• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    新疆东天山小石头泉地区琼库都克银多金属矿床成矿流体特征及其地质意义

    于明杰 王玉往 毛启贵 王京彬 张锐 程奋维 付王伟

    于明杰, 王玉往, 毛启贵, 王京彬, 张锐, 程奋维, 付王伟, 2018. 新疆东天山小石头泉地区琼库都克银多金属矿床成矿流体特征及其地质意义. 地球科学, 43(9): 3100-3111, 3125. doi: 10.3799/dqkx.2018.290
    引用本文: 于明杰, 王玉往, 毛启贵, 王京彬, 张锐, 程奋维, 付王伟, 2018. 新疆东天山小石头泉地区琼库都克银多金属矿床成矿流体特征及其地质意义. 地球科学, 43(9): 3100-3111, 3125. doi: 10.3799/dqkx.2018.290
    Yu Mingjie, Wang Yuwang, Mao Qigui, Wang Jingbin, Zhang Rui, Cheng Fenwei, Fu Wangwei, 2018. Characteristics of Ore-Forming Fluids and Their Geological Significance of Qiongkuduke Ag-Polymetallic Deposit in the Xiaoshitouquan Area of Eastern Tianshan Mountains, Xinjiang. Earth Science, 43(9): 3100-3111, 3125. doi: 10.3799/dqkx.2018.290
    Citation: Yu Mingjie, Wang Yuwang, Mao Qigui, Wang Jingbin, Zhang Rui, Cheng Fenwei, Fu Wangwei, 2018. Characteristics of Ore-Forming Fluids and Their Geological Significance of Qiongkuduke Ag-Polymetallic Deposit in the Xiaoshitouquan Area of Eastern Tianshan Mountains, Xinjiang. Earth Science, 43(9): 3100-3111, 3125. doi: 10.3799/dqkx.2018.290

    新疆东天山小石头泉地区琼库都克银多金属矿床成矿流体特征及其地质意义

    doi: 10.3799/dqkx.2018.290
    基金项目: 

    中国地质调查局基础性公益性矿产地质调查项目 DD20160071

    国家重点研发计划项目 2017YFC0601201-2

    国家重点基础研究发展计划(973计划)项目 2014CB440803

    详细信息
      作者简介:

      于明杰(1988-), 男, 博士后, 主要从事地质学、同位素地球化学以及岩石地球化学方面的工作

      通讯作者:

      毛启贵

    • 中图分类号: P597;P611

    Characteristics of Ore-Forming Fluids and Their Geological Significance of Qiongkuduke Ag-Polymetallic Deposit in the Xiaoshitouquan Area of Eastern Tianshan Mountains, Xinjiang

    • 摘要: 琼库都克银多金属矿床位于新疆哈密地区的小石头泉矿区中部,是矿区目前为止最大的银多金属矿床,目前人们对该矿床的成矿机制研究有待深入.在详细矿床地质特征的研究基础上,开展了石英流体包裹体显微测温分析、群体包裹体的气液相成分分析以及稳定同位素(H、O同位素)分析.结果显示,琼库都克矿床的原生石英流体包裹体类型主要为富液相的水溶液包裹体,个体较小;成矿早期阶段(Ⅰ阶段)流体包裹体的均一温度变化于152~280 ℃,盐度ω(NaCleqv)变化范围为2.73%~13.50%;主成矿阶段(Ⅱ阶段)流体包裹体的均一温度变化范围为131~261 ℃,盐度ω(NaCleqv)变化范围为0.35%~9.59%,总体表现出中-低温、中-低盐度的成矿流体特征,从Ⅰ阶段到Ⅱ阶段,成矿流体的均一温度和盐度均有所降低,表明温度和盐度的降低可能为金属沉淀的成矿机制.流体包裹体的气相成分中绝大部分为H2O,其次含有一定的CO2,并含有少量N2以及CH4和C2H6等还原性气体;液相成分中阳离子主要为Na+、K+,阴离子以Cl-占绝大多数,部分含SO42-,表明琼库都克矿床的成矿流体富含挥发分,为H2O-NaCl型热液体系.主成矿阶段包裹体的δDH2O值范围为-89.5‰~-85.1‰,δ18OH2O值为-8.671‰~-5.94‰,结合包裹体成分分析,显示矿床主成矿阶段的成矿热液为大气降水与岩浆水的混合来源.矿床地质特征、流体包裹体的研究结果以及氢氧同位素特征显示,琼库都克矿床为浅成低温热液型矿床.

