• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    与A型花岗岩有关锡矿的云英岩化蚀变矿化地球化学:以新疆卡姆斯特和干梁子矿床为例

    陈言飞 王玉往 王京彬 王莉娟 唐萍芝 石煜 赵路通

    陈言飞, 王玉往, 王京彬, 王莉娟, 唐萍芝, 石煜, 赵路通, 2018. 与A型花岗岩有关锡矿的云英岩化蚀变矿化地球化学:以新疆卡姆斯特和干梁子矿床为例. 地球科学, 43(9): 3154-3168. doi: 10.3799/dqkx.2018.321
    引用本文: 陈言飞, 王玉往, 王京彬, 王莉娟, 唐萍芝, 石煜, 赵路通, 2018. 与A型花岗岩有关锡矿的云英岩化蚀变矿化地球化学:以新疆卡姆斯特和干梁子矿床为例. 地球科学, 43(9): 3154-3168. doi: 10.3799/dqkx.2018.321
    Chen Yanfei, Wang Yuwang, Wang Jingbin, Wang Lijuan, Tang Pingzhi, Shi Yu, Zhao Lutong, 2018. Greisenized Alteration-Mineralization Geochemistry of the Tin Deposit Related to A-Type Granite: Case Study on the Kamusite and Ganliangzi Deposits, Xinjiang. Earth Science, 43(9): 3154-3168. doi: 10.3799/dqkx.2018.321
    Citation: Chen Yanfei, Wang Yuwang, Wang Jingbin, Wang Lijuan, Tang Pingzhi, Shi Yu, Zhao Lutong, 2018. Greisenized Alteration-Mineralization Geochemistry of the Tin Deposit Related to A-Type Granite: Case Study on the Kamusite and Ganliangzi Deposits, Xinjiang. Earth Science, 43(9): 3154-3168. doi: 10.3799/dqkx.2018.321

    与A型花岗岩有关锡矿的云英岩化蚀变矿化地球化学:以新疆卡姆斯特和干梁子矿床为例

    doi: 10.3799/dqkx.2018.321
    基金项目: 

    国家重点基础研究发展规划(973计划)项目 2014CB440803

    详细信息
      作者简介:

      陈言飞(1985-), 男, 博士研究生, 主要从事岩石学和矿床学方面的研究

      通讯作者:

      王玉往

    • 中图分类号: P614

    Greisenized Alteration-Mineralization Geochemistry of the Tin Deposit Related to A-Type Granite: Case Study on the Kamusite and Ganliangzi Deposits, Xinjiang

    • 摘要: 新疆准噶尔盆地东部卡拉麦里地区发育我国典型的A型花岗岩型锡矿.通过对该区卡姆斯特和干梁子两个锡矿4个矿化蚀变带的岩相学及地球化学研究,发现矿体和致矿岩体是同源岩浆演化的结果,矿体是岩浆分异演化末期向流体演化过程中形成的.矿床的蚀变分带模式可分为两种:(1)(红色)细粒黑云母花岗岩→云英岩化细粒花岗岩→含锡石英脉;(2)细粒黑云母花岗岩→含锡云英岩→含锡石英脉.其蚀变带中岩石的地球化学组分总体迁移规律为:SiO2迁入,Na2O、K2O迁出,Fe2O3总体表现为迁入,Th/U值不断降低,表明硅化和碱交代作用贯穿整个成矿过程,成矿环境由碱性向酸性变化,并伴随氧逸度的升高.F、Cl、W、Cu、Bi、In、Pb、Rb、Nb、Ta等元素与成矿元素Sn的迁移、富集和沉淀密切相关,其中F和Cl是迁移过程中最活跃的组分,是Sn元素最大的"搬运工",Sn元素的富集与W、Cu、Bi、In等元素迁移呈正相关,反映流体作用与Sn成矿密切相伴,而与Pb、Rb、Nb、Ta等元素的迁移呈负相关,反映致矿岩体自身元素的稀释和带出,Sn的富集和成矿是在岩浆向流体演化过程中完成的.

       

    • 图  1  准噶尔地块构造简图(a)及卡姆斯特-干梁子矿床区域地质图(b)

      图据张以熔等(2006)修改;M-C.中-新生界;C1.下石炭统;D2.中泥盆统;1.老鸦泉岩体:黑云母花岗岩、黑云母二长花岗岩;2.贝勒库都克岩体:黑云母正长花岗岩、黑云母二长花岗岩;3.蛇绿岩套:镁铁-超镁铁岩;4.断裂;5.锡矿床

      Fig.  1.  Tectonic outline of Junggar terrane (a) and regional geological sketch of the Kamusite and Ganliangzi deposits (b)

      图  2  新疆卡姆斯特和干梁子锡矿床蚀变分带特征照片、剖面及采样位置示意

      a~f.卡姆斯特锡矿;g~h.干梁子锡矿;1.细粒黑云母花岗岩;2.云英岩化细粒黑云母花岗岩;3.红色细粒黑云母花岗岩;4.含锡云英岩;5.含锡石英脉;6.采样位置

      Fig.  2.  The photos showing alteration zone, and sections and sample location of the Kamusite and Ganliangzi tin deposits

      图  3  卡姆斯特-干梁子锡矿床岩石和矿石显微照片

      a.细粒黑云母花岗岩;b.云英岩化细粒花岗岩;c.云英岩;d.含锡石英脉;矿物代号:Q.石英;Bt.黑云母;Pl.斜长石;Kfs.钾长石;Mus.白云母;Ser.绢云母;Cst.锡石

      Fig.  3.  Microscopic photos for rocks and ores of the Kamusite and Ganliangzi tin deposites

      图  4  卡姆斯特-干梁子锡矿蚀变带化学组分迁移图

      Fig.  4.  Diagram showing the mass balance for the altered zone of the Kamusite and Ganliangzi tin deposits

      图  5  卡姆斯特-干梁子锡矿蚀变带根据TiO2质量分数确定的微量元素等比线

      横纵坐标表示图中各元素在对应岩石中的质量分数(10-6),上两图中坐标轴上括号内数值是专为表示元素Zn、Y、Li、Rb、Cu和Zr的质量分数而设,图中其他元素质量分数用括号外数值表示

      Fig.  5.  Grant's isocon diagram of trace elements based on the mass fraction of TiO2 of the altered zone from the Kamusite and Ganliangzi tin deposits

