• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    中国富钴结壳合同区海水的稀土元素特征及其意义

    任江波 邓希光 邓义楠 何高文 王汾连 姚会强

    任江波, 邓希光, 邓义楠, 何高文, 王汾连, 姚会强, 2019. 中国富钴结壳合同区海水的稀土元素特征及其意义. 地球科学, 44(10): 3529-3540. doi: 10.3799/dqkx.2018.258
    引用本文: 任江波, 邓希光, 邓义楠, 何高文, 王汾连, 姚会强, 2019. 中国富钴结壳合同区海水的稀土元素特征及其意义. 地球科学, 44(10): 3529-3540. doi: 10.3799/dqkx.2018.258
    Ren Jiangbo, Deng Xiguang, Deng Yinan, He Gaowen, Wang Fenlian, Yao Huiqiang, 2019. Rare Earth Element Characteristics and Its Geological Implications for Seawater from Cobalt-Rich Ferromanganese Crust Exploration Contract Area of China. Earth Science, 44(10): 3529-3540. doi: 10.3799/dqkx.2018.258
    Citation: Ren Jiangbo, Deng Xiguang, Deng Yinan, He Gaowen, Wang Fenlian, Yao Huiqiang, 2019. Rare Earth Element Characteristics and Its Geological Implications for Seawater from Cobalt-Rich Ferromanganese Crust Exploration Contract Area of China. Earth Science, 44(10): 3529-3540. doi: 10.3799/dqkx.2018.258

    中国富钴结壳合同区海水的稀土元素特征及其意义

    doi: 10.3799/dqkx.2018.258
    基金项目: 

    南方海洋科学与工程广东省实验室(广州)项目 GML2019ZD0106

    自然资源部海底矿产资源重点实验室开放基金 KLMMR-2017-A-01

    中国地质调查局项目 DD20191009

    国际海域资源调查与开发"十三五"课题 DY135-C1-1-04

    国际海域资源调查与开发"十三五"课题 DY135-R2-1-05

    国家自然科学基金 41803026

    详细信息
      作者简介:

      任江波(1985—), 男, 高级工程师, 硕士, 主要从事地球化学和海洋地质研究

    • 中图分类号: P736.4

    Rare Earth Element Characteristics and Its Geological Implications for Seawater from Cobalt-Rich Ferromanganese Crust Exploration Contract Area of China

    • 摘要: 通过对西太平洋34件海水样品的稀土元素(REY:REE+Y)测试及其与研究区富钴结壳稀土耦合特征分析,揭示了海水稀土特征及其成因.海水的稀土含量随水深呈现逐渐增加的趋势,∑ REY范围为14.0×10-12~65.5×10-12,平均值为31.9×10-12,其中Y的绝对值(均值为6.0×10-12~24.1×10-12)和相对值((Y/Ho)N均值为1.98)均较高,La含量次之(均值为1.8×10-12~11.6×10-12),Ce含量相对较低(均值为2.4×10-12~8.8×10-12),δCe范围为0.33~1.03(均值为0.66),(La/Yb)N平均值为0.71.海水稀土元素北美页岩标准化后显示左倾模式,具有显著的Ce负异常、Y正异常和无明显的Eu异常特征.研究区普遍发育水成成因的富钴结壳,即其稀土元素和其他组分均源自海水.富钴结壳的稀土含量相对海水富集6~7个数量级,其Ce正异常和Y负异常的稀土模式与海水构成良好的耦合关系,指示富钴结壳类组分对海水稀土清扫具有选择性,是造成海水稀土模式的重要因素.海山上发育的磷块岩以及周围盆地深海泥中的磷酸盐组分,它们具有较高的稀土含量和类似于海水的稀土模式,指示海洋磷酸盐消耗稀土时并未分馏而是继承海水模式.海水独特的稀土模式特征是补给与消耗平衡作用的结果,铁锰氧化物和海洋磷酸盐是两种典型的海洋自生组分,它们对海水稀土特征的形成至关重要.

