建新, 王炬川, 等, 2007.西昆仑柳什塔格峰西侧火山岩的特征、时代及地质意义.岩石学报, 23(11):2801-2810. doi: 10.3969/j.issn.1000-0569.2007.11.011 [67] 李洪颜, 黄小龙, 李武显, 等, 2013.塔西南其木干早二叠世玄武岩的喷发时代及地球化学特征.岩石学报, 29(10):3353-3368. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=YSXB201310004&dbname=CJFD&dbcode=CJFQ [68] 李荣社, 计文化, 杨永成, 等, 2008.昆仑山及邻区地质.北京:地质出版社, 271-317. http://d.old.wanfangdata.com.cn/Conference/6492088 [69] 李荣社, 计文化, 赵振明, 等, 2007.昆仑早古生代造山带研究进展.地质通报, 26(4):373-382. doi: 10.3969/j.issn.1671-2552.2007.04.002 [70] 厉子龙, 杨树锋, 陈汉林, 等, 2008.塔西南玄武岩年代学和地球化学特征及其对二叠纪地幔柱岩浆演化的制约.岩石学报, 24(5):959-970. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200805003 [71] 施彬, 朱云海, 钟增球, 等, 2016.东昆仑黑海地区加里东期过铝质花岗岩岩石学、地球化学特征及地质意义.地球科学, 41(1):35-54. http://earth-science.net/WebPage/Article.aspx?id=3217 [72] 王超, 刘良, 车自成, 等, 2009.塔里木南缘铁克里克构造带东段前寒武纪地层时代的新限定和新元古代地壳再造:锆石定年和Hf同位素的约束.地质学报, 83(11):1647-1656. doi: 10.3321/j.issn:0001-5717.2009.11.009 [73] 王超, 刘良, 何世平, 等, 2013.西昆仑早古生代岩浆作用过程:布隆花岗岩地球化学和锆石U-Pb-Hf同位素组成研究.地质科学, 48(4):997-1014. doi: 10.3969/j.issn.0563-5020.2013.04.004 [74] 汪云亮, 张成江, 修淑芝, 2001.玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别.岩石学报, 17(3):413-421. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200103009 [75] 徐义刚, 何斌, 罗震宇, 等, 2013.我国大火成岩省和地幔柱研究进展与展望.矿物岩石地球化学通报, 32(1):25-39. doi: 10.3969/j.issn.1007-2802.2013.01.002 [76] 杨军, 蔡柯柯, 赵志强, 等, 2015.西昆仑库地蛇绿岩的成因及构造意义.沉积与特提斯地质, 35(2):88-96. doi: 10.3969/j.issn.1009-3850.2015.02.012 [77] 贠杰, 高晓峰, 校培喜, 等, 2015.西昆仑下石炭统乌鲁阿特组火山岩地球化学特征及地质意义.中国地质, 42(3):587-600. doi: 10.3969/j.issn.1000-3657.2015.03.014 [78] 查显锋, 辜平阳, 董增产, 等, 2016.柴北缘西段早古生代构造-热事件及其构造环境.地球科学, 41(4):586-604. http://earth-science.net/WebPage/Article.aspx?id=3276 [79] 查显锋, 计文化, 张海迪, 等, 2012.青海中部昆南增生杂岩带变形分期及构造过程.地质通报, 31(12):2015-2024. doi: 10.3969/j.issn.1671-2552.2012.12.010 [80] 张宏福, 2006.橄榄岩-熔体的相互作用:岩石圈地幔组成转变的重要方式.地学前缘, 13(2):65-75. doi: 10.3321/j.issn:1005-2321.2006.02.005 [81] 张辉善, 何世平, 计文化, 等, 2016.甜水海地块晚寒武世花岗岩对原特提斯洋演化的启示:来自锆石年代学和地球化学的证据.地质学报, 90(10):2582-2602. doi: 10.3969/j.issn.0001-5717.2016.10.004