       

    • 图  1  东天山区域地质简图

      王京彬等(2006)

      Fig.  1.  Geological sketch of tectonic outline of the eastern Tianshan area

      图  2  小石头泉地区区域地质图(a)和小石头泉矿区地质图(b)

      1.第四纪沉积;2.红色岩性建造;3.石炭纪上亚层:类磨拉石建造.4.石炭纪下亚层:含煤建造;5.上石炭统海相火山碎屑岩建造;6.下石炭统海相火山碎屑建造;7.中泥盆统头苏泉组:凝灰质砂岩、粉砂岩、砂砾岩、钙质砂岩、砾岩及硅质岩、霏细岩、杏仁状玄武岩;8.石炭纪辉长岩;9.石炭纪花岗岩;10.石炭纪钾质花岗岩;11.石炭纪闪长岩;12.石英闪长岩;13.钾长花岗岩;14.背斜;15.向斜;16.隐伏向斜;17.区域大断裂;18.逆断层;19.推测断层;20.平推断层;21.铅锌矿床(点);22.银矿床(点);23.铜矿床(点);24.铁矿床(点)

      Fig.  2.  Geological sketch of Xiaoshitouquan region (a) and the Xiaoshitouquan deposit (b)

      图  3  琼库都克银多金属矿床矿区地质简图

      Fig.  3.  Geological sketch of the Qiongkuduke Ag-polymetallic deposit

      图  4  琼库都克矿床10号槽探剖面

      Fig.  4.  Trenching profiles along line No.10 of the Qiongkuduke deposit

      图  5  琼库都克矿床0号勘探线钻孔剖面

      张锐等(2017)

      Fig.  5.  Exploration profiles along line No.0 of the Qiongkuduke deposit

      图  6  琼库都克矿床围岩及矿化照片

      a.成矿早阶段的梳状石英脉;b.成矿早阶段的细粒石英脉;c.成矿早阶段的硅化蚀变带;d.成矿早阶段的热液石英脉;e.石英脉中的晶洞构造;f.主成矿阶段的网脉状石英脉

      Fig.  6.  Field photos of the Qiongkuduke Ag-polymetallic deposit mineralization and host rocks

      图  7  琼库都克矿床金属矿物组合显微照片

      a.含黄铜矿、闪锌矿和方铅矿石英脉;b.呈自形-半自形结构的黄铁矿、黄铜矿和闪锌矿共生;c.黄铜矿、闪锌矿、黝铜矿和方铅矿共生;d.辉银矿分布于方铅矿的边部;e.闪锌矿、黄铜矿和方铅矿共生;f.黄铜矿、闪锌矿和方铅矿共生.Ccp.黄铜矿;Py.黄铁矿;Sp.闪锌矿;Gn.方铅矿;Td.黝铜矿;Arg.辉银矿;Qz.石英

      Fig.  7.  Photomicrographs of the Qiongkuduke deposit ore textures and mineral assemblage

      图  8  琼库都克矿床包裹体显微照片

      LH2O.液相;VH2O.气相

      Fig.  8.  Photomicrographs of the Qiongkuduke fluid inclusions (FIs)

      图  9  琼库都克矿床石英中流体包裹体均一温度和盐度直方图

      Fig.  9.  Histogram of homogenization temperature and salinity for fluid inclusions in quartz from Qiongkuduke deposit

      图  10  琼库都克矿床石英流体包裹体均一温度-盐度与不同类型矿床包裹体的均一温度-盐度对比

      底图据Wilkinson(2001)

      Fig.  10.  Comparison between temperature-salinity of inclusions of the Qiongkuduke deposit and that of inclusions in different types of ore deposits

      图  11  琼库都克矿床成矿流体的δD-δ18OH2O图解

      Taylor(1979, 1997)、Ohmoto(1986)Sheppard(1986)Hedenquist et al.(1994)Nesbitt(1996)

      Fig.  11.  δD-δ18OH2O diagram of fluid inclusions from the Qiongkuduke deposit

      表  1  琼库都克银多金属矿床流体包裹体显微测温结果

      Table  1.   Microthermometric data of fluid inclusions of the Qiongkuduke Ag-polymetallic deposit

