• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    浙西开化地区新元古代(~800 Ma)洋陆俯冲:来自活动陆缘弧火山岩序列组合的制约

    唐增才 汪发祥 周汉文 吴小勇 陈忠大 胡开明 赵旭东 董学发 余盛强 胡文杰

    唐增才, 汪发祥, 周汉文, 吴小勇, 陈忠大, 胡开明, 赵旭东, 董学发, 余盛强, 胡文杰, 2020. 浙西开化地区新元古代(~800 Ma)洋陆俯冲:来自活动陆缘弧火山岩序列组合的制约. 地球科学, 45(1): 180-193. doi: 10.3799/dqkx.2018.244
    引用本文: 唐增才, 汪发祥, 周汉文, 吴小勇, 陈忠大, 胡开明, 赵旭东, 董学发, 余盛强, 胡文杰, 2020. 浙西开化地区新元古代(~800 Ma)洋陆俯冲:来自活动陆缘弧火山岩序列组合的制约. 地球科学, 45(1): 180-193. doi: 10.3799/dqkx.2018.244
    Tang Zengcai, Wang Faxiang, Zhou Hanwen, Wu Xiaoyong, Chen Zhongda, Hu Kaiming, Zhao Xudong, Dong Xuefa, Yu Shengqiang, Hu Wenjie, 2020. Neoproterozoic (~800 Ma) Subduction of Ocean-Continent Transition: Constraint from Arc Magmatic Sequence in Kaihua, Western Zhejiang. Earth Science, 45(1): 180-193. doi: 10.3799/dqkx.2018.244
    Citation: Tang Zengcai, Wang Faxiang, Zhou Hanwen, Wu Xiaoyong, Chen Zhongda, Hu Kaiming, Zhao Xudong, Dong Xuefa, Yu Shengqiang, Hu Wenjie, 2020. Neoproterozoic (~800 Ma) Subduction of Ocean-Continent Transition: Constraint from Arc Magmatic Sequence in Kaihua, Western Zhejiang. Earth Science, 45(1): 180-193. doi: 10.3799/dqkx.2018.244

    浙西开化地区新元古代(~800 Ma)洋陆俯冲:来自活动陆缘弧火山岩序列组合的制约

    doi: 10.3799/dqkx.2018.244
    基金项目: 

    中国地质调查局项目 12120114068901

    浙江省国土资源厅项目 2007002

    浙江省国土资源厅项目 2014004

    浙江省国土资源厅项目 2017003

    详细信息
      作者简介:

      唐增才(1980-), 男, 高级工程师, 长期从事区域地质调查和矿产勘查研究

    • 中图分类号: P548;P588;P597

    Neoproterozoic (~800 Ma) Subduction of Ocean-Continent Transition: Constraint from Arc Magmatic Sequence in Kaihua, Western Zhejiang

    • 摘要: 浙西开化地区处于江南造山带东段,沿下庄-树范断裂北西侧发育一套浅变质的玄武岩-安山岩-英安岩-流纹岩组合.地球化学分析结果显示,玄武岩、安山岩和英安岩、流纹岩表现为连续演化的岩浆序列,岩石多富集Ba、K、Rb,亏损Sr等大离子亲石元素,富集Pb,亏损P、Ti、Ta、Nb等高场强元素.玄武岩Nb含量介于11.8×10-6~15.2×10-6,Nb/Ta=15.36~18.10,Nb/U=8.90~19.32,具有富Nb特点;安山岩MgO含量为5.31%~8.56%,Mg#值为56.89~68.83,FeOT/MgO介于0.82~1.36,显示高Mg特征;英安岩和流纹岩Ga/Al比值高,且FeOT/MgO多介于5.66~18.50,锆石饱和温度为837~920℃,表现出A型酸性火山岩特征.锆石U-Pb定年结果表明,玄武岩、安山岩和流纹岩的成岩年龄分别为800.5±9.2 Ma、799.3±7.1 Ma和798.3±6.2 Ma,均系新元古代(~800 Ma)构造岩浆活动的产物.富Nb玄武岩和高Mg安山岩组合为活动陆缘弧的典型代表,而英安岩和流纹岩则可能形成于俯冲机制下的拉张环境,进一步表明新元古代(~800 Ma)左右,古华南洋北西向扬子陆块的俯冲仍在继续.

