Molecular Geochemical Characteristics of Source Rocks in the 5th Member of Upper Triassic Xujiahe Formation, Xinchang Gas Field, West Sichuan Depression
-
摘要: 上三叠统须家河组五段是川西坳陷新场气田勘探的热点层系之一.对新场须五段泥质烃源岩进行了分子地球化学分析,结果表明:新场须五段泥岩可溶抽提物姥植比介于0.26~1.70之间,C27-C29规则甾烷中C27和C29甾烷相对含量平均值分别为31.2%和44.6%,伽马蜡烷/C30藿烷比值介于0.11~0.34,MPI1、F1和4-/1-MDBT均与成熟度呈正相关.新场须五段泥岩有机质生源中,陆源高等植物略占优势,但低等水生生物和藻类也具有一定的贡献;泥岩主要沉积于湖泊环境,部分沉积于缺氧的盐水环境.成熟度对一些芳烃化合物指标具有明显影响,成熟度超过1.25%的煤系烃源岩样品的三芴系列和成熟度超过1.2%的样品的MDBTs/MDBFs比值不能直接用于沉积环境的判别.Abstract: The 5th member of the Upper Triassic Xujiahe Formation (T3x5) is one of the important targets for terrigenous natural gas exploration in the Xinchang gas field in the West Sichuan Depression.The molecular geochemical characteristics have been analyzed in order to further determine the sedimentary environment of the T3x source rocks.The studies indicate that the Pr/Ph ratio of soluble extract from the T3x5 mudstone in the Xinchang gas field ranges from 0.26 to 1.70, and the relative contents of C27 and C29 in C27-C29 regular steranes are 31.2% and 44.6%, respectively.The gammacerane/C30 hopane ratio ranges from 0.11 to 0.34, and the MPI1, F1 and 4-/1-MDBT values of the T3x5 mudstone are all positively correlated with thermal maturity.The organic source of the T3x5 mudstone is dominated by terrigenous higher plant, and lower hydrobiont and algae have also made a certain contribution.The T3x5 mudstone was mainly deposited in the lacustrine environment, with part of the samples in the anoxic saline environment.Thermal maturity can significantly affect several indexes of aromatic compounds in coal-measure source rocks, and the three fluorene series of samples with Ro>1.25% and MDBTs/MDBFs ratios of samples with Ro>1.2% can not be directly used to determine the sedimentary environment.
-
图 1 川西坳陷新场气田位置(a)及须五段顶面埋深图(b)
据吴小奇等(2016)修改
Fig. 1. Location (a) and burial depth of the T3x5 top surface (b) of the Xinchang gas field in the West Sichuan Depression
图 3 新场须五段泥质烃源岩Pr/nC17、Ph/nC18和Pr/Ph三角图
底图据王铁冠等(1995)
Fig. 3. Ternary diagram among Pr/nC17, Ph/nC18 and Pr/Ph of the T3x5 argillaceous source rocks in the Xinchang gas field
图 7 新场须五段泥岩Ro与MPI1(a)和F1(b)关系
川北T3x据Li et al.(2015);西加盆地据Radke et al.(1982)
Fig. 7. Correlations between Ro and MPI1 (a) and Ro and F1 (b) of the T3x5 mudstone in the Xinchang gas field
图 8 新场须五段泥岩三芴系列相对含量分布
底图据程克明等(1995)
Fig. 8. Ternary diagram among three fluorene series of the T3x5 mudstone in the Xinchang gas field
图 10 新场须五段泥岩DBT/P(a)和MDBTs/MDBFs(b)与Pr/Ph的关系
底图a据Hughes et al.(1995);底图b据Radke et al.(2000)
Fig. 10. Correlations between DBT/P and Pr/Ph (a) and MDBTS/MDBFs and Pr/Ph (b) of the T3x5 mudstone in the Xinchang gas field
表 1 新场须五段泥岩分子地球化学参数
Table 1. Molecular geochemical parameters of the T3x5 mudstone in the Xinchang gas field
井号 深度(m) 主峰碳 Ro OEP CPI Pr/Ph Ts/Tm 伽马蜡烷/
αβC30藿烷αααC27
(%)αααC28
(%)αααC29
(%)MPI1 F1 DBT/P MDBTs/
MDBFsF(%) OF(%) SF(%) 4-MDBT/
1-MDBTX503 2 788.0 C18 0.91 1.01 1.13 1.22 0.97 0.11 22.0 17.7 60.3 0.726 0.525 0.08 0.21 25.5 58.2 16.4 6.27 X503 2 864.0 C18 0.93 0.97 1.12 1.57 0.63 0.14 23.1 20.0 56.9 0.750 0.529 0.08 0.30 35.8 45.3 18.9 5.98 X503 2 903.0 C22 1.11 0.94 1.17 0.75 0.87 0.15 28.2 21.7 50.1 0.771 0.534 0.08 0.21 32.6 52.6 14.8 6.90 X503 2 935.0 C19 1.10 1.02 1.09 1.69 0.80 0.32 27.9 23.2 48.8 0.821 0.542 0.08 0.21 30.8 54.2 15.0 6.83 X503 2 968.0 C22 1.07 0.91 1.16 0.41 0.98 0.19 32.0 25.6 42.3 0.887 0.534 0.07 0.65 52.1 25.5 22.4 8.79 X503 2 976.0 C18, C22 1.18 0.95 1.24 1.33 0.82 0.15 28.5 22.6 48.9 0.835 0.532 0.09 0.38 40.1 40.0 19.8 7.56 X503 3 189.0 C22 1.23 0.91 1.12 