      成矿阶段 样号 均一温度(℃) 盐度(% NaCleqv)
      Ⅰ阶段 ZK002-1 160.2~280.1 2.73~9.86
      ZK002-19 151.6~261.5 5.41~13.50
      Ⅱ阶段 ZK001-9 154.9~200.8 1.90~4.80
      ZK001-11 131.0~217.3 1.05~9.59
      ZK001-12 139.9~201.0 0.35~3.71
      ZK001-17 172.4~245.9 5.26~6.30
      ZK001-22 150.3~201.6 2.73~5.11
      下载: 导出CSV

      表  2  琼库都克矿床石英流体包裹体气相成分分析结果(%)

      Table  2.   Gas components of fluid inclusions from the Qiongkuduke deposit (%)

      样品编号 H2O N2 Ar* O2 CO2 CH4 C2H6 H2S
      ZK001-4 99.27 0.021 662 75 0.028 677 - 0.536 165 0.039 630 0.102 370 -
      ZK001-5 99.28 0.031 649 76 0.015 749 - 0.615 792 0.030 311 0.025 134 -
      ZK001-14 99.18 0.043 067 22 0.025 500 - 0.676 944 0.044 980 0.029 509 -
        注:“-”表示未检出;“*”表示参考值.
      下载: 导出CSV

      表  3  琼库都克矿床石英流体包裹体液相成分分析结果(10-6)

      Table  3.   Liquid components of fluid inclusions from the Qiongkuduke deposit (10-6)

      样品编号 F- Cl- SO42- Na+ K+ Mg2+ Ca2+
      ZK001-4 - 0.345 2.400 0.825 1.290 - -
      ZK001-5 - 2.080 - 1.740 0.801 - -
      ZK001-14 - 1.540 - 1.130 0.978 - -
        注:“-”表示未检出.
      下载: 导出CSV

      表  4  琼库都克矿床石英流体包裹体的氢氧同位素测试结果

      Table  4.   Hydrogen and oxygen isotope data of fluid inclusions from the Qiongkuduke deposit