       

    • 图  1  中国富钴结壳勘探合同区位置图

      海山基岩年龄数据据Koppers et al.(2003)

      Fig.  1.  The location of cobalt-rich ferromanganese crust exploration contract area of China

      图  2  海水稀土含量及相关比值

      Fig.  2.  Plots of Y vs. rare earth elements of cobalt-rich ferromanganese crust

      图  3  MCCTD1504测站各稀土元素含量剖面特征

      Fig.  3.  The rare earth element profile of seawater column of site MCCTD1504

      图  4  MACTD28和MCCTD1504测站稀土含量剖面与溶解氧含量、pH值、PO43-特征

      Fig.  4.  [DO], pH, PO43- and REE characteristics of seawater column of sites MACTD28 and MCCTD1504

      图  5  海水稀土元素北美页岩标准化图

      Fig.  5.  NASC-normalized REY patterns for seawater

      图  6  西太平洋海山富钴结壳(a~b)和海洋磷块岩(c~d)稀土元素北美页岩标准化图

      图a, b数据据任向文等(2011); 任江波等(2017a);图c数据来自西太平洋海山磷块岩据潘家华等(2002);图d数据据McArthur and Walsh(1984); Hein et al.(1993)

      Fig.  6.  NASC-normalized REY patterns for ocean phosphorites(a-b) and ocean phosphorites(c-d)