      图  6  卡姆斯特和干梁子锡矿蚀变带稀土配分曲线模式(a)和微量元素蛛网图(b)

      球粒陨石及原始地幔标准化值引自Sun and McDonough(1989)

      Fig.  6.  Chondrite-normalized REE distribution patterns (a) and primitive mantle-normalized trace element spider diagrams (b) of the altered zone from Kamusite and Ganliangzi tin deposits

      图  7  卡姆斯特-干梁子锡矿矿化蚀变分带特征、元素迁移规律及成矿机制示意

      Fig.  7.  Schematic diagram of mineralized-altered zonation, element migration and formation mechanism of the Kamusite and Ganliangzi tin deposits

      表  1  卡姆斯特和干梁子矿床岩石与矿石主量(%)及微量元素(10-6)表

      Table  1.   Major (%) and trace elements (10-6) data of the wall rocks and ores from the Kamusite and Ganliangzi tin deposits

      剖面 剖面1 剖面2 剖面3 剖面4
      样品 K9-9 K9-10 K9-11 K9-18 K9-16 K9-17 K9-19 K9-21 K9-20 GL9-7 GL9-2 GL9-1
      岩性 细粒黑云母花岗岩 云英岩化细粒花岗岩 含锡石英脉 细粒黑云母花岗岩 云英岩化细粒花岗岩 含锡石英脉 细粒黑云母花岗岩 云英岩化细粒花岗岩 含锡石英脉 细粒黑云母花岗岩 含锡云英岩 含锡石英脉
      SiO2 78.44 75.30 93.99 77.79 73.79 97.81 78.26 79.87 93.60 78.24 81.76 91.30
      TiO2 0.05 0.05 0.05 0.05 0.04 0.03 0.06 0.05 0.06 0.07 0.08 0.07
      Al2O3 10.94 14.69 2.57 11.40 15.57 0.73 11.04 12.28 3.28 11.10 9.14 3.20
      Fe2O3 0.45 0.41 0.84 0.86 0.66 0.16 0.35 0.59 0.33 0.38 0.65 0.56
      FeO 0.45 0.10 0.20 0.10 0.20 0.10 0.55 0.10 0.35 0.30 0.45 0.10
      MnO 0.02 0.02 0.01 0.02 0.01 0.01 0.02 0.02 0.02 0.01 0.02 0.01
      MgO 0.03 0.15 0.06 0.04 0.08 0.01 0.07 0.05 0.01 0.04 0.08 0.01
      CaO 0.13 0.14 0.10 0.13 0.17 0.26 0.15 0.63 0.22 0.34 0.56 0.50
      Na2O 3.76 0.40 0.17 3.87 0.18 0.13 3.65 0.26 0.08 3.83 2.38 0.12
      K2O 4.84 6.81 0.50 4.99 6.54 0.01 4.93 3.70 1.17 4.82 2.42 3.18
      P2O5 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
      F* 0.09 0.12 0.11 0.09 0.26 0.13 0.12 0.35 0.28 0.17 0.38 0.30
      Cl* 0.01 0.05 0.01 0.02 0.00 0.02 0.03 0.13 0.01 0.02 0.02 0.01
      LOI 0.8 1.86 1.42 0.69 2.69 0.71 0.82 2.34 0.78 0.78 1.35 1.00
      总量 100.4 100.0 100.1 100.1 100.1 99.9 100.6 99.9 100.2 100.4 100.3 100.0
      La 8.99 14.7 17.8 6.37 18.8 14.8 14 15.5 20.1 33.6 30.7 18.2
      Ce 21.5 24.0 42.5 17.8 36.8 31.6 32.5 41.6 46.4 78.5 77.2 52.9
      Pr 3.11 3.86 6.78 2.40 4.44 4.50 4.31 5.23 5.95 10.60 11.60 7.46
      Nd 12.50 14.80 25.90 9.97 15.70 16.90 16.10 19.30 21.90 43.60 49.10 31.90
      Sm 3.84 4.63 5.58 3.38 4.44 5.44 4.96 4.82 5.86 10.4 10.9 10.1
      Eu 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.01 0.02 0.03 0.02 0.05
      Gd 3.81 5.08 4.40 3.77 5.06 5.86 5.59 4.29 5.32 10.30 11.10 10.30
      Tb 1.04 1.45 1.10 1.09 1.58 1.83 1.58 1.10 1.51 2.42 2.65 2.59
      Dy 7.82 11.10 8.05 8.12 13.00 14.30 11.70 8.53 11.20 16.10 18.10 17.80
      Ho 1.78 2.79 1.83 1.89 3.45 3.39 2.57 2.02 2.61 3.39 3.78 3.84
      Er 6.44 9.88 6.98 6.81 13.60 12.70 9.13 8.31 10.00 11.00 12.60 11.90
      Tm 1.46 2.16 1.55 1.54 3.17 2.99 1.83 1.96 2.20 1.98 2.21 2.25
      Yb 11.1 16.6 11.8 11.4 23.7 21.1 13.2 15.6 15.9 13.6 14.4 14.5
      Lu 1.86 2.83 1.97 1.92 4.15 3.49 2.10 2.78 2.59 2.09 2.32 2.29
      δEu 0.007 0.007 0.005 0.007 0.004 0.003 0.004 0.002 0.004 0.003 0.002 0.005
      Rb 448.0 634.0 109.0 450.0 621.0 11.9 500.0 431.0 176.0 305.0 211.0 217.0
      Ba 19.50 44.00 6.58 15.20 37.60 7.44 20.00 6.04 10.10 13.50 15.70 57.10
      Th 56.4 46.1 55.5 44.1 48.2 44.9 48.3 53.7 50.7 30.8 32.6 37.9
      U 4.78 4.88 7.94 4.78 6.11 9.91 5.19 5.95 6.81 3.87 9.33 4.75
      Ta 3.62 3.48 2.14 6.52 5.41 1.64 4.18 3.23 2.51 2.37 1.52 1.86
      Nb 16.40 15.40 10.40 19.40 20.60 5.97 16.30 13.40 9.83 13.40 11.20 6.20
      Sr 9.87 8.66 11.80 9.83 77.40 23.40 9.22 10.40 5.99 76.30 155.00 9.01
      Zr 206 178 214 186 197 190 164 204 184 174 179 226
      Hf 12.90 10.60 12.70 13.00 13.70 12.40 9.83 12.50 11.00 8.97 10.20 10.60
      Y 60.1 95.1 52.1 65.1 135.0 117.0 75.8 86.4 97.1 103.0 111.0 113.0
      Li* 184.0 53.0 294.0 147.0 71.7 14.4 250.0 120.0 148.0 60.9 148.0 20.4
      Be* 2.56 3.98 2.89 4.25 6.52 0.03 4.54 1.39 1.13 4.69 3.13 0.43
      Sc* 2.90 2.52 2.69 3.20 4.11 0.29 2.77 2.95 2.13 2.01 2.97 0.66
      V* 13.10 10.60 20.50 15.30 7.00 2.93 8.48 6.91 9.04 6.99 6.63 17.40
      Cr* 9.00 7.79 8.65 11.10 10.30 9.08 4.21 1.66 8.29 2.71 11.00 9.10
      Co* 0.23 0.15 0.22 0.17 0.14 0.09 0.26 0.18 0.19 0.25 0.24 0.20
      Cu* 90.8 38.8 294.0 115.0 211.0 109.0 105.0 211.0 68.3 127.0 468.0 114.0
      Zn* 39.6 9.5 56.8 75.6 45.0 15.0 132.0 13.7 25.6 48.7 81.3 17.2
      Ga* 26.10 32.00 8.86 28.40 28.00 1.45 23.40 26.00 10.90 23.10 16.70 5.73
      Mo* 0.92 0.90 0.26 0.24 0.31 0.32 0.15 0.11 0.27 1.12 0.96 1.34
      Cd* 0.10 0.08 0.81 0.12 0.23 0.05 0.07 0.23 0.16 0.15 2.65 1.69
      In* 0.16 0.21 1.34 0.13 0.32 0.02 0.16 0.28 0.27 0.21 3.26 3.10
      Sb* 0.75 1.35 4.05 2.12 5.16 0.43 0.25 6.20 0.88 0.21 2.35 0.69
      Cs* 26.70 9.48 6.98 20.20 14.00 1.39 81.70 13.30 7.63 17.70 18.80 6.48
      W* 2.35 8.77 8.03 5.60 10.70 3.15 2.73 3.28 5.91 1.11 22.40 5.09
      Tl* 2.45 3.09 0.41 2.64 3.31 0.05 2.69 1.97 0.95 1.55 1.06 1.06
      Pb* 20.60 4.70 9.72 21.40 36.00 9.04 22.20 10.50 4.17 31.20 13.00 5.60
      Bi* 2.95 2.58 7.39 0.80 5.20 2.30 1.12 1.79 0.38 0.82 39.50 67.30
      注:剖面1~3数据王莉娟等(2012);剖面4数据及*元素为本文分析.
      下载: 导出CSV

