• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    华北西部贺兰山中段黄旗口花岗岩成因及地质意义

    余淳梅 杨华本 曾佐勋 吴林波

    余淳梅, 杨华本, 曾佐勋, 吴林波, 2019. 华北西部贺兰山中段黄旗口花岗岩成因及地质意义. 地球科学, 44(4): 1266-1277. doi: 10.3799/dqkx.2018.295
    引用本文: 余淳梅, 杨华本, 曾佐勋, 吴林波, 2019. 华北西部贺兰山中段黄旗口花岗岩成因及地质意义. 地球科学, 44(4): 1266-1277. doi: 10.3799/dqkx.2018.295
    Yu Chunmei, Yang Huaben, Zeng Zuoxun, Wu Linbo, 2019. Geochemistry and Significance of Paleoproterozoic Granitoids from Huangqikou, Central Helanshan Area. Earth Science, 44(4): 1266-1277. doi: 10.3799/dqkx.2018.295
    Citation: Yu Chunmei, Yang Huaben, Zeng Zuoxun, Wu Linbo, 2019. Geochemistry and Significance of Paleoproterozoic Granitoids from Huangqikou, Central Helanshan Area. Earth Science, 44(4): 1266-1277. doi: 10.3799/dqkx.2018.295

    华北西部贺兰山中段黄旗口花岗岩成因及地质意义

    doi: 10.3799/dqkx.2018.295
    基金项目: 

    中国地质大学(武汉)中央高校基本科研业务费专项资金 CUG090101

    宁夏1:5万黄旗口幅区调项目 J48E009016

    国家自然科学青年基金项目 40602009

    详细信息
      作者简介:

      余淳梅(1977-), 博士, 副教授, 从事岩石学和矿物学的教学与研究工作

    • 中图分类号: P581

    Geochemistry and Significance of Paleoproterozoic Granitoids from Huangqikou, Central Helanshan Area

    • 摘要: 华北克拉通孔兹岩带内发育类型复杂的各类岩石,是记录和反演华北西部早期块体拼合以及岩浆作用、变质演化的重要对象,而其中段发育的出露面积广阔、岩性复杂的黄旗口花岗岩体的研究还较为薄弱.在野外地质和岩相学研究基础上,主要报道了贺兰山中段黄旗口花岗岩的主、微量元素和Sr-Nd同位素组成,对岩体的源区特征、成因及地质意义进行了探讨.黄旗口复式花岗岩体主要由早期正长花岗岩、二长花岗岩和晚期英云闪长岩组成.两期岩体具有高K2O(2.97%~6.71%)含量,A/CNK均大于1.1,但晚期侵入单元较早期岩石更贫硅、富铝.两期岩体都表现为轻稀土富集、Eu负异常的特点,且强烈富集K、Rb、Th等大离子亲石元素,亏损Nb、Ta、P、Ti等高场强元素.岩石87Sr/86Sr初始比值变化范围较大,可能是后期改造的结果;εNdt)变化在+1.81~+4.90,对应的Nd同位素模式年龄TDM1为2.10~2.37 Ga,TDM2为2.10~2.35 Ga.这些特征表明黄旗口岩体为S型花岗岩,可能来自该区归属于孔兹岩的赵池沟组岩系的部分熔融,并可能有地幔岩浆的参与.结合区域变质、岩浆事件的综合研究成果,认为黄旗口不同期次的花岗岩具有造山带花岗岩的特征,分别形成于阴山地块和鄂尔多斯地块碰撞拼合以及造山后伸展的不同阶段.