      图  7  海水稀土元素补给与消耗示意图

      Fig.  7.  Sketch map of supply and consume of seawater REY

    • [1] Albarède, F., Simonetti, A., Vervoort, J. D., et al., 1998. A Hf-Nd Isotopic Correlation in Ferromanganese Nodules. Geophysical Research Letters, 25(20): 3895-3898. https://doi.org/10.1029/1998gl900008
      [2] Alibo, D.S., Nozaki, Y., 1999. Rare Earth Elements in Seawater: Particle Association, Shale-Normalization, and Ce Oxidation. Geochimica et Cosmochimica Acta, 63(3-4): 363-372. https://doi.org/10.1016/s0016-7037(98)00279-8
      [3] Banner, J.L., 2004. Radiogenic Isotopes: Systematics and Applications to Earth Surface Processes and Chemical Stratigraphy. Earth-Science Reviews, 65(3-4): 141-194. https://doi.org/10.1016/s0012-8252(03)00086-2
      [4] Bau, M., Koschinsky, A., 2006. Hafnium and Neodymium Isotopes in Seawater and in Ferromanganese Crusts: The "Element Perspective". Earth and Planetary Science Letters, 241(3-4): 952-961. https://doi.org/10.1016/j.epsl.2005.09.067
      [5] Bertram, C.J., Elderfield, H., 1993. The Geochemical Balance of the Rare Earth Elements and Neodymium Isotopes in the Oceans. Geochimica et Cosmochimica Acta, 57(9): 1957-1986. https://doi.org/10.1016/0016-7037(93)90087-d
      [6] Byrne, R.H., Kim, K. H., 1990. Rare Earth Element Scavenging in Seawater. Geochimica et Cosmochimica Acta, 54(10): 2645-2656. https://doi.org/10.1016/0016-7037(90)90002-3
      [7] Byrne, R.H., Kim, K. H., 1993. Rare Earth Precipitation and Coprecipitation Behavior: The Limiting Role of PO43- on Dissolved Rare Earth Concentrations in Seawater. Geochimica et Cosmochimica Acta, 57(3): 519-526. https://doi.org/10.1016/0016-7037(93)90364-3
      [8] Cui, Y.C., Shi, X.F., Liu, J.H., et al., 2008.Effects of Phosphatization on the Elemental Association of Cobalt-Rich Crusts.Geological Science and Technology Information, 27(3):61-67(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb200803009
      [9] De Baar, H.J.W., Bacon, M. P., Brewer, P. G., et al., 1985. Rare Earth Elements in the Pacific and Atlantic Oceans. Geochimica et Cosmochimica Acta, 49(9): 1943-1959. https://doi.org/10.1016/0016-7037(85)90089-4
      [10] Dubinin, A.V., 2000. Geochemistry of Rare Earth Elements in Oceanic Phillipsites. Lithology and Mineral Resources, 35(2): 101-108. https://doi.org/10.1007/bf02782672
      [11] Elderfield, H., Greaves, M.J., 1982. The Rare Earth Elements in Seawater. Nature, 296(5854): 214-219. https://doi.org/10.1038/296214a0
      [12] Greaves, M.J., Elderfield, H., Sholkovitz, E. R., 1999. Aeolian Sources of Rare Earth Elements to the Western Pacific Ocean. Marine Chemistry, 68(1-2): 31-38. https://doi.org/10.1016/s0304-4203(99)00063-8
      [13] Greaves, M.J., Rudnicki, M., Elderfield, H., 1991. Rare Earth Elements in the Mediterranean Sea and Mixing in the Mediterranean Outflow. Earth and Planetary Science Letters, 103(1-4): 169-181. https://doi.org/10.1016/0012-821x(91)90158-e
      [14] Halbach, P., Segl, M., Puteanus, D., et al., 1983. Co-Fluxes and Growth Rates in Ferromanganese Deposits from Central Pacific Seamount Areas. Nature, 304(5928): 716-719. https://doi.org/10.1038/304716a0
      [15] Hein, J.R., Conrad, T.A., Frank, M., et al., 2012. Copper-Nickel-Rich, Amalgamated Ferromanganese Crust-Nodule Deposits from Shatsky Rise, NW Pacific. Geochemistry, Geophysics, Geosystems, 13(10): 1-23. https://doi.org/10.1029/2012gc004286
      [16] Hein, J.R., Yeh, H.W., Gunn, S.H., et al., 1993. Two Major Cenozoic Episodes of Phosphogenesis Recorded in Equatorial Pacific Seamount Deposits. Paleoceanography, 8(2): 293-311. https://doi.org/10.1029/93pa00320
