• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    大地电磁六元素张量阻抗理论及其应用

    胡祥云 金钢燮

    胡祥云, 金钢燮, 2018. 大地电磁六元素张量阻抗理论及其应用. 地球科学, 43(10): 3399-3406. doi: 10.3799/dqkx.2018.317
    引用本文: 胡祥云, 金钢燮, 2018. 大地电磁六元素张量阻抗理论及其应用. 地球科学, 43(10): 3399-3406. doi: 10.3799/dqkx.2018.317
    Hu Xiangyun, Kim Kangsop, 2018. A Trial for Introducing 6-Element Tensor Impedance in Magnetotelluric Method and Its Application. Earth Science, 43(10): 3399-3406. doi: 10.3799/dqkx.2018.317
    Citation: Hu Xiangyun, Kim Kangsop, 2018. A Trial for Introducing 6-Element Tensor Impedance in Magnetotelluric Method and Its Application. Earth Science, 43(10): 3399-3406. doi: 10.3799/dqkx.2018.317

    大地电磁六元素张量阻抗理论及其应用

    doi: 10.3799/dqkx.2018.317
    基金项目: 

    中国地质大学(武汉)地学长江计划 CUGCJ1707

    国家自然科学基金项目 41474055

    详细信息
      作者简介:

      胡祥云(1966-), 男, 教授, 主要从事地震层析成像研究

    • 中图分类号: P315

    A Trial for Introducing 6-Element Tensor Impedance in Magnetotelluric Method and Its Application

    • 摘要: 在经典大地电磁(MT)理论中,张量阻抗[ Z ]定义为电场分量和磁场分量之间的线性关系.估算张量阻抗[ Z ]及和它有关的其他参数(例如视电阻率、相位、倾子等)是MT数据处理中的一个重要环节.引入了六元素张量阻抗[ R ]的全新概念,并开发了相应的处理方法.为检验本方法的特征和抗噪性能,对采集自朝鲜的MT野外资料进行了分析.分析结果表明在MT资料处理中新定义的六元素张量阻抗[ R ]比传统的四分量张量阻抗[ Z ]提高测深曲线的相干度至少0.1以上,并且改善了大地电磁资料处理的质量.

       

    • 图  1  在噪声严重的MT测点观测到的电磁场分量之间的相干度曲线

      图a为ExHxHyHz之间相干度;图b为EyHxHyHz之间相干度

      Fig.  1.  The curves of coherencies versus frequency number between observed electircal and magnetic components at a MT station

      图  2  图 1中的MT测点实测电场和用[Z], [R]预测的电场之间的相干度曲线

      图a为与Ex有关的相干度;图b为与Ey有关的相干度

      Fig.  2.  Curves of coherencies between observed and predicted electrical components by using [Z] or [R], respectively at the MT station in Fig. 1

      图  3  图 12中的MT数据用[Z](a)和[R](b)估计的视电阻率ρxyρyx曲线对比

      Fig.  3.  Comparison of ρxy, ρyx apparent resistivity curves by the use of [Z](a) and [R](b) at the MT station in Fig. 1, 2

      图  4  图 2中的MT数据视电阻率ρxy, ρyx曲线的反演结果对比

      图a为实测与正演理论视电阻率曲线, 1, 2分别为用[Z], [R]得到的;图b为反演得到的深度-电阻率模型, 3, 4分别为从1, 2的反演得到的

      Fig.  4.  Comparison of effective apparent resistivity curves (a) and inverted resitivity models versus depth(b) at the MT station in Fig. 1-3, based on [Z] and [R]

      表  1  MT时间序列中磁场分量的振幅比较

      Table  1.   Comparison of amplitudes of magnetic components from MT records

      频率段 采样率t(s) 磁场分量平均振幅(mA/m)
      Hx Hy Hz
      1 6.510 4×10-4 0.562 1.893 0.560
      2 1.016 7×10-2 0.078 0.041 0.063
      3 0.166 667 0.183 0.149 0.350
      4 2.666 67 6.279 10.748 17.410
      平均 1.775 3.208 4.596
      下载: 导出CSV

      表  2  图 1中的测点Ei(i=x, y)和Hj(j=x, y, z)之间的平均相干度

      Table  2.   Coherencies between Ei(i=x, y) and Hj(j=x, y, z) components

      Coh(Ex, Hx) Coh(Ex, Hy) Coh(Ex, Hz) Coh(Ey, Hx) Coh(Ey, Hy) Coh(Ey, Hz)
      0.488 0.456 0.409 0.473 0.419 0.405
      下载: 导出CSV