       

    • 图  1  研究区地质简图

      Fig.  1.  Simplified geological map of study area

      图  2  开化地区新元古代火山岩锆石的阴极发光图像及分析点位和206Pb/238U视年龄

      Fig.  2.  CL photomicrographs, meansured points and age data (206Pb/238U) of zircons for the Neoproterozoic volcanic rocks in Kaihua area

      图  3  开化地区新元古代火山岩锆石U-Pb年龄谐和图和加权平均年龄

      Fig.  3.  207Pb/235U vs. 206Pb/238U concordia ages and average model ages of zircons for the Neoproterozoic volcanic rocks in Kaihua area

      图  4  开化地区新元古代火山岩Harker图解

      Fig.  4.  Hacker diagrams for the Neoproterozoic volcanic rocks in Kaihua area

      图  5  开化地区新元古代火山岩岩石分类图解

      图a、b据Winchester et al.(1977)

      Fig.  5.  Classification diagrams for the Neoproterozoic volcanic rocks in Kaihua area

      图  6  新元古代火山岩稀土元素球粒陨石标准化曲线和微量元素蛛网图

      标准值据Sun and McDonough(1989);大陆弧安山岩蛛网曲线据Zheng et al.(2012)

      Fig.  6.  Chondrite-normalized REE patterns and trace element spider diagram for the Neoproterozoic volcanic rocks in Kaihua area

      图  7  开化地区新元古代火山岩岩石类型图解

      图a据Defant et al.(1992);图b据赵振华等(2004);图c、d据Deng et al.(2009);图e、f据Whalen(1987).HMA.高镁安山岩/闪长岩类;MA.镁安山岩/闪长岩类;LF.低铁钙碱性系列;CA.钙碱性系列;FG.分异的长英质花岗岩;OGT.未分异的I、S和M型花岗岩;I & S.I和S型花岗岩;A.A型花岗岩

      Fig.  7.  Diagrams of rock types for the Neoproterozoic volcanic rocks in Kaihua area

      图  8  开化地区新元古代火山岩成因判别图解

      图a据Pearce(2008);图b据Condie(2005);图c据马芳和薛怀民(2017);图d据孙赛军等(2015).LC.下地壳;MC.中地壳;UC.上地壳;OIB.洋岛玄武岩;E-MORB.富集型洋中脊玄武岩;N-MORB.正常型洋中脊玄武岩;PM.原始地幔;DM.亏损地幔;HIMU.高μ(U/Pb)源区;EM1.Ⅰ型富集地幔源区;EM2.Ⅱ型富集地幔源区;DEP.深部亏损地幔;EN.富集端元;REC.循环端元;BCC.平均大陆地壳;LCC.大陆下地壳;DMM.亏损地幔

      Fig.  8.  Discrimination diagrams for the Neoproterozoic volcanic rocks in Kaihua area

      图  9  开化地区新元古代火山岩构造环境判别图解

      图a、b、c据Pearce(2008, 2014);图d据Batchelor and Bowden(1985);图e据Pearce(1996);图f据Eby(1992).SHO.钾玄岩系列;CA.钙碱性系列;TH.拉斑系列;ICA.岛弧钙碱系列;IAT.岛弧拉斑系列;TR.过渡玄武岩系列;ALK.碱性玄武岩系列;IAB.岛弧玄武岩;MORB.洋中脊玄武岩;WPB.板内玄武岩;BABB.弧后盆地玄武岩;FAB.弧前玄武岩

      Fig.  9.  Tectonic discrimination diagrams for the Neoproterozoic volcanic rocks in Kaihua area