      样品编号 矿物 δ18Ov-SMOW
      (‰)
      δDv-SMOW
      (‰)
      δ18OH2O-SMOW
      (‰)
      T(℃)
      ZK001-23 石英 7.5 -89.538 -5.994 176
      ZK001-5 石英 5.5 -85.156 -8.671 170
      ZK001-14 石英 5.2 -85.738 -8.339 175
      下载: 导出CSV
    • [1] Bethke, P.M., Rye, R.O., Stoffregen, R.E., et al., 2005.Evolution of the Magmatic-Hydrothermal Acid-Sulfate System at Summitville, Colorado:Integration of Geological, Stable-Isotope, and Fluid-Inclusion Evidence.Chemical Geology, 215(1-4):281-315. https://doi.org/10.1016/j.chemgeo.2004.06.041
      [2] Brown, P.E., Hagemann, S.G., 1995.MacFlinCor and Its Application to Fluids in Archean Lode-Gold Deposits.Geochimica et Cosmochimica Acta, 59(19):3943-3952. https://doi.org/10.1016/0016-7037(95)00254-w
      [3] Cao, F.G., Tu, Q.J., Zhang, X.M., et al., 2006.Preliminary Determination of the Early Paleozoic Magmatic Arc in the Karlik Mountains, East Tianshan, Xinjiang, China-Evidence from Zircon SHRIMP U-Pb Dating of Granite Bodies in the Tashuihe Area.Geological Bulletin of China, 25(8):923-927 (in Chinese with English abstract). https://www.researchgate.net/publication/285742843_Preliminary_determination_of_the_Early_Paleozoic_magmatic_arc_in_the_Karlik_Mountains_East_Tianshan_Xinjiang_China-Evidence_from_zircon_SHRIMP_U-Pb_dating_of_granite_bodies_in_the_Tashuihe_area
      [4] Chen, Y.J., Pirajno, F., Wu, G., et al., 2012.Epithermal Deposits in North Xinjiang, NW China.International Journal of Earth Sciences, 101(4):889-917. https://doi.org/10.1007/s00531-011-0689-4
      [5] Cooke, D.R., McPhail, D.C., 2001.Epithermal Au-Ag-Te Mineralization, Acupan, Baguio District, Philippines:Numerical Simulations of Mineral Deposition.Economic Geology, 96(1):109-131. https://doi.org/10.2113/gsecongeo.96.1.109
      [6] Cooke, D.R., Simmons, S.F., 2000.Characteristics and Genesis of Epithermal Gold Deposits.Reviws in Economic Geology, 13(12):221-244. http://d.old.wanfangdata.com.cn/Periodical/huangj201302004
      [7] Ding, Y.X., 1994.The Geological Characteristics and Prospecting in the District Ⅰ Tongshan Ore Deposit, the Xinjiang Uygur Autonomous Region.Geologcal Exploration for Non-Ferrous Metals, 3(2):77-82 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCYD200506010.htm
      [8] Fang, T.H., Qin, K.Z., Wang, S.L., et al., 2002.Geological Characteristics and Exploration Prospect of Copper and Multi-Metal Deposits in Xiaoshitouquan District, Eastern Xinjiang.Xinjiang Geology, 20(4):371-374 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0169136813002023
      [9] Gemmell, J.B., Sharpe, R., Jonasson, I.R., et al., 2004.Sulfur Isotope Evidence for Magmatic Contributions to Submarine and Subaerial Gold Mineralization:Conical Seamount and the Ladolam Gold Deposit, Papua New Guinea.Economic Geology, 99(8):1711-1725. https://doi.org/10.2113/gsecongeo.99.8.1711
      [10] Guo, D.Y., 1995.Metallogenic Geologic Setting of the Xiaoshitouquan District in the Eastern Xinjiang.Geological Exploration for Non-Ferrous Metals, 4(4):212-218 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500587184
      [11] Hall, D.L., Sterner, S.M., Bodnar, R.J., 1988.Freezing Point Depression of NaCl-KCl-H2O Solutions.Economic Geology, 83(1):197-202. https://doi.org/10.2113/gsecongeo.83.1.197
      [12] Hedenquist, J.W., Arribas, A., Gonzalez-Urien, E., 2000.Exploration for Epithermal Gold Deposits.Reviews in Economic Geology, 13(2):45-77. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_58360456a1dfa1c33a61d3ec372c2316
      [13] Hedenquist, J.W., Lowenstern, J.B., 1994.The Role of Magmas in the Formation of Hydrothermal Ore Deposits.Nature, 370(6490):519-527. https://doi.org/10.1038/370519a0