      [17] Jonasson, R.G., Bancroft, G.M., Nesbitt, H. W., 1985. Solubilities of some Hydrous REE Phosphates with Implications for Diagenesis and Sea Water Concentrations. Geochimica et Cosmochimica Acta, 49(10): 2133-2139. https://doi.org/10.1016/0016-7037(85)90071-7
      [18] Kato, Y., Fujinaga, K., Nakamura, K., et al., 2011. Deep-Sea Mud in the Pacific Ocean as a Potential Resource for Rare-Earth Elements. Nature Geoscience, 4(8): 535-539. https://doi.org/10.1038/ngeo1185
      [19] Klemm, V., Levasseur, S., Frank, M., et al., 2005. Osmium Isotope Stratigraphy of a Marine Ferromanganese Crust. Earth and Planetary Science Letters, 238(1-2): 42-48. https://doi.org/10.1016/j.epsl.2005.07.016
      [20] Kon, Y., Hoshino, M., Sanematsu, K., et al., 2014. Geochemical Characteristics of Apatite in Heavy REE-Rich Deep-Sea Mud from Minami-Torishima Area, Southeastern Japan. Resource Geology, 64(1): 47-57. https://doi.org/10.1111/rge.12026
      [21] Koppers, A.A.P., Staudigel, H., Pringle, M. S., et al., 2003. Short-Lived and Discontinuous Intraplate Volcanism in the South Pacific: Hot Spots or Extensional Volcanism?. Geochemistry, Geophysics, Geosystems, 4(10): 1-49. https://doi.org/10.1029/2003gc000533
      [22] Koschinsky, A., Stascheit, A., Bau, M., et al., 1997. Effects of Phosphatization on the Geochemical and Mineralogical Composition of Marine Ferromanganese Crusts. Geochimica et Cosmochimica Acta, 61(19): 4079-4094. https://doi.org/10.1016/s0016-7037(97)00231-7
      [23] Lécuyer, C., Reynard, B., Grandjean, P., 2004. Rare Earth Element Evolution of Phanerozoic Seawater Recorded in Biogenic Apatites. Chemical Geology, 204(1-2): 63-102. https://doi.org/10.1016/j.chemgeo.2003.11.003
      [24] Ling, H.F., Burton, K.W., O'Nions, R.K., et al., 1997. Evolution of Nd and Pb Isotopes in Central Pacific Seawater from Ferromanganese Crusts. Earth and Planetary Science Letters, 146(1-2): 1-12. https://doi.org/10.1016/s0012-821x(96)00224-5
      [25] Liu, X. W., Byrne, R. H., 1997. Rare Earth and Yttrium Phosphate Solubilities in Aqueous Solution. Geochimica et Cosmochimica Acta, 61(8): 1625-1633. https://doi.org/10.1016/s0016-7037(97)00037-9
      [26] Liu, Y.G., Du, D.W., Li, Z.S., et al., 2009.Estimation of Polymetallic Nodule Distribution and Resource Quantity in the CC Zone and Its Adjacent Areas of the Pacific Ocean.Advances in Marine Science, 27(3):342-350(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbhhy200903007
      [27] Ma, W.L., Yang, K.H., Bao, G.S., et al., 2014.Spatial Distribution Study of Cobalt-Rich Crusts Ore Formation on the Central Pacific Seamount.Acta Oceanologica Sinica, 36(7):77-89(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hyxb201407009
      [28] Machida, S., Fujinaga, K., et al., 2016. Geology and Geochemistry of Ferromanganese Nodules in the Japanese Exclusive Economic Zone around Minamitorishima Island. Geochemical Journal, 50(6): 539-555. https://doi.org/10.2343/geochemj.2.0419
      [29] McArthur, J.M., Walsh, J. N., 1984. Rare-Earth Geochemistry of Phosphorites. Chemical Geology, 47(3/4): 191-220. https://doi.org/10.1016/0009-2541(84)90126-8
      [30] Müller, R.D., Sdrolias, M., Gaina, C., et al., 2008. Age, Spreading Rates, and Spreading Asymmetry of the World's Ocean Crust. Geochemistry, Geophysics, Geosystems, 9(4): 1-42. https://doi.org/10.1029/2007gc001743
      [31] Pan, J.H., Liu, S.Q., Yang, Y., et al., 2002.Research on Geochemical Characteristics of Major, Trace and Rare-Earth Elements in Phosphates from the West Pacific Seamounts.Geological Review, 48(5):534-541(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000005892