      表  3  图 1中的MT测点中用[Z]和[R]时Ei, Eip之间平均相干度

      Table  3.   Comparison of coherencies between Ei, Eip components when using [Z] and [R]

      相干度 Coh(Ex) Coh(Ey)
      [Z] 0.659 0.641
      [R] 0.692 0.692
      下载: 导出CSV
    • [1] Auken, E., Boesen, T., Christiansen, A.V., 2017.A Review of Airborne Electromagnetic Methods with Focus on Geotechnical and Hydrological Applications from 2007 to 2017.Advances in Geophysics.
      [2] Berdichevsky, M.N., 1968.Electrical Prospecting with Magnetotelluric Profiling.Nedra, Moscow(in Russia).
      [3] Cao, Z.L., He, Z.X., Chang, Y.J., 2006.A Simulation Study of Induced Polarization Effect of Magnetotelluric and Its Application in Oil and Gas Detection.Progress in Geophysics, 21(4):1252-1257(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ200604031.htm
      [4] de Groot-Hedlin, C., Constable, S., 2004.Inversion of Magnetotelluric Data for 2D Structure with Sharp Resistivity Contrasts.Geophysics, 69(1):78-86. https://doi.org/10.1190/1.1649377
      [5] Egbert, G.D., Livelybrooks, D.W., 1996.Single Station Magnetotelluric Impedance Estimation:Coherence Weighting and the Regression M-Estimate.Geophysics, 61(4):964-970. https://doi.org/10.1190/1.1444045
      [6] Gamble, T.D., Goubau, W.M., Clarke, J., 1979.Magnetotellurics with a Remote Magnetic Reference.Geophysics, 44(1):53-68. https://doi.org/10.1190/1.1440923
      [7] García, X., Jones, A.G., 2002.Atmospheric Sources for Audio-Magnetotelluric (AMT) Sounding.Geophysics, 67(2):448-458. https://doi.org/10.1190/1.1468604
      [8] García, X., Jones, A.G., 2005.A New Methodology for the Acquisition and Processing of Audio-Magnetotelluric (AMT) Data in the AMT Dead Band.Geophysics, 70(5):G119-G126. https://doi.org/10.1190/1.2073889
      [9] Gómez-Treviño, E., Mondragón, M., 1995.Uneven Effect of Random Noise in Magnetotelluric Apparent Resistivity Definitions.Geophysics, 60(4):1238-1242. https://doi.org/10.1190/1.1443853
      [10] Groom, R.W., Bailey, R.C., 1991.Analytic Investigations of the Effects of Near-Surface Three-Dimensional Galvanic Scatterers on MT Tensor Decompositions.Geophysics, 56(4):496-518. https://doi.org/10.1190/1.1443066
      [11] Gupta, D., Choubey, S., 2015.Discrete Wavelet Transform for Image Processing.International Journal of Emerging Technology and Advanced Engineering, 4(3):598-602. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_36d77fb15fc197b8636242fbc09e7525
      [12] Hu, Z.Z., Hu, X.Y., 2005.Review of Three Dimensional Magnetotelluric Inversion Methods.Progress in Geophysics, 20(1):214-220(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ2005010BA.htm
      [13] Li, D.W., Wang, Y.X., 2015.Major Issues of Research and Development of Hot Rock Geothermal Energy.Earth Science, 40(11):1858-1869 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.166
      [14] Lilley, F.E.M., 1998.Magnetotelluric Tensor Decomposition:Part I, Theory for a Basic Procedure.Geophysics, 63(6):1885-1897. https://doi.org/10.1190/1.1444481
      [15] Linde, N., Pedersen, L.B., 2004.Characterization of a Fractured Granite Using Radio Magnetotelluric (RMT) Data.Geophysics, 69(5):1155-1165. https://doi.org/10.1190/1.1801933
      [16] Liu, W.C., Zhang, S.Y., Yang, L.B., et al., 2015.Three-Dimensional Electrical and Deep Structure Features of Akebasitao Area in Western Junggar by AMT Data.Earth Science, 40(3):441-447 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.036