      表  2  卡姆斯特-干梁子锡矿蚀变带成分(%)迁移数据

      Table  2.   Component (%) migration of altered zone from the Kamusite and Ganliangzi tin deposits

      剖面 蚀变分带 细粒黑云母花岗岩 A阶段:细粒黑云母花岗岩→云英岩化细粒花岗岩/云英岩 B阶段:云英岩化细粒花岗岩/云英岩→含锡石英脉
      元素/参数 wB(%) wB(%) Ti(%) Ti/Mip(%) wB(%) Ti(%) Ti/Mip(%)
      剖面1 K-9 K-10 K-9 → K-10 K-11 K-10 → K-11
      SiO2 78.44 75.3 +1.57 +2.00 93.99 +14.93 +19.83
      Al2O3 10.94 14.69 +4.67 +42.67 2.57 -12.22 -83.20
      Fe2O3 0.45 0.41 -0.01 -3.19 0.84 +0.40 +96.68
      FeO 0.45 0.10 -0.34 -76.39 0.20 +0.09 +92.00
      MnO 0.02 0.02 0.00 -4.93 0.01 0.00 -20.94
      MgO 0.03 0.15 +0.13 +449.57 0.06 -0.09 -60.32
      CaO 0.13 0.14 +0.02 +14.42 0.10 -0.04 -31.43
      Na2O 3.76 0.40 -3.34 -88.70 0.17 -0.24 -59.20
      K2O 4.84 6.81 +2.40 +49.50 0.50 -6.33 -92.95
      P2O5 0.01 0.01 0.00 -2.60 0.011 0.00 -4.00
      F 0.09 0.12 +0.04 +40.11 0.11 -0.01 -12.00
      Cl 0.01 0.05 +0.05 +1 005.00 0.01 -0.04 -76.00
      剖面2 K-18 K-16 K-18→K-16 K-17 K-16→K-17
      SiO2 77.79 73.79 +6.06 +7.79 97.81 +74.61 +101.11
      Al2O3 11.40 15.57 +6.29 +55.20 0.73 -14.46 -92.89
      Fe2O3 0.86 0.66 -0.11 -12.79 0.16 -0.42 -63.22
      FeO 0.10 0.20 +0.13 +127.27 0.10 -0.05 -24.14
      MnO 0.02 0.01 0.00 -21.88 0.01 0.00 -44.83
      MgO 0.04 0.08 +0.04 +98.86 0.01 -0.06 -72.41
      CaO 0.13 0.17 +0.06 +48.60 0.26 +0.22 +132.05
      Na2O 3.87 0.18 -3.67 -94.71 0.13 +0.02 +9.58
      K2O 4.99 6.54 +2.44 +48.93 0.10 -6.39 -97.77
      P2O5 0.01 0.01 0.00 +26.26 0.01 0.00 +36.55
      F 0.09 0.26 +0.20 +224.68 0.13 -0.06 -24.14
      Cl 0.02 0.01 -0.02 -82.06 0.02 +0.03 +962.07
      剖面3 K-19 K-21 K-19→K-21 K-20 K-21→K-20
      SiO2 78.26 79.87 +28.80 +36.80 93.6 -7.75 -9.71
      Al2O3 11.04 12.28 +5.42 +49.10 3.28 -9.75 -79.42
      Fe2O3 0.35 0.59 +0.44 +125.96 0.33 -0.34 -56.90
      FeO 0.55 0.10 -0.42 -75.63 0.35 +0.17 +169.67
      MnO 0.02 0.02 +0.01 +49.81 0.02 0.00 -10.79
      MgO 0.07 0.05 0.00 -3.19 0.01 -0.04 -80.74
      CaO 0.15 0.63 +0.69 +462.98 0.22 -0.46 -73.09
      Na2O 3.65 0.26 -3.30 -90.45 0.08 -0.20 -76.29
      K2O 4.93 3.70 +0.03 +0.60 1.17 -2.80 -75.64
      P2O5 0.01 0.01 0.00 +0.53 0.01 0.00 +11.29
      F 0.12 0.35 +0.35 +290.96 0.28 -0.13 -38.36
      Cl 0.03 0.13 +0.14 +462.11 0.01 -0.12 -94.07
      剖面4 GL9-7 GL9-2 GL9-7→GL9-2 GL9-1 GL9-2→GL9-1
      SiO2 78.24 81.76 -33.79 -43.87 91.30 +96.02 +122.93
      Al2O3 11.10 9.14 -5.83 -47.29 3.20 +16.35 +139.41
      Fe2O3 0.38 0.65 +0.20 +76.11 0.56 +1.31 +154.10
      FeO 0.30 0.45 -0.15 -26.53 0.10 -0.32 -44.02
      MnO 0.01 0.02 -0.00 -23.35 0.01 +0.00 +0.90
      MgO 0.04 0.08 +0.10 +120.11 0.01 -0.05 -13.68
      CaO 0.34 0.56 -0.31 -66.67 0.50 +0.95 +338.65
      Na2O 3.83 2.38 -2.76 -75.73 0.12 +6.87 +429.26
      K2O 4.82 2.42 -3.26 -65.93 3.18 +8.04 +264.44
      P2O5 0.01 0.01 +0.00 +18.62 0.01 +0.01 +81.62
      F 0.17 0.38 +0.20 +117.65 0.30 -0.07 -17.81
      Cl 0.02 0.02 0.00 +26.01 0.01 -0.01 -52.68
        注:表中原岩总质量假设为1,+为带入,-为带出.
      下载: 导出CSV