      [32] Ren, J.B., He, G.W., Yao, H.Q., et al., 2016.Geochemistry and Significance of REE and PGE of the Cobalt-Rich Crusts from West Pacific Ocean Seamounts.Earth Science, 41(10):1745-1757(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201610010
      [33] Ren, J.B., He, G.W., Yao, H.Q., et al., 2017a. The Effects of Phosphatization on the REY of Co-rich Fe-Mn Crusts. Marine Geology & Quaternary Geology, 37(2): 33-43(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201702005
      [34] Ren, J.B., He, G.W., Zhu, K.C., et al., 2017b.REY-Rich Phosphate and Its Effects on the Deep-Sea Mud Mineralization. Acta Geologica Sinica, 91(6):1312-1325(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201706011
      [35] Ren, J.B., Wang, L.L., Yan, Q.S., et al., 2013.Geochemical Characteristics and Its Geological Implications for Basalts in Volcaniclastic Rock from Daimao Seamount.Earth Science, 38(Suppl.1):10-20(in Chinese with English abstract).
      [36] Ren, J.B., Yao, H.Q., Zhu, K.C., et al., 2015.Enrichment Mechanism of Rare Earth Elements and Yttrium in Deep-Sea Mud of Clarion-Clipperton Region.Earth Science Frontiers, 22(4):200-211(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201504021
      [37] Ren, X.W., Shi, X.F., Zhu, A.M., et al., 2011.Existing Phase of Rare Earth Elements in Co-Rich Fe-Mn Crusts from Seamount MK of Magellan Seamount Cluster.Journal of Jilin University(Earth Science Edition), 41(3):707-714(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201103012
      [38] Shields, G.A., Webb, G. E., 2004. Has the REE Composition of Seawater Changed over Geological Time? Chemical Geology, 204(1-2): 103-107. https://doi.org/10.1016/j.chemgeo.2003.09.010
      [39] Stichel, T., Frank, M., Rickli, J., et al., 2012. The Hafnium and Neodymium Isotope Composition of Seawater in the Atlantic Sector of the Southern Ocean. Earth and Planetary Science Letters, 317: 282-294. https://doi.org/10.1016/j.epsl.2011.11.025
      [40] Tao, C.H., Li, H. M., Huang, W., et al., 2011. Mineralogical and Geochemical Features of Sulfide Chimneys from the 49°39′E Hydrothermal Field on the Southwest Indian Ridge and Their Geological Inferences. Chinese Science Bulletin, 56(28-29): 2413-2423(in Chinese). doi: 10.1360/csb2011-56-28-29-2413
      [41] Toyoda, K., Tokonami, M., 1990. Diffusion of Rare-Earth Elements in Fish Teeth from Deep-Sea Sediments. Nature, 345(6276): 607-609. https://doi.org/10.1038/345607a0
      [42] van de Flierdt, T., Frank, M., Lee, D. C., et al., 2004. New Constraints on the Sources and Behavior of Neodymium and Hafnium in Seawater from Pacific Ocean Ferromanganese Crusts. Geochimica et Cosmochimica Acta, 68(19): 3827-3843. https://doi.org/10.1016/j.gca.2004.03.009
      [43] Yasukawa, K., Liu, H., Fujinaga, K., et al., 2014. Geochemistry and Mineralogy of REY-Rich Mud in the Eastern Indian Ocean. Journal of Asian Earth Sciences, 93: 25-36. https://doi.org/10.1016/j.jseaes.2014.07.005
      [44] Zeng, Z.G., Chen, D.G., Yin, X.B., et al., 2009. Elemental and Isotopic Compositions of the Hydrothermal Sulfide on the East Pacific Rise near 13 N. Science China Ser.D Earth Science, 39(12): 1780-1794(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXG201002009.htm
      [45] Zhang, F.Y., Zhang, W.Y., Ren, X.W., et al., 2015.Resource Estimation of Co-Rich Crusts of Seamounts in the Three Oceans.Haiyang Xuebao, 37(1):88-105(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hyxb201501010
      [46] Zhang, F.Y., Zhang, W.Y., Zhu, K.C., et al., 2011.Resource Estimation of Co-Rich Crusts of Seamounts in the Pacific.Earth Science, 36(1):1-11(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201101001