    • [1] Batchelor, R. A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1-4): 43-55. https://doi.org/10.1016/0009-2541(85)90034-8
      [2] Condie, K. C., 2001. Mantle Plume and Their Record in Earth History. Cambridge University Press, London.
      [3] Condie, K. C., 2005. High Field Strength Element Ratios in Archean Basalts: A Window to Evolving Sources of Mantle Plumes?. Lithos, 79(3-4): 491-504. https://doi.org/10.1016/j.lithos.2004.09.014
      [4] Defant, M. J., Jackson, T. E., Drummond, M. S., et al., 1992. The Geochemistry of Young Volcanism Throughout Western Panama and Southeastern Costa Rica: An Overview. Journal of the Geological Society, 149(4): 569-579. https://doi.org/10.1144/gsjgs.149.4.0569
      [5] Deng, J. F., Feng, Y. F., Di, Y. J., et al., 2015. Magmatic Arc and Ocean-Continent Transition: Discussion. Geological Review, 61(3):473-484 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzlp201503001
      [6] Deng, J. F., Flower, M. F. J., Liu, C., et al., 2009. Nomenclature, Diagnosis and Origin of High-Magnesian Andesits (HMA) and Magnesian Andesits (MA): A Review from Petrographic and Experimental Data. Geochimica et Cosmochimica Acta, 73(13): A279. http://cn.bing.com/academic/profile?id=f66b40703444b68a91f11b711c00f26e&encoded=0&v=paper_preview&mkt=zh-cn
      [7] Deng, J.F., Liu, C., Feng, Y.F., et al., 2010. High Magnesian Andesitic/Dioritic Rocks (HMA)and Magnesian Andesitic/Dioritic Rocks (MA): Two Igneous Rock Types Related to Oceanic Subduction. Geology in China, 37(4):1112-1118 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=9cd4bb0eb757170f16b82ba4483fdb7f&encoded=0&v=paper_preview&mkt=zh-cn
      [8] Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids:Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. https://doi.org/10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2
      [9] Gao, L. Z., Yang, M. G., Ding, X. Z., et al., 2008. SHRIMP U-Pb Zircon Dating of Tuff in the Shuang qiaoshan and Heshangzhen Groups in South China: Constraints on the Evolution of the Jiangnan Neoproterozoic Orogenic Belt. Geological Bulletin of China, 27(10): 1744-1751 (in Chinese with English abstract).
      [10] Govindaraju, K., 1994. 1994 Compilation of Working Values and Sample Description for 383 Geostandards. Geostandards and Geoanalytical Research, 18: 1-158. https://doi.org/10.1111/j.1751-908x.1994.tb00526.x
      [11] Guo, L. Z., Lu, H. F., Shi, Y. S., et al., 1996. On the Meso-Neoproterozoic Jiangnan Island Arc: Its Kinematics and Dynamics. Geological Journal of China Universities, 2(1): 1-13 (in Chinese with English abstract).
      [12] Han, Y., Zhang, C. H., Jiang, X. Q., et al., 2016. LA-ICP-MS Zircon U-Pb Dating of the Rhyolite from the Zhonglü Group, Northwestern Zhejiang Province, and Its Chronostratigraphic Significance. Science & Technology Review, 34(2): 104-109 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kjdb201602021
      [13] Han, Y., Zhang, C. H., Liu, Z. H., et al., 2015. Study on Sedimentary Characteristics, Detrital Zircon Ages and Tectono-Paleogeographic Setting of Neopro-Terozoic Pingshui Group in Pujiang Area, Zhejiang Province. Geological Review, 61(6): 1270-1280 (in Chinese with English abstract).
      [14] Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. A "Wire" Signal Smoothing Device for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis. Spectrochimica Acta Part B: Atomic Spectroscopy, 78: 50-57. https://doi.org/10.1016/j.sab.2012.09.007