      表  3  卡姆斯特和干梁子锡矿蚀变带微量元素含量平均值(10-6n=4)

      Table  3.   The average data of trace elements (10-6) of altered zone from the Kamusite and Ganliangzi tin deposits (n=4)

      蚀变带 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Co
      细粒黑云母花岗岩 15.72 37.55 5.13 20.52 5.65 0.03 5.87 1.53 10.94 2.41 8.35 1.70 12.35 1.99 0.23
      云英岩化细粒花岗岩(云英岩) 16.53 33.73 4.90 18.33 5.02 0.02 5.10 1.49 11.61 2.87 10.79 2.47 18.30 3.11 0.15
      含锡石英脉 21.13 54.68 7.53 30.58 7.90 0.03 7.75 1.96 13.96 3.07 10.83 2.16 15.13 2.50 0.20
      Mo Cd In Tl Sb Be Sc Zn Y Li Rb Cu Zr Cr W
      细粒黑云母花岗岩 0.61 0.11 0.16 2.33 0.83 4.01 2.72 73.98 75.50 160.48 424.75 109.45 182.25 6.76 2.95
      云英岩化细粒花岗岩(云英岩) 0.45 0.29 0.47 1.72 2.75 3.35 2.40 31.58 99.80 108.28 343.98 163.20 194.75 8.96 7.66
      含锡石英脉 0.67 1.18 1.73 1.26 2.53 1.52 2.18 34.45 102.38 109.10 258.75 215.33 198.50 7.51 9.17
      Ga Sr Nb Cs Ba Ta Pb Bi Th V Hf Rb/Sr Ba/Rb Nb/Ta
      细粒黑云母花岗岩 25.25 26.33 16.38 36.58 17.05 4.18 23.85 1.42 44.90 10.97 11.18 16.13 0.04 3.92
      云英岩化细粒花岗岩(云英岩) 17.58 30.32 13.09 7.96 23.91 3.17 14.87 4.37 48.68 10.26 12.35 11.35 0.07 4.13
      含锡石英脉 14.83 45.85 10.16 11.55 22.14 2.28 8.32 27.24 43.68 10.00 11.08 5.64 0.09 4.46
      下载: 导出CSV
    • [1] Alderton, D.H.M., Pearce, J.A., Potts, P.J., 1980.Rare Earth Element Mobility during Granite Alteration:Evidence from Southwest England.Earth and Planetary Science Letters, 49(1):149-165. https://doi.org/10.1016/0012-821x(80)90157-0
      [2] Bi, C.S., Shen, X.Y., Xu, Q.S., 1992.The First Discovery of a Tin Deposit Related to Hercynian A-Type Granites in China.Science in China (Series B), 22(6):632-638 (in Chinese with English abstract). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=JBXG199304011&dbname=CJFD&dbcode=CJFQ
      [3] Bi, X.W., Li, H.L., Shuang, Y., et al., 2008.Geochemical Characteristics of Fluid Inclusions from Qitianling A-Type Granite, Hunan Province, China—Tracing the Source of Ore Forming Fluid of the Furong Superlarge Tin Deposit.Geological Journal of China Universities, 14(4):539-548 (in Chinese with English abstract). https://www.researchgate.net/publication/232372330_He_Pb_and_S_isotopic_constraints_on_the_relationship_between_the_A-type_Qitianling_granite_and_the_Furong_tin_deposit_Hunan_Province_China
      [4] Brsukove, V.L., Durasova, N.A., Kovalenko, N.I., 1987.Oxygen Fugacity and Tin Behavior in Metals and Fluids.Geology, 38(6):723-733. https://digitalscholarship.unlv.edu/thesesdissertations/214/
      [5] Chen, F.W., Li, H.Q., Cai, H., et al., 1999.Chronology and Origin of the Ganliangzi Tin Orefield, Xinjiang.Mineral Deposits, 18(1):91-97 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-kcdz901.010.htm
      [6] Chen, J., Wang, R.C., Zhou, J.P., et al., 2000.The Geochemistry of Tin.Nanjing University Press, Nanjing (in Chinese).
      [7] Chen, Y.F., 2013.The Geological Features and Wall-Rock Alteration of the Tin Deposit Related to A-Type Granite from Kalamaili, North Xinjiang (Dissertation).China University of Geosciences, Beijing (in Chinese with English abstract).
      [8] Eby, G.N., 1992.Chemical Subdivision of the A-Type Granitoids:Petrogenetic and Tectonic Implications.Geology, 20(7):641-644.https://doi.org/10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2
      [9] Fulignati, P., Gioncada, A., Sbrana, A., 1999.Rare-Earth Element (REE) Behaviour in the Alteration Facies of the Active Magmatic-Hydrothermal System of Vulcano (Aeolian Islands, Italy).Journal of Volcanology and Geothermal Research, 88(4):325-342. https://doi.org/10.1016/s0377-0273(98)00117-6
      [10] Guo, F.F., Jiang, C.Y., Lu, R.H., et al., 2010.Petrogenesis of the Huangyangshan Alkali Granites in Kalamaili Area, Northern Xinjiang.Acta Petrologica Sinica, 26(8):2357-2373 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201008012.htm
      [11] Han, B.F., Ji, J.Q., Song, B., et al., 2006.Late Paleozoic Vertical Growth of Continental Crust around the Junggar Basin, Xinjiang, China (Part Ⅰ):Timing of Post-Collisional Plutonism.Acta Petrologica Sinica, 22(5):1077-1086 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200605003.htm
      [12] Han, Y.W., Ma, Z.D., Zhang, H.F., et al., 2013.Geochemistry.Geological Publishing House, Beijing 71-80 (in Chinese).