      [47] Zhang, J., Nozaki, Y., 1996. Rare Earth Elements and Yttrium in Seawater: ICP-MS Determinations in the East Caroline, Coral Sea, and South Fiji Basins of the Western South Pacific Ocean. Geochimica et Cosmochimica Acta, 60(23): 4631-4644. https://doi.org/10.1016/s0016-7037(96)00276-1
      [48] Zhao, K.D., Jiang, S.Y., Zheng, X.Y., et al., 2009.Nd Isotope Evolution of Ocean Waters and Implications for Paleo-Ocean Circulation.Earth Science Frontiers, 16(5):160-171(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy200905016
      [49] Zheng, T.L., Deng, Y.M., Lu, Z.J., et al., 2017.Geochemistry and Implications of Rare Earth Elements in Arsenic-Affected Shallow Aquifer from Jianghan Plain, Central China.Earth Science, 42(5):693-706(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705005
      [50] Zhu, K.C., Ren, J.B., Wang, H.F., et al., 2015.Enrichment Mechanism of REY and Geochemical Characteristics of REY-Rich Pelagic Clay from the Central Pacific. Earth Science, 40(6):1052-1060(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201506009
      [51] 崔迎春, 石学法, 刘季花, 等, 2008.磷酸盐化作用对富钴结壳元素相关性的影响.地质科技情报, 27(3):61-67. doi: 10.3969/j.issn.1000-7849.2008.03.009
      [52] 刘永刚, 杜德文, 李钟山, 等, 2009.太平洋CC区及周边多金属结核分布及资源量预测.海洋科学进展, 27(3):342-350. doi: 10.3969/j.issn.1671-6647.2009.03.007
      [53] 马维林, 杨克红, 包更生, 等, 2014.中太平洋海山富钴结壳成矿的空间分布规律研究.海洋学报(中文版), 36(7):77-89. doi: 10.3969/j.issn.0253-4193.2014.07.009
      [54] 潘家华, 刘淑琴, 杨忆, 等, 2002.西太平洋海山磷酸盐的常量、微量和稀土元素地球化学研究.地质论评, 48(5):534-541. doi: 10.3321/j.issn:0371-5736.2002.05.012
      [55] 任江波, 何高文, 姚会强, 等, 2016.西太平洋海山富钴结壳的稀土和铂族元素特征及其意义.地球科学, 41(10):1745-1757. http://d.old.wanfangdata.com.cn/Periodical/dqkx201610010
      [56] 任江波, 何高文, 姚会强, 等, 2017a.磷酸盐化对富钴结壳稀土元素的影响.海洋地质与第四纪地质, 37(2):32-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201702005
      [57] 任江波, 何高文, 朱克超, 等, 2017b.富稀土磷酸盐及其在深海成矿作用中的贡献.地质学报, 91(6):1312-1325. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201706011
      [58] 任江波, 王嘹亮, 鄢全树, 等, 2013.南海玳瑁海山玄武质火山角砾岩的地球化学特征及其意义.地球科学, 38(S1):10-20. http://d.old.wanfangdata.com.cn/Conference/8632487
      [59] 任江波, 姚会强, 朱克超, 等, 2015.稀土元素及钇在东太平洋CC区深海泥中的富集特征与机制.地学前缘, 22(4):200-211. http://d.old.wanfangdata.com.cn/Periodical/dxqy201504021
      [60] 任向文, 石学法, 朱爱美, 等, 2011.麦哲伦海山群MK海山富钴结壳稀土元素的赋存相态.吉林大学学报(地球科学版), 41(3):707-714. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201103012
      [61] 陶春辉, 李怀明, 黄威, 等, 2011.西南印度洋脊49°39′E热液区硫化物烟囱体的矿物学和地球化学特征及其地质意义.科学通报, 56(28-29): 2413-2423. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201128009
      [62] 曾志刚, 陈代庚, 殷学博, 等, 2009.东太平洋海隆13°N附近热液硫化物中的元素、同位素组成及其变化.中国科学(D辑:地球科学), 39(12):1780-1794. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200912014
      [63] 张富元, 章伟艳, 任向文, 等, 2015.全球三大洋海山钴结壳资源量估算.海洋学报, 37(1):88-105. doi: 10.3969/j.issn.0253-4193.2015.01.010
      [64] 张富元, 章伟艳, 朱克超, 等, 2011.太平洋海山钴结壳资源量估算.地球科学, 36(1):1-11. doi: 10.3969/j.issn.1672-6561.2011.01.001
      [65] 赵葵东, 蒋少涌, 郑新源, 等, 2009.海洋Nd同位素演化及古洋流循环示踪研究.地学前缘, 16(5):160-171. doi: 10.3321/j.issn:1005-2321.2009.05.016
      [66] 郑天亮, 邓娅敏, 鲁宗杰, 等, 2017.江汉平原浅层含砷地下水稀土元素特征及其指示意义.地球科学, 42(5):693-706. doi: 10.3799/dqkx.2017.057
      [67] 朱克超, 任江波, 王海峰, 等, 2015.太平洋中部富REY深海粘土的地球化学特征及REY富集机制.地球科学, 40(6):1052-1060. doi: 10.3799/dqkx.2015.087
    • dqkx-44-10-3529-TableS1.pdf
    • 加载中
    图(7)
    计量
    • 文章访问数:  5316
    • HTML全文浏览量:  1216
    • PDF下载量:  45
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-12-28
    • 刊出日期:  2019-11-11

    目录

      /

      返回文章
      返回