      [17] Muñoz, G., 2014.Exploring for Geothermal Resources with Electromagnetic Methods.Surveys in Geophysics, 35(1):101-122. https://doi.org/10.1007/s10712-013-9236-0
      [18] Pedersen, L.B., Engels, M., 2005.Routine 2D Inversion of Magnetotelluric Data Using the Determinant of the Impedance Tensor.Geophysics, 70(2):G33-G41. https://doi.org/10.1190/1.1897032
      [19] Ri, G., Kim, K., Ri, Y., 2002.The Magnetotelluric Exploration.Publisher of Industry, PyongYang.
      [20] Tripp, A.C., 2005.Acheron's Rainbow:Free Associations on 75 Years of Exploration Geo-Electromagnetics.Geophysics, 70(6):25-31. https://doi.org/10.1190/1.2127107
      [21] Wang, J.Y., Xu, Y.X., 1998.Methods and Advances for Estimation of Magnetotelluric Response Function Abroad.Earth Science Frontiers, 5(2):217-222(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dxqy802.006.htm
      [22] Wang, S.M., Wang, J.Y., 2004.Application of Higher-Order Statistics in Magnetotelluric Data Processing.Chinese Journal of Geophysics, 47(5):928-934(in Chinese with English abstract). doi: 10.1002/cjg2.584/full
      [23] Xu, Y.X., Wang, J.Y., 2000.A Spectrum Estimation Method for Magnetotelluric Signal Based on Continuous Wavelet Transforms.Chinese Journal of Geophysics, 43(5):717-723. https://doi.org/10.1002/cjg2.86
      [24] Xu, Z., 1987.The Processing of Five-Component Magnetotelluric Sounding Data.Oil Geophysical Prospecting, 22(4):435-444. http://en.cnki.com.cn/Article_en/CJFDTotal-SYDQ198704010.htm
      [25] Yee, E., Kosteniuk, P.R., Paulson, K.V., 1988.The Reconstruction of the Magnetotelluric Impedance Tensor:An Adaptive Parametric Time-Domain Approach.Geophysics, 53(8):1080-1087. https://doi.org/10.1190/1.1442544
      [26] Yin, C.C., 2003.Inherent Nonuniqueness in Magnetotelluric Inversion for 1D Anisotropic Models.Geophysics, 68(1):138-146. https://doi.org/10.1190/1.1543201
      [27] Zhang, Y., Zhang, S.Y., 2005.A study of the EH-4 Processing and Interpertation System.Chinese Journal of Engineering Geophysics, 2(4):311-315(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDQ200504010.htm
      [28] Zohdy, A.A.R., 1989.A New Method for the Automatic Interpretation of Schlumberger and Wenner Sounding Curves.Geophysics, 54(2):245-253. https://doi.org/10.1190/1.1442648
      [29] 曹中林, 何展翔, 昌彦君, 2006.MT激电效应的模拟研究及在油气检测中的应用.地球物理学进展, 21(4):1252-1257. doi: 10.3969/j.issn.1004-2903.2006.04.032
      [30] 胡祖志, 胡祥云, 2005.大地电磁三维反演方法综述.地球物理学进展, 20(1):214-220. doi: 10.3969/j.issn.1004-2903.2005.01.037
      [31] 李德威, 王焰新, 2015.干热岩地热能研究与开发的若干重大问题.地球科学, 40(11):1858-1869. https://doi.org/10.3799/dqkx.2015.166
      [32] 刘文才, 张胜业, 杨龙彬, 等, 2015.西准噶尔阿克巴斯陶地区三维电性结构和深部地质特征.地球科学, 40(3):441-447. https://doi.org/10.3799/dqkx.2015.036
      [33] 王家映, 徐义贤, 1998.国外大地电磁响应函数估计方法.地学前缘, 5(2):217-222. doi: 10.3321/j.issn:1005-2321.1998.02.006
      [34] 王书明, 王家映, 2004.高阶统计量在大地电磁测深数据处理中的应用研究.地球物理学报, 47(5):928-934. doi: 10.3321/j.issn:0001-5733.2004.05.027
      [35] 张莹, 张胜业, 2005.EH-4资料处理解释系统的研究.工程地球物理学报, 2(4):311-315. doi: 10.3969/j.issn.1672-7940.2005.04.011
    • 加载中
    图(4) / 表(3)
    计量
    • 文章访问数:  4089
    • HTML全文浏览量:  1770
    • PDF下载量:  34
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-05-11
    • 刊出日期:  2018-10-20

    目录

      /

      返回文章
      返回