Geochemical Characteristics and Tectonic Significance of Granite from Nanfen Metamorphic Core Complexes in Liaoning
-
摘要: 弓长岭花岗岩是南芬变质核杂岩的组成部分,同时也是鞍山-本溪地区前寒武基底的重要组成部分,对其进行探讨对于了解华北克拉通地区在2.50 Ga时期的大地构造背景具有重要意义.选取鞍山-本溪地区的南芬变质核杂岩核部弓长岭花岗片麻岩为研究对象,挑选2件样品中的锆石进行了LA-ICP-MS U-Pb年龄测试,获得不一致线上交点年龄分别为2 505±14 Ma(MSWD=1.30,n=70)和2 507±11 Ma(MSWD=1.16,n=80),代表岩浆结晶的年龄.岩石富SiO2为70.14%~75.36%、K2O为3.12%~6.84%和Al2O3为11.78%~13.75%、全碱(Na2O+K2O)含量在7.8%~9.64%,里特曼指数为1.98~2.94,AR值3.6~9.1显示高硅、富碱特征,A/CNK在0.95~1.23,大部分大于1.11,为强过铝质岩石.较高的稀土含量(∑REE=177.15×10-6~505.64×10-6),轻、重稀土分异明显,LaN/YbN=8.14~29.92,显著富集Rb、Th、Zr、Hf等元素,亏损Nb、Ti等元素,这些特征表明弓长岭花岗岩是在陆块发生碰撞的大地构造背景下由地壳的泥质岩类提供的物源发生部分熔融经分异结晶形成.表明在2.50 Ga时期鞍山-本溪地区处在由陆块发生拼合且向稳定的克拉通化演化的后碰撞阶段.Abstract: The Gongchangling granite is the part of Nanfen metamorphic core complex and is also an important part of the Precambrian basement of Anshan-Benxi area. In order to investigate the tectonic significance of North China craton in Neoproterozoic to Paleoproterozoic, the Gongchangling granite in the Nanfen metamorphic core complex was selected as the research object. LA-ICP-MS U-Pb analyses of 2 zircon samples yield the upper intercept ages of 2 505±14 Ma (MSWD=1.30, n=70) and 2 507±11 Ma (MSWD=1.16, n=80), which represents the crystallization time of the magma. The studied samples have high SiO2 of 70.14% to 75.36%, K2O of 3.12% to 6.84%, Al2O3 of 11.78% to 13.75% and total alkali (Na2O+K2O) of 7.8% to 9.64%.The samples show Rittmann index(δ) from 1.98 to 2.94, and AR from 3.6 to 9.1, which suggests that the granite is enriched in silicon and alkali. A/CNK=0.95-1.23, with the majority of more than 1.11, indicate that it is peraluminous rock. Results show ∑REE=177.15×10-6-505.64×10-6, LaN/YbN=8.14-29.92, obvious fractionation of LREE to HREE, enriched LILE, such as Rb, Th, Zr, Hf, depleted of Nb, Ti and other elements. The geochemical characteristics of rocks indicate that the Gongchangling granite was formed by partial melting of the crustal argillite in the collision tectonic setting of the continental block through differentiation and crystallization. It is indicated that the Anshan-Benxi area was in the transition period in 2.50 Ga from post-collision to stable stage after assemblage of the continental blocks.