      [13] Hu, X.Y., Bi, X.W., Hu, R.Z., et al., 2007.Advances in Tin Distribution between Granitic Melts and Coexisting Aqueous Fluids and a Review of Tin in Fluids and Melts.Advances in Earth Science, 22(3):281-289 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE198601006.htm
      [14] Jiang, M.R., Zhang, J., Liu, W.H., et al., 2015.Alteration-Mineralization and Element Migration Features of Nihe Iron Depposit in Lujiang, Anhui Province.Earth Science, 40(6):1034-1051 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.086
      [15] Lehmann, B., 1987.Tin Granites, Geochemical Heritage, Magmatic Differentiation.Geologische Rundschau, 76(1):177-185. https://doi.org/10.1007/bf01820581
      [16] Li, H., Myint, A.Z., Yonezu, K., et al., 2018.Geochemistry and U-Pb Geochronology of the Wagone and Hermyingyi A-Type Granites, Southern Myanmar:Implications for Tectonic Setting, Magma Evolution and Sn-W Mineralization.Ore Geology Reviews, 95:575-592. https://doi.org/10.1016/j.oregeorev.2018.03.015
      [17] Li, H.D., Pan, J.Y., Xia, F., et al., 2016.Hydrothermal Alteration and Its Geochemical Characteristics of Lijialing Deposit in Xiangshan Uranium Ore Deposit.Geoscience, 30(3):555-566 (in Chinese with English abstract).
      [18] Li, Y.C., Yang, F.Q., Zhao, C.S., et al., 2007.SHRIMP U-Pb Zircon Dating of the Beilekuduk Pluton in Xinjiang and Its Geological Implications.Acta Petrologica Sinica, 23(10):2483-2492 (in Chinese with English abstract). http://www.oalib.com/paper/1471696
      [19] Li, Z., Hu, R., Yang, J., et al., 2007.He, Pb and S Isotopic Constraints on the Relationship between the A-Type Qitianling Granite and the Furong Tin Deposit, Hunan Province, China.Lithos, 97(1-2):161-173. https://doi.org/10.1016/j.lithos.2006.12.009
      [20] Li, Z.L., 2006.Geochemical Relationship between Tin Mineralization and A-Type Granite: A Case of the Furong Tin Orefield, Hunan Province, South China (Dissertation).Institute of Geochemistry, Chinese Academy of Sciences, Guiyang (in Chinese with English abstract).
      [21] Lin, J.F., Yu, H.X., Yu, X.Q., et al., 2007.Zircon SHRIMP U-Pb Dating and Geological Implication of the Sabei Alkali-Rich Granite from Eastern Junggar of Xinjiang, NW China.Acta Petrologica Sinica, 23(8):1876-1884 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200708008.htm
      [22] Linnen, R.L., Pichavant, M., Holtz, F., et al., 1995.The Effect of fO2 on the Solubility, Diffusion, and Speciation of Tin in Haplogranitic Melt at 850 ℃ and 2 kbar.Geochimica et Cosmochimica Acta, 59(8):1579-1588. https://doi.org/10.1016/0016-7037(95)00064-7
      [23] Liu, X.J., Xu, J.F., Hou, Q.Y., et al., 2007.Geochemical Characteristics of Karamaili Ophiolite in East Junggar, Xinjiang:Products of Ridge Subduction.Acta Petrologica Sinica, 23(7):1591-1602 (in Chinese with English abstract). http://www.oalib.com/paper/1492771
      [24] Melcher, F., Graupner, T., Gäbler, H.E., et al., 2015.Tantalum-(Niobium-Tin) Mineralisation in African Pegmatites and Rare Metal Granites:Constraints from Ta-Nb Oxide Mineralogy, Geochemistry and U-Pb Geochronology.Ore Geology Reviews, 64:667-719. https://doi.org/10.1016/j.oregeorev.2013.09.003
      [25] Moura, M.A., Botelho, N.F., Olivo, G.R., et al., 2014.Genesis of the Proterozoic Mangabeira Tin-Indium Mineralization, Central Brazil:Evidence from Geology, Petrology, Fluid Inclusion and Stable Isotope Data.Ore Geology Reviews, 60(3):36-49. https://doi.org/10.1016/j.oregeorev.2013.12.010
      [26] Murakami, H., Ishihara, S., 2013.Trace Elements of Indium-Bearing Sphalerite from Tin-Polymetallic Deposits in Bolivia, China and Japan:A Femto-Second LA-ICPMS Study.Ore Geology Reviews, 53:223-243. https://doi.org/10.1016/j.oregeorev.2013.01.010
      [27] Müller, B., Seward, T.M., 2001.Spectrophotometric Determination of the Stability of Tin (Ⅱ) Chloride Complexes in Aqueous Solution up to 300 ℃.Geochimica et Cosmochimica Acta, 65(22):4187-4199. https://doi.org/10.1016/s0016-7037(01)00690-1
      [28] Parsapoor, A., Khalili, M., Mackizadeh, M.A., 2009.The Behaviour of Trace and Rare Earth Elements (REE) during Hydrothermal Alteration in the Rangan Area (Central Iran).Journal of Asian Earth Sciences, 34(2):123-134. https://doi.org/10.1016/j.jseaes.2008.04.005
      [29] Samuel, N.W.P., Chung, S.L., Robb, L.J., et al., 2015.Petrogenesis of Malaysian Granitoids in the Southeast Asian Tin Belt:Part 1.Geochemical and Sr-Nd Isotopic Characteristics.Geological Society of America Bulletin, 127(9-10):1209-1237. https://doi.org/10.1130/b31213.1