      [14] Heinrich, C.A., 2005.The Physical and Chemical Evolution of Low-Salinity Magmatic Fluids at the Porphyry to Epithermal Transition:A Thermodynamic Study.Mineralium Deposita, 39(8):864-889. https://doi.org/10.1007/s00126-004-0461-9
      [15] Heinrich, C.A., 2007.Fluid-Fluid Interactions in Magmatic-Hydrothermal Ore Formation.Reviews in Mineralogy and Geochemistry, 65(1):363-387. https://doi.org/10.2138/rmg.2007.65.11
      [16] Ji, Y.S., 1994.Primary Halo Geochemical Characteristics of the District Ⅰ Tongshan in Xiaoshitouquan.Mineral Resources and Geology, 43(8):373-379 (in Chinese). https://www.mindat.org/show.php?id=46605&ld=1
      [17] Jin, L.Y., Zhang, J., Zhu, Z.X., et al., 2013.The Geologic Character and Tectonic Significance of Paleozoic Volcanic Rocks in the Harlik Mountains, Xinjiang.Xinjiang Geology, 31(3):173-179 (in Chinese with English abstract). doi: 10.1029/JB087iB05p03709/full
      [18] Lu, H.Z., Fan, H.R, Ni, P., et al., 2004.Fluid Inclusion.Science Press, Beijing, 406-419 (in Chinese).
      [19] Lu, H.Z., Li, B.L., Wei, J.X., 1990.Fluid Inclusion Geochemistry.Geological Publishing House, Beijing (in Chinese).
      [20] Mo, J.P., Sha, Y.K., Wang, X.D., et al., 2001.Study on Geological and Geochemical Characteristics and Genesis of Tongshan Copper Polymetallic Deposit, Xingjiang.Mineral Resources and Geology, 15(3):162-166 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0169136817306388
      [21] Nesbitt, B.E., 1996.Applications of Oxygen and Hydrogen Isotopes to Exploration for Hydrothermal Mineralization.SEG Newsletter, 27:1-13. https://www.sciencedirect.com/science/article/pii/S1872579107600414
      [22] Ohmoto, H., 1986.Stable Isotope Geochemistry of Ore Deposits.Reviews in Mineralogy and Geochemistry, 16(1):491-559. http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb201801010
      [23] Qin, K.Z., Peng, X.M., San, J.Z., et al., 2003.Types of Major Ore Deposits, Division of Metallogenic Belts in Eastern Tianshan, and Discrimination of Potential Prospects of Cu, Au, Ni Mineralization.Xinjiang Geology, 21(2):143-150 (in Chinese with English abstract). doi: 10.1007%2Fs00531-004-0383-x
      [24] Roedder, E., 1979.In Physics and Chemistry of the Earth.Pergamas Press, Oxford, 9-35.
      [25] Roedder, E., 1984.Fluid Inclusions.In: Ribbe, P.H., ed., Reviews in Mineralogy.Mineralogical Society of America, Washington D.C..
      [26] Scott, A.M., Watanabe, Y., 1998."Extreme Boiling"Model for Variable Salinity of the Hokko Low-Sulfidation Epithermal Au Prospect, Southwestern Hokkaido, Japan.Mineralium Deposita, 33(6):568-578. https://doi.org/10.1007/s001260050173
      [27] Sharp, Z.D., Gibbons, J.A., Maltsev, O., et al., 2016.A Calibration of the Triple Oxygen Isotope Fractionation in the SiO2-H2O System and Applications to Natural Samples.Geochimica et Cosmochimica Acta, 186:105-119. https://doi.org/10.1016/j.gca.2016.04.047
      [28] Sheppard, S.M.F., 1986.Characterization and Isotopic Variations in Natural Waters.Reviews in Mineralogy, 16:165-183. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0232683584
      [29] Sillitoe, R.H., 1997.Characteristics and Controls of the Largest Porphyry Copper-Gold and Epithermal Gold Deposits in the Circcum-Pacific Region.Australian Journal of Earth Sciences, 44(3):373-388. https://doi.org/10.1080/08120099708728318
      [30] Sun, W.D., Arculus, R.J., Kamenetsky, V.S., et al., 2004.Release of Gold-Bearing Fluids in Convergent Margin Magmas Prompted by Magnetite Crystallization.Nature, 431(7011):975-978. https://doi.org/10.1038/nature02972