       

    • 图  1  贺兰山中段黄旗口地区地质构造简图

      修改自宁夏国土资源调查监测院(2013,贺兰山中段1:5万区域地质调查成果报告);图a为华北克拉通构造单元划分简图,修改自Zhao et al.(2005),其中白框所示为工作区(东经105°45′~106°00′,北纬38°30′~38°40′)

      Fig.  1.  Geological sketch map of Huangqikou in central Helanshan area

      图  2  贺兰山中段黄旗口花岗岩野外特征

      a.野外早晚两期岩体接触界线;b.黄旗口岩体中的捕掳体;c.岩体中穿插的辉绿岩脉;d.大口子沟出露的石榴石花岗岩

      Fig.  2.  Field characteristics of the Huangqikou granites in central Helanshan

      图  3  贺兰山中段黄旗口花岗岩体岩相学特征

      a.石榴石花岗岩的镜下显微特征,1966-1;b.二长花岗岩中矿物组合:Q(石英)+Mi(微斜长石)+Pl(斜长石)+Bi(黑云母),401-13-2;c.英云闪长岩中矿物组合:Q(石英)+Pl(斜长石)+Bi(黑云母)+Ms(白云母),401-6-1

      Fig.  3.  Petrographic characteristics of the Huangqikou granites in central Helanshan

      图  4  贺兰山中段黄旗口和白杨沟岩体TAS图解

      底图据Middlemost(1994)

      Fig.  4.  Plot of SiO2 vs. Na2O+K2O of the Huangqikou and Baiyanggou granitic plutons in central Helanshan

      图  5  贺兰山中段黄旗口和白杨沟岩体的A/NK-A/CNK(a)和K2O-SiO2(b)关系

      图a据Maniar and Piccoli(1989), 图b据Rickwood(1989)

      Fig.  5.  Plots of A/CNK vs. A/NK (a) and SiO2 vs. K2O (b) of the Huangqikou and Baiyanggou granitic plutons in central Helanshan

      图  6  贺兰山中段黄旗口和白杨沟岩体主量元素哈克图解

      Fig.  6.  Harker diagrams of major elements of the Huangqikou and Baiyanggou granitic plutons in central Helanshan

      图  7  贺兰山中段黄旗口及白杨沟岩体稀土元素配分图(a,c)和微量元素蛛网图(b,d)

      球粒陨石、原始地幔数据引自Sun and McDonough(1989)

      Fig.  7.  Chondrite-normalized REE patterns (a, c) and primitive mantle-normalized spidergrams (b, d) for the Huangqikou and Baiyanggou granitic plutons in central Helanshan

      图  8  贺兰山中段黄旗口和白杨沟花岗岩的Rb/Ba-Rb/Sr图解

      其他样品数据来自Sylvester (1998)

      Fig.  8.  Plot of Rb/Ba vs. Rb/Sr of the granitic rocks from the Huangqikou and Baiyanggou area in central Helanshan

      表  1  贺兰山中段黄旗口和白杨沟岩体Sr-Nd同位素组成

      Table  1.   Sr and Nd isotopic compositions of the Huangqikou and Baiyanggou granitic plutons in central Helanshan