      [30] Schmidt, C., 2018.Formation of Hydrothermal Tin Deposits:Raman Spectroscopic Evidence for an Important Role of Aqueous Sn (Ⅳ) Species.Geochimica et Cosmochimica Acta, 220:499-511. https://doi.org/10.1016/j.gca.2017.10.011
      [31] Şengör, A.M.C., Natal'in, B.A., Burtman, V.S., 1993.Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia.Nature, 364(6435):299-307. https://doi.org/10.1038/364299a0
      [32] Shu, L.S., Lu, H.F., Yin, D.H., et al., 2001.Late Paleozoic Continental Accretionary Tectonics in Northern Xinjiang.Xinjiang Geology, 19(1):59-63 (in Chinese with English abstract). https://www.researchgate.net/publication/285732348_Late_Paleozoic_continental_accretionary_tectonics_in_northern_Xinjiang
      [33] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [34] Tang, H.F., Zhao, Z.Q., Huang, R.S., et al., 2008.Primary Hf Isotopic Study on Zircons from the A-Type Granites in Eastern Junggar of Xinjiang, Northeast China.Acta Mineralogica Sinica, 28(4):335-342 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB200804001.htm
      [35] Taylor, J.R., Wall, V.J., 1993.Cassiterite Solubility, Tin Speciation, and Transport in a Magmatic Aqueous Phase.Economic Geology, 88(2):437-460. https://doi.org/10.2113/gsecongeo.88.2.437
      [36] Wang, F.M., Liao, Q.A., Fan, G.M., et al., 2014.Geological Implications of Unconformity between Upper and Middle Devonian, and 346.8 Ma Post-Collision Volcanic Rocks in Karamaili, Xinjiang.Earth Science, 39(9):1243-1257 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2014.107
      [37] Wang, J.B., Xu, X., 2006.Post-Collisional Tectonic Evolution and Metallogenesis in Northern Xinjiang, China.Acta Geologica Sinica, 80(1):23-31 (in Chinese with English abstract). https://www.researchgate.net/publication/279622123_Post-collisional_tectonic_evolution_and_metallogenesis_in_Northern_Xinjiang_China
      [38] Wang, L.J., Wang, J.B., Wang, Y.W., et al., 2011.Study on the Geology and Ore-Fluids of the Tin Deposits in Laoyaquan Alkaline Granites in Eastern Junggar, Xinjiang.Acta Petrologica Sinica, 27(5):1483-1492 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201105020
      [39] Wang, L.J., Wang, J.B., Wang, Y.W., et al., 2012.Rock Geochemistry of Laoyaquan Alkaline Granites and Related Tin Deposits in Eastern Junggar, Xinjiang.Mineral Deposits, 31(3):438-448 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0169136814000286
      [40] Wei, J.H., Liu, C.Q., Ding, Z.J., 2000.Active Laws of Element Migration in Wall-Rock Alteration Processes for Hydrothermal Gold Deposits:As Evidenced by Dongping, Hougou and Shuijingtun Gold Deposits.Acta Mineralogica Sinica, 20(2):200-206 (in Chinese with English abstract). doi: 10.1007%2Fs00254-005-0061-8
      [41] Whalen, J.B., Currie, K.L., Chappell, B.W., 1987.A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis.Contributions to Mineralogy and Petrology, 95(4):407-419. https://doi.org/10.1007/bf00402202
      [42] Xiang, X.K., Yin, Q.Q., Feng, C.Y., et al., 2015.Elements and Fluids Migration Regularity of Granodiorite Alteration Zones in the Shimensi Tungsten Polymetallic Deposit in Northern Jiangxi and Their Constrain on Mineralization.Acta Geologica Sinica, 89(7):1273-1287 (in Chinese with English abstract). http://www.academia.edu/6063141/Geodynamics_and_metallogeny_of_Mongolia_with_a_special_emphasis_on_copper_and_gold_deposits_by_Reimar_Seltmann_Ochir_Gerel_and_Douglas_Kirwin_eds
      [43] Xu, X., Zhu, Y.F., Chen, B., 2007.Petrology of the Kamste Ophiolite Mélange from East Junggar, Xinjiang, NW China.Acta Petrologica Sinica, 23(7):1603-1610 (in Chinese with English abstract). https://www.researchgate.net/publication/286498754_Petrology_of_the_Kamste_ophiolite_melange_from_east_Junggar_Xinjiang_NW_China
      [44] Yang, F.Q., Mao, J.W., Yan, S.H., et al., 2008.Ore-Forming Age and Ore-Formation of the Beilekuduke Tin Deposit in East Junggar, Xinjiang.Geological Review, 54(5):626-640 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000004577
      [45] Yu, H.X., Xia, B., Liu, J.Y., et al., 2001.Crustobody Tectonic Evolution Andtectonic-Genetic Types of Granitoids in Eastern Junggar, Xinjiang, China.Geotectonica et Metallogenia, 25(1):64-73 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK200101006.htm