      [15] Jia, J. S., Cao, S. Q., Li, H. M., et al., 2016. Zircon U-Pb Age and Geochemistry of the Rhyolites in Kaihua, Western Zhejiang Province and Their Geological Implications. Geotectonica et Metallogenia, 40(4):787-797 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201604011
      [16] Jian, P., Liu, D. Y., Sun, X. M., et al., 2003. SHRIMP Dating of Carbpniferous Jinshajiang Ophiolite in Western Yunnan and Sichuan: Geochronological Constraints on the Evolution of the Paleo-Tethys Oceanic Crust. Acta Geologica Sinica, 77(2):217-228 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=cf904a96b0786f0450d918144caa4fad&encoded=0&v=paper_preview&mkt=zh-cn
      [17] Jiang, Y., Zhao, X. L., Lin, S. F., et al., 2014. Identification and Tectonic Implication of Neoproterozoic Continental Margin-Arc TTG Assemblage in Southeastern Margin of the Yangtze Carton. Acta Geologica Sinica, 88(8):1461-1474 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201408008
      [18] Jiang, Y., Zhao, X. L., Xing, G. F., et al., 2015. Arc Magmatic Activity of Qingbaikou Period along the Southeastern Margin of Yangtze Block: Implications from the Zircon U-Pb Age and Geochemical Characteristics of Nb-Enriched Gabbro and High-Mg Diorite in the Jinhua Plutonic Complex. Geological Bulletin of China, 34(8):1550-1561 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=b1fbea0532e0652bd66e8b1ea1e5dcb3&encoded=0&v=paper_preview&mkt=zh-cn
      [19] King, P. L., Chappell, B. W., Allen, C. M., et al., 2001. Are A-Type Granites the High‐temperature Felsic Granites? Evidence from Fractionated Granites of the Wangrah Suite. Australian Journal of Earth Sciences, 48(4): 501-514. https://doi.org/10.1046/j.1440-0952.2001.00881.x
      [20] Li, W. X., Li, X. H., Li, Z. X., 2010a. Ca. 850 Ma Bimodal Volcanic Rocks in Northeastern Jiangxi Province, South China: Initial Extension during the Breakup of Rodinia?. American Journal of Science, 310(9): 951-980. https://doi.org/10.2475/09.2010.08
      [21] Li, X. H., Li, W. X., He, B., 2012. Building of the South China Block and Its Relecance to Assembly and Breakup of Rodinia Supercontinent: Observations, Inter- Prettations and Tests. Bulletin of Mineralogy, Petrology and Geochemistry, 31(6): 543-559 (in Chinese with English abstract).
      [22] Li, X. H., Li, W. X., Li, Q. L., et al., 2010b. Petrogenesis and Tectonic Significance of the ∼850 Ma Gangbian Alkaline Complex in South China: Evidence from in Situ Zircon U-Pb Dating, Hf-O Isotopes and Whole-Rock Geochemistry. Lithos, 114(1-2): 1-15. https://doi.org/10.1016/j.lithos.2009.07.011
      [23] Li, X. H., Li, W. X., Li, Z. X., et al., 2008. 850-790 Ma Bimodal Volcanic and Intrusive Rocks in Northern Zhejiang, South China: A Major Episode of Continental Rift Magmatism during the Breakup of Rodinia. Lithos, 102(1-2): 341-357. https://doi.org/10.1016/j.lithos.2007.04.007
      [24] Li, X. H., Li, W. X., Li, Z. X., et al., 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb Zircon Ages, Geochemistry and Nd-Hf Isotopes of the Shuangxiwu Volcanic Rocks. Precambrian Research, 174(1-2): 117-128. https://doi.org/10.1016/j.precamres.2009.07.004
      [25] Li, X. H, Wang, X. C., Li, W. X., et al., 2008. Petrogenesis and Tectonic Significance of Neoproterozoic Basaltic Rocks in South China: From Orogenesis to Intracontinental Rifting. Geochimica, 37(4):382-398 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=02c7c89066668b374044ba3690a31840&encoded=0&v=paper_preview&mkt=zh-cn