-
图 6 弓长岭花岗岩的地球化学分类及A/NK-A/CNK和A/MF-C/MF图解
图a据Peccerillo and Taylor(1976);图b据Pearce et al.(1984);图c据Rickwood(1989);图d据Maniar and Piccoli(1989)
Fig. 6. Geochemical classification and A/NK-A/CNK, A/MF-C/MF diagrams of Gong Changling granite
图 7 稀土元素球粒陨石标准化配分图解(a)和微量元素原始地幔标准化蛛网图(b)
Fig. 7. Chondrite-normalized REE patterns(a) and primitive mantle-normalized spidergram(b) for the granite of Nanfen metamorphic core complex
图 9 弓长岭花岗岩的构造环境图解
据Pearce et al.(1984);Pearce, 1996. VAG.火山弧花岗岩;Syn-COLG.同碰撞花岗岩;Post-COLG.后碰撞花岗岩;WPG.板内花岗岩;ORG.洋脊花岗岩
Fig. 9. The tectonic environment diagram of Gongchangling granite
-
[1] Cao, Z.Q., Zhai, W.J., Jiang, X.F., et al., 2016. About 2.5 Ga Tectono-Metamorphic Event in Southern Margin of North China Craton and Its Significance. Earth Science, 41(4):570-585(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201604002 [2] Geng, Y.S., Du, L.L., Ren, L.D., 2012.Growth and Reworking of the Early Precambrian Continental Crust in the North China Craton: Constraints from Zircon Hf Isotopes. Gondwana Research, 21(2-3): 517-529. https://doi.org/10.1016/j.gr.2011.07.006 [3] Geng, Y.S., Shen, Q.H., Ren, L.D., 2010.Late Neoarchean to Early Paleoproterozoic Magmatic Events and Tectonothermal Systems in the North China Craton. Acta Petrologica Sinica, 26(7):1945-1966(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201007001 [4] Han, J., 2009.Early Precambrian Geochemistry, Chronology and Isotopic Tracer of Uranium Mineralization in Anben Area (Dissertation). Beijing Research Institute of Uranium Geology, Beijing(in Chinese with English abstract). [5] Kusky, T.M., Li, J.H., Santosh, M., 2007a. The Paleoproterozoic North Hebei Orogen: North China Craton's Collisional Suture with the Columbia Supercontinent. Gondwana Research, 12(1-2): 4-28. https://doi.org/10.1016/j.gr.2006.11.012 [6] Kusky, T.M., Windley, B.F., Zhai, M.G., 2007b.Tectonic Evolution of the North China Block: From Orogeny to Craton to Orogen. In: Zhai, M.Q., Windley, B.F., Kusky, T.M., et al., eds., Mesozoic Sub-Continental Lithospheric Thinning under Eastern Asia. Geological Society of London, Special Publications, 280(1): 1-34. [7] Li, C.M., 2009. A Review on the Minerageny and Situ Microanalytical Dating Techniques of Zircons. Geological Survey and Research, 33(3): 161-174(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhwjyjjz200903001 [8] Li, S.Z., Li, X.Y., Dai, L.M., et al., 2015.Precambrian Geodynamics(Ⅵ): Formation of North China Craton. EarthScience Frontiers, 22(6):77-96(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201506008.htm [9] Liu, Y., Gao, S., Hu, Z., et al., 2009. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082 [10] Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 [11] Liu, D.Y., Wan, Y.S., Wu, J.S., et al., 2007.Archean Crustal Evolution and the Oldest Rocks in the North China Craton. Geological Bulletin of China, 26(9):1131-1138(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx-e201005019 [12] Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)101 < 0635:tdog > 2.3.co; 2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 [13] Nutman, A. P., Wan, Y. S., Du, L. L., et al., 2011. Multistage Late Neoarchaean Crustal Evolution of the North China Craton, Eastern Hebei. Precambrian