      [31] Taylor, H.P., 1979.Oxygen and Hydrogen Isotope Relationships in Hydrothermal Mineral Deposits.In: Barnes, H.L., ed., Geochemistry of Hydrothermal Ore Deposits.John Wiley & Sons, New York.
      [32] Taylor, H.P., 1997.Oxygen and Hydrogen Isotope Relationships in Hydrothermal Mineral Deposits.In: Barnes, H.L., ed., Geochemistry of Hydrothermal Ore Deposits.John Wiley & Sons, New York.
      [33] Turner, W., Richards, J., Nesbitt, B., et al., 2001.Proterozoic Low-Sulfidation Epithermal Au-Ag Mineralization in the Mallery Lake Area, Nunavut, Canada.Mineralium Deposita, 36(5):442-457. https://doi.org/10.1007/s001260100181
      [34] Wan, B., Zhang, L.C., Xu, X.W., et al., 2006.Geochemical Characteristics of Volcanic, Sub-Volcanic Rocks in Xiaoshitouquan Copper Polymetallic Deposit, Eastern Tianshan, and Its Metallogenic Setting.Acta Petrologica Sinica, 22(11):2711-2718 (in Chinese with English abstract). https://www.researchgate.net/publication/285986099_Geochemical_characteristics_of_volcanic_sub-volcanic_rock_in_Xiaoshitouquan_copper_polymetallic_deposit_eastern_Tianshan_and_its_metallogenic_setting
      [35] Wan, D.F., Fan, T.Y., Tian, S.H., 2005.The Chromium Analytical Technique for Hydrogen Isotopes.Acta Geoscientica Sinica, 26(Suppl.):35-38 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb2005z1014
      [36] Wang, J.B., Wang, Y.W., He, Z.J., 2006.Ore Deposits as a Guide to the Tectonic Evolution in the East Tianshan Mountains, NW China.Geology in China, 33(3):461-469 (in Chinese with English abstract).
      [37] Wang, L.J., Peng, Z.G., Zhu, X.Y., et al., 2009.Source and Evolution of Ore Fluid of the Xitieshan Sedimentary Exhaleative Lead Zinc System, Qinghai Province:Evidence from Fluid Inclusion and Isotope Geochemistry.Acta Petrologica Sinica, 25(11):3007-3015 (in Chinese with English abstract). https://www.researchgate.net/publication/279655485_Source_and_evolution_of_ore-fluid_of_the_Xitieshan_sedimentary-exhalative_lead-zinc_system_Qinghai_province_Evidence_from_fluid_inclusion_and_isotope_geochemistry
      [38] Wang, X.D., 1994.Analysis of volcanogenic mineralization of Tongshan Copper Polymetallic Deposits.Mineral Resources and Geology, 8(5):383-387 (in Chinese). https://www.sciencedirect.com/science/article/pii/S0169136813000528
      [39] Wang, X.W., Xu, X.Y., Ma, Z.P., et al., 2015.Geochemistry and Tectonic Setting of the Early Carboniferous Volcanic Rocks in the Eastern Section of the Bogda Orogenic Belt in Xinjiang.Geology and Exploration, 51(1):108-122 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzykt201501012
      [40] Wilkinson, J.J., 2001.Fluid Inclusions in Hydrothermal Ore Deposits.Lithos, 55(1-4):229-272. https://doi.org/10.1016/s0024-4937(00)00047-5
      [41] Williams-Jones, A.E., Heinrich, C.A., 2005.Vapor Transport of Metals and the Formation of Magmatic-Hydrothermal Ore Deposit.Economic Geology, 100(7):1287-1312. https://doi.org/10.2113/100.7.1287
      [42] Xiong, S.F., Yao, S.Z., Gong, Y.J., et al., 2016.Ore-Forming Fluid and Thermochemical Sulfate Reduction in the Wusihe Lead-Zinc Deposit, Sichuan Province, China.Earth Science, 41(1):105-120 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.008
      [43] Zhang, D.H., 1992.Aqueous Phase Composition Characteristic of Mineral Fluid Inclusions and Its Significance in Oregenesis.Earth Science, 17(6):677-688 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJDZ200001004.htm
      [44] Zhang, L.G., 1985.The Application of the Stable Isotope to Geology, the Hydrothermal Mineralization of Metal Activation and It's Prospecting.Shannxi Science and Technology Press, Xi'an (in Chinese).