      [26] Li, X. W., Mo, X. X., Zhao, Z. D., et al., 2010. A Discussion on How to Discriminate A-Type Granite. Geological Bulletin of China, 29(2-3):278-285 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201002012
      [27] Li, Y. Q., Zhang, Q., Wang, J. R., et al., 2017. Global Active Continental Margin Arc Basalt (CAB) Characteristics: Compared with Island Arc Basalt (IAB) and Back-Arc Basin Basalt (BAB). Chinese Journal of Geology, 52(3): 693-713 (in Chinese with English abstract).
      [28] Li, Z. X., Li, X. H., Kinny, P. D., et al., 2003. Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with other Continents: Evidence for a Mantle Superplume that Broke up Rodinia. Precambrian Research, 122(1-4): 85-109. https://doi.org/10.1016/s0301-9268(02)00208-5
      [29] Liao, S. B., Zhang, Y. J., Zhou, X. H., et al., 2014. Sedimentary Sequence and Sedimentary Environment of Xikou Group in the Adjoining Areas of Anhui and Jiangxi. Mineral Resources and Geology, 28(6):660-667 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcydz201406002
      [30] Liao, S. B., Zhang, Y. J., Zhou, X. H., et al., 2016. Sedimentary Sequence and Environment of Shuangqiaoshan Group from the Adjacent Area between Anhui and Jiangxi. Geoscience, 30(1):130-143 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201601014
      [31] Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082
      [32] Liu, Y. S., Zong, K. Q., Kelemen, P. B., et al., 2008. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1-2): 133-153. https://doi.org/10.1016/j.chemgeo.2007.10.016
      [33] Lu, H. J., Hua, R. M., Mao, G. Z., et al., 2007. Isotope Geochronological Study of Igneous Rocks in Northeastern Jiangxi Province and Its Implication to Geologic Evolution. Geological Review, 53(2):207-216 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp200702008
      [34] Ma, F., Xue, H. M., 2017. Huzhou-Anji Volcanic Basin of Northern Zhejiang Province: Zircon U-Pb Dating, Geochemistry and Magma Genesis. Acta Geologica Sinica, 91(2): 334-361 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201702004.htm
      [35] McCarthy, T. S., Hasty, R. A., 1976. Trace Element Distribution Patterns and Their Relationship to the Crystallization of Granitic Melts. Geochimica et Cosmochimica Acta, 40(11): 1351-1358. https://doi.org/10.1016/0016-7037(76)90125-3
      [36] Pearce, J. A., 1983. Role of the Sub-Continental Lithosphere in Magema Genesis at Active Continental Margine. In: Hawkesworth, C. J., Norry, M. J., eds., Continental Basalts and Mantle Xenolites. Shiva Publishing Limited, Nantwich.
      [37] Pearce, J. A., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120-125. https://doi.org/10.18814/epiiugs/1996/v19i4/005
      [38] Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1-4): 14-48. https://doi.org/10.1016/j.lithos.2007.06.016
      [39] Pearce, J. A., 2014. Immobile Element Fingerprinting of Ophiolites. Elements, 10(2): 101-108. https://doi.org/10.2113/gselements.10.2.101
      [40] Song, B., Zhang, Y. H., Wan, Y. S., et al., 2002. Mount Making and Procedure of the SHRIMP Dating. Geological Review, 48(S1): 26-30 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000005931
      [41] Sun, S. J., Zhang, L. P., Ding, X., et al., 2015. Zircon U-Pb Ages, Hf Isotopes and Geochemical Characteristics of Volcanic Rocks in Nagqu Area, Tibet and Their Petrogenesis. Acta Petrologica Sinica, 31(7):2063-2077 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201507020