Research, 189(1-2): 43-65. https://doi.org/10.1016/j.precamres.2011.04.005 [14] Pearce, J., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120-125. https://doi.org/10.18814/epiiugs/1996/v19i4/005 [15] Pearce, J.A., Harris, N.B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956 [16] Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745 [17] Pitcher, W.S., 1983.Granite Type and Tectonic Environment. In: Hsu, K., ed., Mountain Building Processes. Academic Press, London, 19-40. [18] Polat, A., Hofmann, A. W., 2003. Alteration and Geochemical Patterns in the 3.7-3.8 Ga Isua Greenstone Belt, West Greenland. Precambrian Research, 126(3-4): 197-218. https://doi.org/10.1016/s0301-9268(03)00095-0 [19] Rickwood, P.C., 1989. Boundary Lines within Petrologic Diagrams which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247-263. https://doi.org/10.1016/0024-4937(89)90028-5 [20] Shen, Q.H., 2005. New Progress, Problems and Suggestions in the Study of the Early Precambrian Stratigraphy of China. Journal of Stratigraphy, 29(Suppl.1): 411-415(in Chinese with English abstract). [21] Shen, Q.H., Geng, Y.S., Song, H.X., 2016.Constituents and Evolution of the Metamorphic Basement of the North China Craton.Acta Geoscientia Sinica, 37(4):387-406(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201604002 [22] Song, B., Nutman, A. P., Liu, D. Y., et al., 1996.3 800 to 2 500 Ma Crustal Evolution in the Anshan Area of Liaoning Province, Northeastern China. Precambrian Research, 78(1-3): 79-94. https://doi.org/10.1016/0301-9268(95)00070-4 [23] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [24] Sylvester, P.J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1-4): 29-44. https://doi.org/10.1016/s0024-4937(98)00024-3 [25] Wan, Y., Ma, M., Dong, C., et al., 2015. Widespread Late Neoarchean Reworking of Meso- to Paleoarchean Continental Crust in the Anshan-Benxi Area, North China Craton, as Documented by U-Pb-Nd-Hf-O Isotopes. American Journal of Science, 315(7): 620-670. https://doi.org/10.2475/07.2015.02 [26] Wan, Y.S., 1992. Formation and Evolution of the Iron-Bearing Rock Series of Gongchangling Area, Liaoning Province(Dissertation). Chinese Academy of Geological Sciences, Beijing(in Chinese with English abstract). [27] Wan, Y. S., Dong, C. Y., Liu, D. Y., et al., 2012. Zircon Ages and Geochemistry of Late Neoarchean Syenogranites in the North China Craton: A Review. Precambrian Research, 222/223: 265-289. https://doi.org/10.1016/j.precamres.2011.05.001 [28] Wan, Y.S., Dong, C.Y., Xie, H.Q., et al., 2015.Some Progress in the Study of Archean Basement of the North China Craton. Acta Geoscientica Sinica, 36(6):685-700(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201506001 [29] Wan, Y.S., Dong, C.Y., Xie, H.Q., et al., 2018.Formation Age of BIF-Bearing Anshan Group Supracrustal Rocks in Anshan-Benxi Area: New Evidence from SHRIMP U-Pb Zircon Dating. Earth Science, 43(1):57-81(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201801004 [30] Wan, Y.S., Liu, D.Y., 1993.Ages of Zircons from Mid-Archaean Gneissic Granite and Fuchsite Quartzite in the Gongchangling Area, Liaoning. Geological Review, 39(2): 124-129(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp199302005 [31] Wang, J.P., 