      样品编号 87Rb/86Sr 87Sr/86Sr (87Sr/86Sr)i 147Sm/144Nd 143Nd/144Nd εNd(t) TDM1(Ma) TDM2(Ma)
      D0509-1 早期岩体 4.700 0.831 67 6 0.692 84 0.131 7 0.511 982 7 4.35 2 162 2 146
      101-3-1 4.492 0.839 92 4 0.707 24 0.125 2 0.511 766 8 1.81 2 374 2 349
      401-2-1 4.458 0.814 90 5 0.683 22 0.125 8 0.511 879 5 3.89 2 194 2 183
      401-8-1 3.448 0.804 52 4 0.702 68 0.128 1 0.511 853 9 2.77 2 299 2 272
      401-10-1 3.246 0.785 58 4 0.689 71 0.107 6 0.511 685 7 4.90 2 097 2 102
      401-12-3 1.437 0.744 73 5 0.702 28 0.102 7 0.511 576 4 4.06 2 153 2 169
      101-7-2 晚期岩体 1.361 0.754 52 4 0.717 28 0.116 4 0.511 744 4 2.16 2 193 2 198
      101-4-1 5.906 0.842 90 6 0.681 40 0.129 3 0.511 933 8 2.69 2 190 2 156
      401-7-1 2.157 0.759 79 5 0.700 79 0.106 8 0.511 629 4 2.24 2 161 2 192
      D1514-4 白杨沟 1.028 0.761 76 6 0.731 39 0.1161 0.511 810 13 5.10 2 085 2 086
      D1514-13 3.381 0.771 21 5 0.671 35 0.1174 0.511 703 5 2.64 2 281 2 283
      注:(87Sr/86Sr)i=(87Sr/86Sr)S-(87Rb/86Sr)S× (eλt-1), λ=1.42×10-11 a-1; εNd(t)=[(143Nd/144Nd)S/(143Nd/144Nd)CHUR(t)-1]×104, TDM1=1/λ×ln{1+[((143Nd/144Nd)S-(143Nd/144Nd)DM)/((147Sm/144Nd)S-(147Sm/144Nd)DM)]}; TDM2=1/λ×ln{1+[(143Nd/144Nd)S-(143Nd/144Nd)DM-((147Sm/144Nd)S-(147Sm/144Nd)C)×(eλt-1)]/[(147Sm/144Nd)C-(147Sm/144Nd)DM]},公式中的下标S、CHUR、DM、C分别表示样品测量值、球粒陨石值、亏损地幔值、大陆地壳平均值,(143Nd/144Nd)DM=0.513 15,(147Sm/144Nd)DM=0.213 7,(147Sm/144Nd)C=0.118,λ=6.54×10-12 a-1t为岩浆结晶年龄,早期岩体为2.05 Ga,晚期岩体为1.90 Ga.
      下载: 导出CSV
    • [1] Barbarin, B., 1999.A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments.Lithos, 46(3):605-626. https://doi.org/10.1016/s0024-4937(98)00085-1
      [2] Chappell, B.W., 1999.Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites.Lithos, 46(3):535-551. https://doi.org/10.1016/s0024-4937(98)00086-3
      [3] Dan, W., Li, X.H., Guo, J.H., et al., 2012.Integrated In-Situ Zircon U-Pb Age and Hf-O Isotopes for the Helanshan Khondalites in North China Craton:Juvenile Crustal Materials Deposited in Active or Passive Continental Margin? Precambrian Research, 222/223:143-158. https://doi.org/10.1016/j.precamres.2011.07.016
      [4] Dan, W., Li, X.H., Wang, Q., et al., 2014.Paleoproterozoic S-Type Granites in the Helanshan Complex, Khondalite Belt, North China Craton:Implications for Rapid Sediment Recycling during Slab Break-off.Precambrian Research, 254:59-72. https://doi.org/10.1016/j.precamres.2014.07.024
      [5] Dong, C.Y., Wan, Y.S., Wilde, S.A., et al., 2014.Earliest Paleoproterozoic Supracrustal Rocks in the North China Craton Recognized from the Daqingshan Area of the Khondalite Belt:Constraints on Craton Evolution.Gondwana Research, 25(4):1535-1553. https://doi.org/10.1016/j.gr.2013.05.021
      [6] Dong, C.Y., Wan, Y.S., Xu, Z.Y., et al., 2013.SHRIMP Zircon U-Pb Dating of Late Paleoproterozoic Kondalites in the Daqing Mountains Area on the North China Craton.Scientia Sinica Terrae, 56(1). https://doi.org/10.1007/s11430-012-4459-3
      [7] Geng, Y.S., Zhou, X.W., Wang, X.S., et al., 2009.Late-Paleoproterozoic Granite Events and Their Geological Significance in Helanshan Area, Inner Mongolia:Evidence from Geochronology.Acta Petrologica Sinica, 25(8):1830-1842(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200908010.htm