      [42] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [43] Tang, Z. C., Chen, Z. D., Hu, K. M., et al., 2018. Neoproterozoic (~828 Ma) Expansion of Back-Arc Basin: Implications from Geochronology and Geochemistry of the Diabase and Flyschoids in Kaihua Area, Western Zhejiang. Earth Science, 43(S2):1-15 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S2001.htm
      [44] Wang, C. Z., Yu, M. G., Huang, Z. Z., et al., 2016. Recognition and Significance of Neoproterozoic (ca. 800 Ma) High Mg Andesites in the NE Jiangxi Ophiolite Belt. Geological Review, 62(5): 1185-1200 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201605007
      [45] Wang, J., Liu, B. J., Pan, G. T., 2001. Neoproterozoic Rifting History of South China Significance to Rodinia Breakup. Journal of Mineralogy and Petrology, 21(3):135-145 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=bb3454e29ba7d9df074c99b19600c4c4&encoded=0&v=paper_preview&mkt=zh-cn
      [46] Wang, X. L., Zhou, J. C., Qiu, J. S., et al., 2004. Geochemistry of the Meso- to Neoproterozoic Basic-Acid Rocks from Hunan Province, South China: Implications for the Evolution of the Western Jiangnan Orogen. Precambrian Research, 135(1-2): 79-103. https://doi.org/10.1016/j.precamres.2004.07.006
      [47] Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/bf00402202
      [48] Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2
      [49] Wu, R. X., Zheng, Y. F., Wu, Y. B., 2005. Zircon U-Pb Age, Element and Oxygen Isotope Geochemisty of Neoproterozoic Granites at Shiershan in South Anhui Province. Geological Journal of China Universities, 11(3):364-382 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200503008
      [50] Wu, R. X., Zheng, Y. F., Wu, Y. B., 2007. Zircon U-Pb Age and Isotope Geochemistry of Neoproterozoic Jingtan Volcanics in South Anhui. Geological Journal of China Universities, 13(2):282-296 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200702012
      [51] Xue, H. M., Ma, F., Song, Y. Q., et al., 2010. Geochronology and Geochemisty of the Neoproterozoic Granitoid Association from Eastern Segment of the Jiangnan Orogen, China: Constraints on the Timing and Process of Amalgamation between the Yangtze and Cathaysia Blocks. Acta Petrologica Sinica, 26(11):3215-3244 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=eec42af0c5520693687b8dd6b6c6ec01&encoded=0&v=paper_preview&mkt=zh-cn
      [52] Zhang, F. F., Wang, X. L., Wang, D., et al., 2017. Neoproterozoic Backarc Basin on the Southeastern Margin of the Yangtze Block during Rodinia Assembly: New Evidence from Provenance of Detrital Zircons and Geochemistry of Mafic Rocks. Geological Society of America Bulletin, 129(7-8): 904-919. https://doi.org/10.1130/b31528.1
      [53] Zhang, H., Gao, L. Z., Li, T. D., et al., 2015. SHRIMP Zircon U-Pb Dating of the Luojiamen Formation in Western Zhejiang Province and Its Geological Implications. Geological Bulletin of China, 34(2-3):447-455 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=40da5f70994ce5d0c101b6947972311b&encoded=0&v=paper_preview&mkt=zh-cn
      [54] Zhang, S. B., Wu, R. X., Zheng, Y. F., 2012. Neoproterozoic Continental Accretion in South China: Geochemical Evidence from the Fuchuan Ophiolite in the Jiangnan Orogen. Precambrian Research, 220-221: 45-64. https://doi.org/10.1016/j.precamres.2012.07.010
      [55] Zhang, Y. J., Zhou, X. H., Liao, S. B., et al., 2010. Neoproterozoic Crustal Composition and Orogenic Process of the Zhanggongshan Area, Anhui-Jiangxi. Acta Geologica Sinica, 84(10):1401-1427 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201010003