2015.Identifacation and Tectonic Implication of the Neoarchean Zanhuang Mélange in the Central Orogenic Belt, North China Craton(Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract). [32] Wang, W., Yang, H., Ji, L., 2017.The Identification of the Neoarchean 2.52-2.46 Ga Tectono-Thermal Events from the Liaonan Terrain and Its Geological Significance.Acta Petrologica Sinica, 33(9): 2775-2784(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201709008 [33] Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/bf00402202 [34] Williamson, B. J., Shaw, A., Downes, H., et al., 1996. Geochemical Constraints on the Genesis of Hercynian Two-Mica Leucogranites from the Massif Central, France. Chemical Geology, 127(1-3): 25-42. https://doi.org/10.1016/0009-2541(95)00105-0 [35] Wu, J.S., Geng, Y.S., Shen, Q.H., et al., 1998.Archean Geological Characteristics and Tectonic Evolution of China-Korea Paleo-Continent. Geological Publishing House, Beijing(in Chinese). [36] Wu, Y.B., Zheng, Y.F., 2004. Genetic Mineralogy of Zircon and Its Constraints on the Interpretation of U-Pb Age. Chinese Science Bulletin, 49(16):1589-1604(in Chinese). doi: 10.1360/csb2004-49-16-1589 [37] Yang, J. H., Wu, F. Y., Wilde, S.A., et al., 2008. Petrogenesis and Geodynamics of Late Archean Magmatism in Eastern Hebei, Eastern North China Craton: Geochronological, Geochemical and Nd-Hf Isotopic Evidence. Precambrian Research, 167(1-2): 125-149. https://doi.org/10.1016/j.precamres.2008.07.004 [38] Yang, F.C., Sun, J.G., Song, Y.H., et al., 2016.SHRIMP U-Pb age, Hf Isotope Composition and Geochemical Characteristics of Neoarchean Granitic Complex in Liaodong Lianshanguan area, NE China. Earth Science, 41(12): 2008-2018(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201612003 [39] Zhai, M.G., Peng, P., 2007.Paleoproterozoic Events in the North China Craton. Acta Petrologica Sinica, 23(11): 2665-2682(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201307018 [40] Zhang, J.H., Tian, H., Wang, H.C., et al., 2019.Re-Definition of the Two-Stage Early-Precambrian Meta-Supracrustal Rocks in the Huai'an Complex, North China Craton: Evidences from Petrology and Zircon U-Pb Geochronology. Earth Science, 44(1):1-22(in Chinese with English abstract). [41] Zhang, Q., 2011.The Central Belt of the North China Craton during Paleoproterozoic is an Orogenic Belt? Acta Petrologica Sinica, 27(4):1029-1036(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201104010 [42] Zhao, G.C., 2007.When did Plate Tectonics Begin on the North China Craton? Insights from Metamorphism.Earth Science Frontiers, 14(1):19-32(in Chinese with English abstract). doi: 10.1016/S1872-5791(07)60002-5 [43] Zhao, G.C., 2009.Metamorphic Evolution of Major Tectonic Units in the Basement of the North China Craton: Key Issues and Discussion. Acta Petrologica Sinica, 25(8):1772-1792(in Chinese with English abstract). [44] Zhao, G.C., Sun.M., Wilde, S.A., 2002.Characteristics of Basement Tectonic Units of North China Craton: Early Proterozoic Assemblage. Science in China(Ser.D), 32(7):538-549(in Chinese). [45] Zhao, X., Coe, R.S., Gilder, S.A., et al., 1996. Palaeomagnetic Constraints on the Palaeogeography of China: Implications for Gondwanaland. Australian Journal of Earth