      [8] Guo, J.H., Peng, P., Chen, Y., et al., 2012.UHT Sapphirine Granulite Metamorphism at 1.93-1.92 Ga Caused by Gabbronorite Intrusions:Implications for Tectonic Evolution of the Northern Margin of the North China Craton.Precambrian Research, 222/223:124-142. https://doi.org/10.1016/j.precamres.2011.07.020
      [9] King, P.L., White, A.J.R., Chappell, B.W., et al., 1997.Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia.Journal of Petrology, 38(3):371-391. https://doi.org/10.1093/petroj/38.3.371
      [10] Li, H.Y., Song, X.H., Guo, H.W., et al., 2010.Geological and Geochemical Features and Ore Genesis of the Niutougou Gold Deposit in the Northern Helan Shan Mountains, Ningxia.Geology and Exploration, 46(6):1036-1044(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201006009.htm
      [11] Li, L.M., Zeng, Z.X., Lu, Y.J., et al., 2014.LA-ICP-MS U-Pb Geochronology of Detrital Zircons from the Zhaochigou Formation—Complex in the Helan Mountain and Its Tectonic Significance.Chinese Science Bulletin, 59(13):1425-1437. https://doi.org/10.1007/s11434-014-0180-2
      [12] Li, Z.H., Liu, X.M., Dong, Y.P., et al., 2013.Geochemistry and Zircon U-Pb Age of the Paleoproterozoic Syn-Collisional Granites in Helanshan Region and Its Geological Significance.Acta Petrologica Sinica, 29(7):2405-2415(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201307010
      [13] Liao, Z.L., Mo, X.X., Pan, G.T., et al., 2006.Petrochemistry Characteristic and Petrogenesis of Peraluminous Granite in the Tibet.Acta Geologica Sinica, 80(9):1329-1341(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200609009.htm
      [14] Ling, W.L., Duan, R.C., Xie, X.J., et al., 2009.Contrasting Geochemistry of the Cretaceous Volcanic Suites in Shandong Province and Its Implications for the Mesozoic Lower Crust Delamination in the Eastern North China Craton.Lithos, 113(3-4):640-658. doi: 10.1016/j.lithos.2009.07.001
      [15] Liu, S.J., Dong, C.Y., Xu, Z.Y., et al., 2013.Palaeoproterozoic Episodic Magmatism and High-Grade Metamorphism in the North China Craton:Evidence from SHRIMP Zircon Dating of Magmatic Suites in the Daqingshan Area.Geological Journal, 48(5):429-455. https://doi.org/10.1002/gj.2453
      [16] Liu, Y.S., Zong, K.Q., Kelemen, P.B., et al., 2008.Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole:Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates.Chemical Geology, 247(1-2):133-153. https://doi.org/10.1016/j.chemgeo.2007.10.016
      [17] Lu, L.Z., Xu, X.C., Liu, F.L., 1996.The Precambrian Khondalite Series in Northern China.Changchun Publishing House, Changchun(in Chinese).
      [18] Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643.https://doi.org/10.1130/0016-7606(1989)1010635:tdog>2.3.co; 2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co; 2
      [19] Middlemost, E.A.K., 1994.Naming Materials in the Magma/Igneous Rock System.Earth-Science Reviews, 37(3-4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      [20] Miller, C.F., McDowell, S.M., Mapes, R.W., 2003.Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance.Geology, 31(6):529-532.https://doi.org/10.1130/0091-7613(2003)0310529:hacgio>2.0.co; 2 doi: 10.1130/0091-7613(2003)0310529:hacgio>2.0.co; 2