      [56] Zhang, Y. J., Zhou, X. H., Liao, S. B., et al., 2011. Geological and Geochemical Characteristics and Petrogenesis of the Mafic Rocks from Zhangyuan, Northern Jiangnan Orogen. Geological Journal of China Universities, 17(3):393-405 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201103004
      [57] Zhao, Z. H., Wang, Q., Xiong, X. L., 2004. Complex Mantle-Crust Interaction in Subduction Zone. Bulletin of Mineralogy, Petrology and Geochemistry, 23(4):277-284 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=770c4df868d05715e61c4895fef6275d&encoded=0&v=paper_preview&mkt=zh-cn
      [58] Zheng, Y. F., 2012. Metamorphic Chemical Geodynamics in Continental Subduction Zones. Chemical Geology, 328: 5-48. https://doi.org/10.1016/j.chemgeo.2012.02.005
      [59] Zheng, Y. F., Wu, R. X., Wu, Y. B., et al., 2008. Rift Melting of Juvenile Arc-Derived Crust: Geochemical Evidence from Neoproterozoic Volcanic and Granitic Rocks in the Jiangnan Orogen, South China. Precambrian Research, 163(3-4): 351-383. https://doi.org/10.1016/j.precamres.2008.01.004
      [60] Zhou, J. C., Wang, X. L., Qiu, J. S., 2009. Some Neoproterozoic Geological Events Involved in the Development of the Jiangnan Orogen. Geological Journal of China Universities, 15(4):453-459 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200904003
      [61] Zhou, X. H., Gao, T. S., Ma, X., et al., 2014. Study on Geochronology and Structural Properties of Pillow Basalts in Zhangyuan Region, Eastern Section of the Jiangnan Orogen. Resources Survey & Environment, 35(4):235-244 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hsdzykc201404001
      [62] Zhou, X. H., Zhang, Y. J., Liao, S. B., et al., 2012. LA- ICP-MS Zircon U-Pb Geochronology of Volcanic Rocks in the Shuangqiaoshan Group at Anhui-Jiangxi Boundary Region and Its Geological Implication. Geological Journal of China Universities, 18(4): 609-622 (in Chinese with English abstract).
      [63] 邓晋福, 冯艳芳, 狄永军, 等, 2015.岩浆弧火成岩构造组合与洋陆转换.地质论评, 61(3): 473-484. http://d.old.wanfangdata.com.cn/Periodical/dzlp201503001
      [64] 邓晋福, 刘翠, 冯艳芳, 等, 2010.高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA):与洋俯冲作用相关的两类典型的火成岩类.中国地质, 37(4): 1112-1118. http://www.cnki.com.cn/Article/CJFDTotal-DIZI201004027.htm
      [65] 高林志, 杨明桂, 丁孝忠, 等, 2008.华南双桥山群和河上镇群凝灰岩中的锆石SHRIMP U-Pb年龄——对江南新元古代造山带演化的制约.地质通报, 27(10): 1744-1751. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200810017
      [66] 郭令智, 卢华复, 施央申, 等, 1996.江南中、新元古代岛弧的运动学和动力学.高校地质学报, 2(1): 1-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600146084
      [67] 韩瑶, 张传恒, 蒋先强, 等, 2016.浙西北钟吕群流纹岩锆石U-Pb年龄及其年代地层学意义.科技导报, 34(2): 104-109. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kjdb201602021
      [68] 韩瑶, 张传恒, 刘子荟, 等, 2015.浙江浦江新元古界平水群沉积特征、碎屑锆石年龄及构造古地理格局探讨.地质论评, 61(6): 1270-1280. http://d.old.wanfangdata.com.cn/Periodical/dzlp201506007
      [69] 贾锦生, 曹素巧, 李汉明, 等, 2016.浙西开化地区流纹岩锆石U-Pb年代学、地球化学特征及其地质意义.大地构造与成矿学, 40(4): 787-797. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201604011
      [70] 简平, 刘敦一, 孙晓猛, 2003.滇川西部金沙江石炭纪蛇绿岩SHRIMP测年:古特提斯洋壳演化的同位素年代学制约.地质学报, 77(2):217-228. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200302010
      [71] 姜杨, 赵希林, 林寿发, 等, 2014.扬子克拉通东南缘新元古代陆缘弧型TTG的厘定及其构造意义.地质学报, 88(8): 1461-1474 http://d.old.wanfangdata.com.cn/Periodical/dizhixb201408008
      [72] 姜杨, 赵希林, 邢光福, 等, 2015.扬子陆块东南缘浙江金华地区青白口纪晚期岛弧岩浆活动——来自富铌辉长岩和高镁闪长岩锆石U-Pb年龄和地球化学证据.地质通报, 34(8): 1550- 1561 http://d.old.wanfangdata.com.cn/Periodical/zgqydz201508014
      [73] 李献华, 李武显, 何斌, 2012.华南陆块的形成与Rodinia超大陆聚合-裂解——观察、解释与检验.矿物岩石地球化学通报, 31(6): 543-559. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201206002