Sciences, 43(6): 643-672. https://doi.org/10.1080/08120099608728285 [46] Zhao, Z.H., 2016. Principle of Trace Element Geochemistry. Science Press, Beijing(in Chinese). [47] Zhou, S.T., 1994.Zonal Iron Ore Geology in Anshan-Benxi Area. Geological Publishing House, Beijing(in Chinese). [48] Zhu, K., 2016.The Formation and Evolution of the Archaean Greenstone Belt in the Anshan-Benxi Area(Dissertation). Jilin University, Changchun(in Chinese with English abstract). [49] 曹正琦, 翟文建, 蒋幸福, 等, 2016.华北克拉通南缘约2.5 Ga构造变质事件及意义.地球科学, 41(4): 570-585. doi: 10.3799/dqkx.2016.047 [50] 耿元生, 沈其韩, 任留东, 2010.华北克拉通晚太古代末-古元古代初的岩浆事件及构造热体制.岩石学报, 26(7):1945-1966. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201007001 [51] 韩军, 2009.鞍本地区早前寒武纪地球化学、年代学及铀成矿作用同位素示踪(博士学位论文).北京: 核工业北京地质研究院. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D115923 [52] 李长民, 2009.锆石成因矿物学与锆石微区定年综述.地质调查与研究, 33(3): 161-174. doi: 10.3969/j.issn.1672-4135.2009.03.001 [53] 李三忠, 李玺瑶, 戴黎明, 等, 2015.前寒武纪地球动力学(Ⅵ):华北克拉通形成.地学前缘, 22(6): 77-96. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201506008.htm [54] 刘敦一, 万渝生, 伍家善, 等, 2007.华北克拉通太古宙地壳演化和最古老的岩石.地质通报, 26(9):1131-1138. doi: 10.3969/j.issn.1671-2552.2007.09.015 [55] 沈其韩, 2005.我国早前寒武纪地层研究进展、问题和建议.地层学杂志, 29(S1): 411-415. http://d.old.wanfangdata.com.cn/Conference/7065174 [56] 沈其韩, 耿元生, 宋会侠, 2016.华北克拉通的组成及其变质演化.地球学报, 37(4):387-406. http://d.old.wanfangdata.com.cn/Periodical/dqxb201604002 [57] 万渝生, 1992.辽宁弓长岭含铁岩系的形成与演化(博士学位论文).北京: 中国地质科学院. [58] 万渝生, 董春艳, 颉颃强, 等, 2015.华北克拉通太古宙研究若干进展.地球学报, 36(6):685-700. http://d.old.wanfangdata.com.cn/Periodical/dqxb201506001 [59] 万渝生, 董春艳, 颉颃强, 等, 2018.鞍山-本溪地区鞍山群含BIF表壳岩形成时代新证据:锆石SHRIMP U-Pb定年.地球科学, 43(1):57-81. doi: 10.3799/dqkx.2018.004 [60] 万渝生, 刘敦一, 1993.辽宁弓长岭中太古代片麻状花岗岩和铬云母石英岩的锆石年龄.地质论评, 39(2): 124-129. doi: 10.3321/j.issn:0371-5736.1993.02.005 [61] 王军鹏, 2015.华北克拉通新太古代赞皇混杂岩的厘定及其大地构造意义(博士学位论文).武汉: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-10491-1015709884.htm [62] 王伟, 杨红, 冀磊, 2017.辽南地块新太古代2.52~2.46 Ga构造-热事件的识别及地质意义.岩石学报, 33(9): 2775-2784. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201709008.htm [63] 伍家善, 耿元生, 沈其韩, 等, 1998.中朝古大陆太古宙地质特征及构造演化.北京:地质出版社. [64] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [65] 杨凤超, 孙景贵, 宋运红, 等, 2016.辽东连山关地区新太古代花岗杂岩SHRIMP U-Pb年龄、Hf同位素组成及地质意义.地球科学, 41(12): 2008-2018. doi: 10.3799/dqkx.2016.140 [66] 翟明国, 彭澎, 2007.华北克拉通古元古代构造事件.岩石学报, 23(11): 2665-2682. doi: 10.3969/j.issn.1000-0569.2007.11.001 [67] 张家辉, 田辉, 王惠初, 等, 2019.华北克拉通怀安杂岩中早前寒武纪两期变质表壳岩的重新厘定:岩石学及锆石U-Pb年代学证据.地球科学, 44(1):1-22. doi: 10.3969/j.issn.1672-6561.2019.01.001 [68] 张旗, 2011.华北克拉通中部在古元古代时是一个造山带吗?岩石学报, 27(4):1029-1036. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201104010 [69] 赵国春, 2007.从变质作用观看板块构造何时在华北克拉通开始(英文).地学前缘, 14(1):19-32. doi: 10.3321/j.issn:1005-2321.2007.01.002 [70] 赵国春, 2009.华北克拉通基底主要构造单元变质作用演化及其若干问题讨论.岩石学报, 25(8):1772-1792. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200908004 [71] 赵国春, 孙敏, Wilde, S.A., 等, 2002.华北克拉通基底构造单元特征及早元古代拼合.中国科学(D辑:地球科学), 32(7):538-549. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200207002 [72] 赵振华, 2016.微量元素地球化学原理.北京:科学出版社. [73] 周世泰, 1994.鞍山-本溪地区条带状铁矿地质.北京:地质出版社. [74] 朱凯, 2016.鞍山-本溪地区太古宙绿岩带的形成及演化(博士学位论文).长春: 吉林大学. http://cdmd.cnki.com.cn/Article/CDMD-10183-1017009775.htm -
dqkx-44-10-3551-TableS1-2.pdf