      [21] Peng, P., Guo, J.H., Windley, B.F., et al., 2012.Petrogenesis of Late Paleoproterozoic Liangcheng Charnockites and S-Type Granites in the Central-Northern Margin of the North China Craton:Implications for Ridge Subduction.Precambrian Research, 222-223:107-123. https://doi.org/10.1016/j.precamres.2011.06.002
      [22] Rickwood, P.C., 1989.Boundary Lines within Petrologic Diagrams Which Use Oxides of Major and Minor Elements.Lithos, 22(4):247-263. https://doi.org/10.1016/0024-4937(89)90028-5
      [23] Santosh, M., Tsunogae, T., Li, J.H., et al., 2007.Discovery of Sapphirine-Bearing Mg-Al Granulites in the North China Craton:Implications for Paleoproterozoic Ultrahigh Temperature Metamorphism.Gondwana Research, 11(3):263-285. https://doi.org/10.1016/j.gr.2006.10.009
      [24] Shi, Z.H., Zhang, H.F., Cai, H.M., 2009.Petrogenesis of Strongly Peraluminous Granites in Markan Area, Songpan Fold Belt and Its Tectonic Implication.Earth Science, 34(4):569-584(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200904003.htm
      [25] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [26] Sylvester, P.J., 1998.Post-Collisional Strongly Peraluminous Granites.Lithos, 45(1-4):29-44. https://doi.org/10.1016/s0024-4937(98)00024-3
      [27] Wan, Y., Liu, D., Xu, Z., et al., 2008.Paleoproterozoic Crustally Derived Carbonate-Rich Magmatic Rocks from the Daqingshan Area, North China Craton:Geological, Petrographical, Geochronological and Geochemical (Hf, Nd, O and C) Evidence.American Journal of Science, 308(3):351-378. https://doi.org/10.2475/03.2008.07
      [28] Wan, Y.S., Geng, Y.S., Liu, F.L., et al., 2000.Age and Composition of the Khondalite Series of the North China Craton and Its Adjacent Area.Progress in Precambrian Research, 23(4):221-237(in Chinese with English abstract).
      [29] Wan, Y.S., Liu, D.Y., Dong, C.Y., et al., 2009.The Precambrian Khondalite Belt in the Daqingshan Area, North China Craton:Evidence for Multiple Metamorphic Events in the Palaeoproterozoic Era.Geological Society, London, Special Publications, 323(1):73-97. https://doi.org/10.1144/sp323.4
      [30] Wang, C., Meng, F., Mao, Z.L., 2012.Zircon SHRIMP U-Pb Dating Technique for Huangqikou Granite in Helanshan Area and Its Lithogeochemical Characteristics.Ningxia Engineering Technology, 11(3):206-213, 219(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NXGJ201203002.htm
      [31] Wu, F., Jahm, B.M., Wilde, S.A., et al., 2003.Highly Fractionated I-Type Granites in NE China (I):Geochronology and Petrogenesis.Lithos, 66(3-4):241-273. https://doi.org/10.1016/s0024-4937(02)00222-0
      [32] Xia, X., Sun, M., Zhao, G., et al., 2008.Paleoproterozoic Crustal Growth in the Western Block of the North China Craton:Evidence from Detrital Zircon Hf and Whole Rock Sr-Nd Isotopic Compositions of the Khondalites from the Jining Complex.American Journal of Science, 308(3):304-327. https://doi.org/10.2475/03.2008.05
      [33] Xie, G.A., Zhang, Q.L., Ren, W.J., et al., 2004.Discussion on Genesis of the Proterozic Bedding Granites in the Middle Part of Helanshan.Journal of Stratigraphy, 28(3):276-280(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ200403014.htm
      [34] Yang, F.C., Sun, J.G., Song, Y.H., et al., 2016.SHRIMP U-Pb Age, Hf Isotope Composition and Geochemical Characteristics of Neoarchean Granitic Complex in Liaodong Lianshanguan Area, NE China.Earth Science, 41(12):2008-2018(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201612005.htm