      [45] Zhang, R., Mao, Q.G., Yu, M.J., et al., 2017.Geochemical Characteristics and Zircon U-Pb Ages of the Magmatite in the Qiongdukuke Ag-Pb-Zn Polymetallic Deposit of Xinjiang.Geology and Exploration, 53(2):270-282 (in Chinese with English abstract). doi: 10.1007/s11707-007-0008-3
      [46] Zheng, Y.F., Chen, J.F., 2000.Stable Isotope Geochemistry.Science Press, Beijing (in Chinese).
      [47] Zhou, X.B., Li, J.F., Wang, K.Y., et al., 2016.Geochemical Characteristics of Ore-Forming Fluid in Huanggoushan Gold Deposit, Jilin Province.Earth Science, 41(1):121-130 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.009
      [48] Zhu, H.P., Wang, L.J., 2001.Determining Gaseous Composition of Fluid Inclusions with Quadrupole Mass Spectrometer.Science in China (Series D), 31(7):586-590 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ed200202001
      [49] 曹福根, 涂其军, 张晓梅, 等, 2006.哈尔里克山早古生代岩浆弧的初步确定——来自塔水河一带花岗质岩体锆石SHRIMP U-Pb测年的证据.地质通报, 25(8): 923-927. doi: 10.3969/j.issn.1671-2552.2006.08.004
      [50] 丁玉学, 1994.论新疆铜山Ⅰ区地质特征及找矿方向.有色金属矿产与勘查, 3(2): 77-82. http://d.old.wanfangdata.com.cn/Conference/186422
      [51] 方同辉, 秦克章, 王书来, 等, 2002.新疆小石头泉铜多金属矿床地质特征、找矿前景.新疆地质, 20(4): 371-374. doi: 10.3969/j.issn.1000-8845.2002.04.017
      [52] 郭德英, 1995.浅析新疆东部小石头泉地区成矿地质条件.有色金属矿产与勘查, 4(4): 212-218. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500587184
      [53] 吉蕴生, 1994.小石头泉铜山Ⅰ区原生晕地球化学特征的研究.矿产与地质, 43(8): 373-379. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400287124
      [54] 靳刘圆, 张济, 朱志新, 等, 2013.哈尔里克山古生代火山岩地质特征及构造意义.新疆地质, 31(3): 173-179. doi: 10.3969/j.issn.1000-8845.2013.03.007
      [55] 卢焕章, 范宏瑞, 倪培, 等, 2004.流体包裹体.北京:科学出版社, 406-419.
      [56] 卢焕章, 李秉伦, 魏家秀, 1990.包裹体地球化学.北京:地质出版社.
      [57] 莫江平, 依沙克, 王旭东, 等, 2001.新疆铜山铜多金属矿床地质地球化学特征及成因研究.矿产与地质, 15(3): 162-166. doi: 10.3969/j.issn.1001-5663.2001.03.003
      [58] 秦克章, 彭晓明, 三金柱, 等, 2003.东天山主要矿床类型、成矿区带划分与成矿远景区优选.新疆地质, 21(2):143-150. doi: 10.3969/j.issn.1000-8845.2003.02.001
      [59] 万博, 张连昌, 徐兴旺, 等, 2006.东天山小石头泉铜多金属矿区火山岩-次火山岩地球化学与成矿构造背景.岩石学报, 22(11):2711-2718. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200611009
      [60] 万德芳, 樊天义, 田世洪, 2005.用金属铬法分析微量水和有机质氢同位素组成.地球学报, 26(增刊):35-38. http://d.old.wanfangdata.com.cn/Periodical/dqxb2005z1014
      [61] 王京彬, 王玉往, 何志军, 2006.东天山大地构造演化的成矿示踪.中国地质, 33(3):461-469. doi: 10.3969/j.issn.1000-3657.2006.03.002
      [62] 王莉娟, 彭志刚, 祝新友, 等, 2009.青海省锡铁山Sedex型铅锌矿床成矿流体来源及演化:流体包裹体及同位素地球化学证据.岩石学报, 25(11):3007-3015. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200911029
      [63] 王旭东, 1994.铜山铜多金属矿床火山成矿作用浅析.矿产与地质, 8(5):383-387. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400287126
      [64] 汪晓伟, 徐学义, 马中平, 等, 2015.博格达造山带东段早石炭世火山岩地球化学特征及构造属性.地质与勘探, 51(1):108-122. http://d.old.wanfangdata.com.cn/Periodical/dzykt201501012
      [65] 熊索菲, 姚书振, 宫勇军, 等, 2016.四川乌斯河铅锌矿床成矿流体特征及TSR作用初探.地球科学, 41(1):105-120. http://earth-science.net/WebPage/Article.aspx?id=3224
      [66] 张德会, 1992.矿物包裹体液相成分特征及其矿床成因意义.地球科学, 17(6):677-688. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000260153
      [67] 张理刚, 1985.稳定同位素在地质科学中的应用.西安:陕西科学技术出版社.
      [68] 张锐, 毛启贵, 于明杰, 等, 2017.新疆琼库都克Ag-Pb-Zn多金属矿区岩浆岩地球化学特征及锆石U-Pb年龄研究.地质与勘探, 53(2):270-282. http://d.old.wanfangdata.com.cn/Periodical/dzykt201702007
      [69] 郑永飞, 陈江峰, 2000.稳定同位素地球化学.北京:科学出版社.
      [70] 周向斌, 李剑锋, 王可勇, 等, 2016.吉林荒沟山金矿床成矿流体特征.地球科学, 41(1):121-130. http://earth-science.net/WebPage/Article.aspx?id=3225
      [71] 朱和平, 王莉娟, 2001.四极质谱测定流体包裹体中的气相成分.中国科学(D辑), 31(7):586-590. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200107008
    • 加载中
    图(11) / 表(4)
    计量
    • 文章访问数:  4507
    • HTML全文浏览量:  1431
    • PDF下载量:  26
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-01-13
    • 刊出日期:  2018-09-15

    目录

      /

      返回文章
      返回