      [46] Yuan, S.D., Mao, J.W., Cook, N.J., et al., 2015.A Late Cretaceous Tin Metallogenic Event in Nanling W-Sn Metallogenic Province:Constraints from U-Pb, Ar-Ar Geochronology at the Jiepailing Sn-Be-F Deposit, Hunan, China.Ore Geology Reviews, 65:283-293. https://doi.org/10.1016/j.oregeorev.2014.10.006
      [47] Yuan, S.D., Peng, J.T., Hao, S., et al., 2011.In Situ LA-MC-ICP-MS and ID-TIMS U-Pb Geochronology of Cassiterite in the Giant Furong Tin Deposit, Hunan Province, South China:New Constraints on the Timing of Tin-Polymetallic Mineralization.Ore Geology Reviews, 43(1):235-242. https://doi.org/10.1016/j.oregeorev.2011.08.002
      [48] Yuan, Y.B., Yuan, S.D., Mao, J.W., et al., 2018.Recognition of Late Jurassic W-Sn Mineralization and Its Exploration Potential on the Western Margin of the Caledonian Guidong Granite Batholith, Nanling Range, South China:Geochronological Evidence from the Liuyuan Sn and Zhuyuanli W Deposits.Ore Geology Reviews, 93:200-210. https://doi.org/10.1016/j.oregeorev.2017.12.025
      [49] Zhang, K.Q., Yang, Y., 2002.Introduction of the Method for Mass Balance Calculation in Altered Rocks.Geological Science and Technology Information, 21(3):104-107 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200203026.htm
      [50] Zhang, K.X., Pan, G.T., He, W.H., et al., 2015.New Division of Tectonic-Strata Superregion in China.Earth Science, 40(2):206-233 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.016
      [51] Zhang, R.Q., Lu, J.J., Lehmann, B., et al., 2017.Combined Zircon and Cassiterite U-Pb Dating of the Piaotang Granite-Related Tungsten-Tin Deposit, Southern Jiangxi Tungsten District, China.Ore Geology Reviews, 82:268-284. https://doi.org/10.1016/j.oregeorev.2016.10.039
      [52] Zhang, Y.R., Zhu, M.Y., Tian, H.X., et al., 2006.Introduction of the Geology and Au-Sn Mineral of Eastern Junggar.Seismological Press, Beijing (in Chinese).
      [53] Zhang, Z.Y., Du, Y.S., Pang, Z.S., et al., 2012.Element Geochemistry Zoning of Tongshan Copper Deposit in Chizhou, Anhui Province, and Its Implications.Acta Petrologica Sinica, 28(10):3255-3270 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201210015
      [54] Zhao, D.L., Yang, J.X., Hu, N.G., et al., 2000.Isotopic Geochronological Characteristics of the Laoyaquan Stanniferous Granite in Eastern Junggar Basin in Xinjiang.Journal of Xi'an Engineering University, 22(2):15-17 (in Chinese with English abstract). https://www.researchgate.net/publication/281977827_Petrogenesis_and_geological_significance_of_highly_fractionated_A-type_granites_in_Kalasayi_East_Junggar
      [55] Zhao, R., Liu, X.F., Pan, R.G., et al., 2015.Element Behaviors during Alteration and Mineralization:A Case Study of the Xinli (Altered Rock Type) Gold Deposit, Jiaodong Peninsula.Acta Petrologica Sinica, 31(11):3420-3440 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201511018
      [56] Zhao, Z.H., Bao, Z.W., Zhang, B.Y., et al., 2001.Crust-Mantle Interaction and Its Contribution to the Shizhuyuan Superlarge Tungsten Polymetallic Mineralization.Science China Earth Sciences, 44(3):266-276. https://doi.org/10.1007/bf02882261
      [57] Zhao, Z.Y., Hou, L., Ding, J., et al., 2017.A Genetic Link between Late Cretaceous Granitic Magmatism and Sn Mineralization in the Southwestern South China Block:A Case Study of the Dulong Sn-Dominant Polymetallic Deposit.Ore Geology Reviews, 93:268-289. https://doi.org/10.1016/j.oregeorev.2017.12.020
      [58] Zheng, L., Gu, X.X., Zhang, Y.M., et al., 2015.Element Mobilization, Mass-Change Quantification and Formation Mechanism of Wall Rock Alteration in the Gaosongshan Epithermal Gold Deposit, Heilongjiang Province, China.Acta Petrologica Sinica, 44(1):87-101 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0169136816308472
      [59] Zhou, Y., Liang, X.Q., Cai, Y.F., et al., 2017.Petrogenesis and Mineralization of Xitian Tin-Tungsten Polymetallic Deposit:Constraints from Mineral Chemistry of Biotite from Xitian A-Type Granite, Eastern Hunan Province.Earth Science, 42(10):1647-1657 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.557
      [60] Zhu, X.Q., Zhang, Q., He, Y.L., et al., 2006.Relationships between Indium and Tin, Zinc and Lead in Ore-Forming Fluid from the Indium-Rich and-Poor Deposits in China.Geochemica, 35(1):6-12 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0169136805000879
      [61] 毕承思, 沈湘元, 徐庆生, 1992.我国与海西期A型花岗岩有关锡矿床的新发现.中国科学(B辑), 22(6): 632-638. http://qikan.cqvip.com/article/detail.aspx?id=985660