      [74] 李献华, 王选策, 李武显, 等, 2008.华南新元古代玄武质岩石成因与构造意义:从造山运动到陆内裂谷.地球化学, 37(4): 382-398. http://d.old.wanfangdata.com.cn/Periodical/dqhx200804012
      [75] 李小伟, 莫宣学, 赵志丹, 等, 2010.关于A型花岗岩判别过程中若干问题的讨论.地质通报, 29(2-3): 278-285. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201002012
      [76] 李玉琼, 张旗, 王金荣, 等, 2017.全球大陆弧玄武岩(CAB)的特征——与岛弧玄武岩(IAB)和弧后玄武岩(BAB)的对比.地质科学, 52(3): 693-713. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx201703004
      [77] 廖圣兵, 张彦杰, 周效华, 等, 2014.皖赣相邻地区溪口岩群沉积序列及沉积环境分析.矿产与地质, 28(6): 660-667. http://d.old.wanfangdata.com.cn/Periodical/kcydz201406002
      [78] 廖圣兵, 张彦杰, 周效华, 等, 2016.皖赣相邻地区双桥山群沉积序列及沉积环境分析.现代地质, 30(1): 130-143. http://d.old.wanfangdata.com.cn/Periodical/xddz201601014
      [79] 陆慧娟, 华仁民, 毛光周, 等, 2007.赣东北地区岩浆岩同位素年代学研究及地质演化.地质论评, 53(2): 207-216. http://d.old.wanfangdata.com.cn/Periodical/dzlp200702008
      [80] 马芳, 薛怀民, 2017.浙北湖(州)-安(吉)火山岩盆地:锆石U-Pb年代学、地球化学与岩浆成因.地质学报, 91(2): 334-361. http://www.cnki.com.cn/Article/CJFDTotal-DZXE201702004.htm
      [81] 宋彪, 张玉海, 万渝生, 等, 2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评, 48(S1):26-30. http://d.old.wanfangdata.com.cn/Periodical/OA000005931
      [82] 孙赛军, 张丽鹏, 丁兴, 等, 2015.西藏那曲中酸性火山岩的锆石U-Pb年龄、Hf同位素和地球化学特征及岩石成因.岩石学报, 31(7): 2063-2077. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201507020
      [83] 唐增才, 陈忠大, 胡开明, 等, 2018.浙西开化地区新元古代(~828 Ma)弧后盆地扩张——来自类复理石和辉绿岩墙的年代学和地球化学证据.地球科学, 43(S2):1-15. http://www.cnki.com.cn/Article/CJFDTotal-DQKX2018022700A.htm
      [84] 王存智, 余明刚, 黄志忠, 等, 2016.赣东北蛇绿岩带新元古代(~800 Ma)高镁安山岩的发现及其意义.地质论评, 62(5): 1185-1200. http://d.old.wanfangdata.com.cn/Periodical/dzlp201605007
      [85] 王剑, 刘宝珺, 潘桂棠, 2001.华南新元古代裂谷盆地演化——Rodinia超大陆解体的前奏.矿物岩石, 21(3): 135-145. http://d.old.wanfangdata.com.cn/Periodical/kwys200103021
      [86] 吴荣新, 郑永飞, 吴元保, 2005.皖南石耳山新元古代花岗岩锆石U-Pb定年以及元素和氧同位素地球化学研究.高校地质学报, 11(3):364-382. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb200503008
      [87] 吴荣新, 郑永飞, 吴元保, 2007.皖南新元古代井潭组火山岩锆石U-Pb定年和同位素地球化学研究.高校地质学报, 13(2): 282-296. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb200702012
      [88] 薛怀民, 马芳, 宋永勤, 等, 2010.江南造山带东段新元古代花岗岩组合的年代学和地球化学:对扬子与华夏地块拼合时间与过程的约束.岩石学报, 26(11): 3215-3244. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201011006
      [89] 张恒, 高林志, 李廷栋, 等, 2015.浙西地区新元古代骆家门组SHRIMP锆石U-Pb年龄及其地质意义.地质通报, 34(2-3):447-455. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201502021
      [90] 张彦杰, 周效华, 廖圣兵, 等, 2010.皖赣鄣公山地区新元古代地壳组成及造山过程.地质学报, 84(10): 1401-1427. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201010003
      [91] 张彦杰, 周效华, 廖圣兵, 等, 2011.江南造山带北缘鄣源基性岩地质-地球化学特征及成因机制.高校地质学报, 17(3): 393-405. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb201103004
      [92] 赵振华, 王强, 熊小林, 2004.俯冲带复杂的壳幔相互作用.矿物岩石地球化学通报, 23(4): 277-284 http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb200404001
      [93] 周金城, 王孝磊, 邱检生, 2009.江南造山带形成过程中若干新元古代地质事件.高校地质学报, 15(4): 453-459. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb200904003
      [94] 周效华, 高天山, 马雪, 等, 2014.江南造山带东段鄣源枕状玄武岩的年代学与构造属性研究.资源调查与环境, 35(4): 235-244. http://d.old.wanfangdata.com.cn/Periodical/hsdzykc201404001
      [95] 周效华, 张彦杰, 廖圣兵, 等, 2012.皖赣相邻地区双桥山群火山岩的LA-ICP-MS锆石U-Pb年龄及其地质意义.高校地质学报, 18(4): 609-622. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb201204003
    • dqkx-45-1-180-Table1-4.pdf
    • 加载中
    图(9)
    计量
    • 文章访问数:  3338
    • HTML全文浏览量:  734
    • PDF下载量:  73
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-07-16
    • 刊出日期:  2020-01-15

    目录

      /

      返回文章
      返回