      [35] Yin, C.Q., Zhao, G.C., Guo, J.H., et al., 2011.U-Pb and Hf Isotopic Study of Zircons of the Helanshan Complex:Constrains on the Evolution of the Khondalite Belt in the Western Block of the North China Craton.Lithos, 122(1-2):25-38. https://doi.org/10.1016/j.lithos.2010.11.010
      [36] Zhang, D.H., Wei, J.H., Fu, L.B., et al., 2017.Petrogenesis and Thermal Overprint of S-Type Granites in Helanshan Region, North China Craton:Constraints on the 1.90 Ga Khondalites Decompression Melting and 1.32 Ga Tectono-Thermal Event.Precambrian Research, 303:660-672. https://doi.org/10.1016/j.precamres.2017.08.016
      [37] Zhang, H.F., Harris, N., Parrish, R., et al., 2004.Causes and Consequences of Protracted Melting of the Mid-Crust Exposed in the North Himalayan Antiform.Earth and Planetary Science Letters, 228(1-2):195-212. https://doi.org/10.1016/j.epsl.2004.09.031
      [38] Zhao, G.C., Sun, M., Wilde, S.A., et al., 2005.Late Archean to Paleoproterozoic Evolution of the North China Craton:Key Issues Revisited.Precambrian Research, 136(2):177-202. https://doi.org/10.1016/j.precamres.2004.10.002
      [39] Zhao, G.C., Wilde, S.A., Guo, J.H., et al., 2010.Single Zircon Grains Record Two Paleoproterozoic Collisional Events in the North China Craton.Precambrian Research, 177(3/4):266-276. https://doi.org/10.1016/j.precamres.2009.12.007
      [40] Zhao, G.C., Wilde, S.A., Sun, M., et al., 2008.SHRIMP U-Pb Zircon Geochronology of the Huai'an Complex:Constraints on Late Archean to Paleoproterozoic Magmatic and Metamorphic Events in the Trans-North China Orogen.American Journal of Science, 308(3):270-303. https://doi.org/10.2475/03.2008.04
      [41] 耿元生, 周喜文, 王新社, 等, 2009.内蒙古贺兰山地区古元古代晚期的花岗岩浆事件及其地质意义:同位素年代学的证据.岩石学报, 25(8):1830-1842. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200908008
      [42] 李红宇, 宋新华, 郭合伟, 等, 2010.宁夏贺兰山北段牛头沟金矿地质地球化学特征和矿床成因探讨.地质与勘探, 46(6):1036-1044. http://d.old.wanfangdata.com.cn/Periodical/dzykt201006008
      [43] 李正辉, 柳小明, 董云鹏, 等, 2013.贺兰山古元古代同碰撞花岗岩地球化学、锆石U-Pb年代及其地质意义.岩石学报, 29(7):2405-2415. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201307010
      [44] 廖忠礼, 莫宣学, 潘桂棠, 等, 2006.西藏过铝花岗岩的岩石化学特征及成因探讨.地质学报, 80(9):1329-1341. doi: 10.3321/j.issn:0001-5717.2006.09.009
      [45] 卢良兆, 徐学纯, 刘福来, 1996.中国北方早前寒武纪孔兹岩系.长春:长春出版社.
      [46] 时章亮, 张宏飞, 蔡宏明, 2009.松潘造山带马尔康强过铝质花岗岩的成因及其构造意义.地球科学, 34(4):569-584. doi: 10.3321/j.issn:1000-2383.2009.04.002
      [47] 万渝生, 耿元生, 刘福来, 等, 2000.华北克拉通及邻区孔兹岩系的时代及对太古宙基底组成的制约.前寒武纪研究进展, 23(4):221-237. http://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ200004005.htm
      [48] 王成, 孟方, 毛自力, 2012.贺兰山黄旗口花岗岩锆石SHRIMP U-Pb定年和岩石地球化学特征.宁夏工程技术, 11(3):206-213, 219. doi: 10.3969/j.issn.1671-7244.2012.03.004
      [49] 解国爱, 张庆龙, 任文军, 等, 2004.贺兰山中段古元古代层状花岗岩成因探讨.地层学杂志, 28(3):276-280. doi: 10.3969/j.issn.0253-4959.2004.03.013
      [50] 杨凤超, 孙景贵, 宋运红, 等, 2016.辽东连山关地区新太古代花岗杂岩SHRIMP U-Pb年龄、Hf同位素组成及地质意义.地球科学, 41(12):2008-2018. http://earth-science.net/WebPage/Article.aspx?id=3397
    • 加载中
    图(8) / 表(1)
    计量
    • 文章访问数:  3531
    • HTML全文浏览量:  1692
    • PDF下载量:  29
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-04-20
    • 刊出日期:  2019-04-15

    目录

      /

      返回文章
      返回