      [62] 毕献武, 李鸿莉, 双燕, 等, 2008.骑田岭A型花岗岩流体包裹体地球化学特征——对芙蓉超大型锡矿成矿流体来源的指示.高校地质学报, 14(4): 539-548. doi: 10.3969/j.issn.1006-7493.2008.04.007
      [63] 陈富文, 李华芹, 蔡红, 等, 1999.新疆干梁子锡矿田成岩成矿作用同位素年代学研究及矿床成因探讨.矿床地质, 18(1): 91-97. doi: 10.3969/j.issn.0258-7106.1999.01.011
      [64] 陈骏, 王汝成, 周建平, 等, 2000.锡的地球化学.南京:南京大学出版社.
      [65] 陈言飞, 2013.新疆卡拉麦里与A型花岗岩有关锡矿的地质特征和围岩蚀变(硕士学位论文).北京: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-11415-1015570477.htm
      [66] 郭芳放, 姜常义, 卢荣辉, 等, 2010.新疆北部卡拉麦里地区黄羊山碱性花岗岩的岩石成因.岩石学报, 26(8): 2357-2373. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201008011
      [67] 韩宝福, 季建清, 宋彪, 等, 2006.新疆准噶尔晚古生代陆壳垂向生长(Ⅰ)——后碰撞深成岩浆活动的时限.岩石学报, 22(5): 1077-1086. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=YSXB200605003&dbname=CJFD&dbcode=CJFQ
      [68] 韩吟文, 马振东, 张宏飞, 等, 2003.地球化学.北京:地质出版社, 71-80.
      [69] 胡晓燕, 毕献武, 胡瑞忠, 等, 2007.锡在花岗质熔体和流体中的性质及分配行为研究进展.地球科学进展, 22(3): 281-289. doi: 10.3321/j.issn:1001-8166.2007.03.008
      [70] 江满容, 张均, 刘文浩, 等, 2015.安徽庐江泥河铁矿床蚀变-矿化作用及元素迁移规律.地球科学, 40(6): 1034-1051. http://earth-science.net/WebPage/Article.aspx?id=3097
      [71] 李海东, 潘家永, 夏菲, 等, 2016.相山李家岭铀矿床热液蚀变作用地球化学特征.现代地质, 30(3): 555-566. doi: 10.3969/j.issn.1000-8527.2016.03.006
      [72] 李月臣, 杨富全, 赵财胜, 等, 2007.新疆贝勒库都克岩体的锆石SHRIMP U-Pb年龄及其地质意义.岩石学报, 23(10): 2483-2492. doi: 10.3969/j.issn.1000-0569.2007.10.016
      [73] 李兆丽, 2006.锡成矿与A型花岗岩关系的地球化学研究——以湖南芙蓉锡矿田为例(博士学位论文).贵阳: 中国科学院地球化学研究所. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1615354
      [74] 林锦富, 喻亨祥, 余心起, 等, 2007.新疆东准噶尔萨北富碱花岗岩SHRIMP锆石U-Pb测年及其地质意义.岩石学报, 23(8): 1876-1884. doi: 10.3969/j.issn.1000-0569.2007.08.009
      [75] 刘希军, 许继峰, 侯青叶, 等, 2007.新疆东准噶尔克拉麦里蛇绿岩地球化学:洋脊俯冲的产物.岩石学报, 23(7): 1591-1602. doi: 10.3969/j.issn.1000-0569.2007.07.004
      [76] 舒良树, 卢华复, 印栋浩, 等, 2001.新疆北部古生代大陆增生构造.新疆地质, 19(1): 59-63. doi: 10.3969/j.issn.1000-8845.2001.01.011
      [77] 唐红峰, 赵志琦, 黄荣生, 等, 2008.新疆东准噶尔A型花岗岩的锆石Hf同位素初步研究.矿物学报, 28(4): 335-342. doi: 10.3321/j.issn:1000-4734.2008.04.001
      [78] 王富明, 廖群安, 樊光明, 等, 2014.新疆卡拉麦里上-中泥盆统间角度不整合和346.8 Ma后碰撞火山岩的意义.地球科学, 39(9): 1243-1257. http://d.old.wanfangdata.com.cn/Periodical/dqkx201409001
      [79] 王京彬, 徐新, 2006.新疆北部后碰撞构造演化与成矿.地质学报, 80(1): 23-31. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200601003
      [80] 王莉娟, 王京彬, 王玉往, 等, 2011.新疆东准噶尔老鸦泉富碱花岗岩型锡矿床地质及成矿流体.岩石学报, 27(5): 1483-1492. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201105020
      [81] 王莉娟, 王京彬, 王玉往, 等, 2012.新疆东准噶尔老鸦泉碱性岩及相关锡矿的岩石地球化学特征.矿床地质, 31(3): 438-448. doi: 10.3969/j.issn.0258-7106.2012.03.003
      [82] 魏俊浩, 刘丛强, 丁振举, 等, 2000.热液型金矿床围岩蚀变过程中元素迁移规律——以张家口地区东坪、后沟、水晶屯金矿为例.矿物学报, 20(2): 200-206. doi: 10.3321/j.issn:1000-4734.2000.02.016
      [83] 项新葵, 尹青青, 丰成友, 等, 2015.赣北石门寺钨多金属矿床花岗闪长岩蚀变带元素、流体迁移规律及其对成矿作用的制约.地质学报, 89(7): 1273-1287. doi: 10.3969/j.issn.0001-5717.2015.07.010
      [84] 徐新, 朱永峰, 陈博, 等, 2007.卡姆斯特蛇绿混杂岩的岩石学研究及其地质意义.岩石学报, 23(7): 1603-1610. doi: 10.3969/j.issn.1000-0569.2007.07.005
      [85] 杨富全, 毛景文, 闫升好, 等, 2008.新疆东准噶尔贝勒库都克锡矿床成矿时代及成矿作用.地质论评, 54(5): 626-640. doi: 10.3321/j.issn:0371-5736.2008.05.007
      [86] 喻亨祥, 夏斌, 刘家远, 等, 2001.东准噶尔壳体构造演化与花岗岩构造成因类型.大地构造与成矿学, 25(1): 64-73. doi: 10.3969/j.issn.1001-1552.2001.01.007
      [87] 张可清, 杨勇, 2002.蚀变岩质量平衡计算方法介绍.地质科技情报, 21(3): 104-107. doi: 10.3969/j.issn.1000-7849.2002.03.021
      [88] 张克信, 潘桂棠, 何卫红, 等, 2015.中国构造-地层大区划分新方案.地球科学, 40(2): 206-233. http://earth-science.net/WebPage/Article.aspx?id=3179
      [89] 张以熔, 朱明玉, 田慧新, 等, 2006.东准噶尔地质及金锡矿产研究.北京:地震出版社.
      [90] 张智宇, 杜杨松, 庞振山, 等, 2012.安徽池州铜山铜矿床元素地球化学分带特征及意义.岩石学报, 28(10): 3255-3270. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201210015
      [91] 赵东林, 杨家喜, 胡能高, 等, 2000.新疆东准噶尔老鸦泉含锡花岗岩体同位素年代学特征.西安工程学院学报, 22(2): 15-17. doi: 10.3969/j.issn.1672-6561.2000.02.003
      [92] 赵睿, 刘学飞, 潘瑞广, 等, 2015.胶东新立构造蚀变岩型金矿床元素地球化学行为.岩石学报, 31(11): 3420-3440. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201511018
      [93] 郑硌, 顾雪祥, 章永梅, 等, 2015.黑龙江省高松山浅成低温热液金矿床围岩蚀变元素迁移特征、定量计算与形成机制.地球化学, 44(1): 87-101. http://d.old.wanfangdata.com.cn/Periodical/dqhx201501008
      [94] 周云, 梁新权, 蔡永丰, 等, 2017.湘东锡田燕山期A型花岗岩黑云母矿物化学特征及其成岩成矿意义.地球科学, 42(10): 1647-1657. http://earth-science.net/WebPage/Article.aspx?id=3671
      [95] 朱笑青, 张乾, 何玉良, 等, 2006.富铟及贫铟矿床成矿流体中铟与锡铅锌的关系研究.地球化学, 35(1): 6-12. doi: 10.3321/j.issn:0379-1726.2006.01.002
    • 加载中
    图(7) / 表(3)
    计量
    • 文章访问数:  3667
    • HTML全文浏览量:  1424
    • PDF下载量:  32
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-03-03
    • 刊出日期:  2018-09-15

    目录

      /

      返回文章
      返回