0.48 1.01 0.16 35.3 26.2 38.5 1.033 0.586 0.09 1.40 53.3 16.7 30.0 11.52 X503 3 210.0 C22 1.25 0.91 1.11 0.43 0.73 0.30 33.0 27.0 40.0 0.943 0.599 0.10 0.76 43.8 26.6 29.6 13.28 X503 3 219.0 C22 1.26 0.94 1.15 1.32 1.05 0.21 33.7 25.8 40.5 1.193 0.599 0.06 2.49 45.7 13.3 41.0 11.28 XY-1 3 030.8 C25 1.30 1.06 1.13 1.19 1.14 0.14 34.1 26.2 39.7 1.065 0.580 0.10 2.03 32.9 18.3 48.8 11.33 XY-1 3 058.8 C25 1.32 1.04 1.11 0.26 1.05 0.14 39.7 25.6 34.7 1.036 0.585 0.07 2.64 44.2 13.0 42.8 11.80 XY-2 3 058.3 C18 1.25 0.92 1.07 1.70 1.04 0.34 30.6 25.4 44.0 1.018 0.571 0.08 0.86 45.7 25.7 28.6 11.61 XY-2 3 090.0 C19 1.20 1.00 1.17 0.93 0.71 0.25 32.6 26.5 40.9 0.999 0.576 0.10 2.18 36.5 16.3 47.1 10.50 XC28 3 288.0 C22 1.27 0.92 1.12 0.30 0.99 0.15 35.4 26.4 38.2 1.036 0.614 0.08 2.34 53.5 11.7 34.8 14.65 -
[1] Chen, D.X., Huang, X.H., Li, L.T., et al., 2010.Characteristics and History of Hydrocarbon Expulsion of the Upper Tertiary Source Rocks in the Western Sichuan Depression.Natural Gas Industry, 30(5):41-45 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201005010 [2] Chen, Z.L., Li, S.J., Alexander, R., 1994.Dinosterane as a Biomarker of Biogenic Origin and Sedimentary Environment.Petroleum Exploration and Development, 21(3):60-64 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400424362 [3] Cheng, K.M., Wang, T.G., Zhong, N.N., 1995.Geochemistry of Source Rocks.Science Press, Beijing (in Chinese). [4] Dai, J.X., 2016.Giant Coal-Derived Gas Fields and Their Gas Sources in China.Science Press, Beijing. [5] Dai, J.X., Ni, Y.Y., Zou, C.N., et al., 2009.Stable Carbon Isotopes of Alkane Gases from the Xujiahe Coal Measures and Implication for Gas-Source Correlation in the Sichuan Basin, SW China.Organic Geochemistry, 40(5):638-646. https://doi.org/10.1016/j.orggeochem.2009.01.012 [6] Goodwin, N.S., Mann, A.L., Patience, R.L., 1988.Structure and Significance of C30 4-Methyl Steranes in Lacustrine Shales and Oils.Organic Geochemistry, 12(5):495-506. https://doi.org/10.1016/0146-6380(88)90159-3 [7] Huang, S.W., Zhang, T.S., Wang, S.Y., et al., 2004.Research on Source Characteristics and Origin of Xujiahe Formation, Upper Triassic in Chishui Area, Sichuan Basin.Natural Gas Geoscience, 15(6):590-592 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx200406005 [8] Huang, W.Y., Meinschein, W.G., 1979.Sterols as Ecological Indicators.Geochimica et Cosmochimica Acta, 43(5):739-745. https://doi.org/10.1016/0016-7037(79)90257-6 [9] Hughes, W.B., Holba, A.G., Dzou, L.I.P., 1995.The Ratios of Dibenzothiophene to Phenanthrene and Pristane to Phytane as Indicators of Depositional Environment and Lithology of Petroleum Source Rocks.Geochimica et Cosmochimica Acta, 59(17):3581-3598. https://doi.org/10.1016/0016-7037(95)00225-o [10] Jiang, X.G., Zeng, H.S., Zhu, J.H., et al., 2012.Dynamic Evolution Simulation of the Upper Triassic Source Rocks in Central Part of Western Sichuan Depression.Oil & Gas Geology, 33(4):545-551 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201204008 [11] Kvalheim, O.M., Christy, A.A., Teln's, N., et al., 1987.Maturity Determination of Organic Matter in Coals Using the Methylphenanthrene Distribution.Geochimica et Cosmochimica Acta, 51(7):1883-1888. https://doi.org/10.1016/0016-7037(87)90179-7 [12] Li, H., Lu, J.L., Li, R.L., et al., 2017.Generation Paleoenvironment and Its Controlling Factors of Lower Cretaceous Lacustrine Hydrocarbon Source Rocks in Changling Depression, South Songliao Basin.Earth Science, 42(10):1774-1786 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.539 [13] Li, Q.F., Miao, S.D., Li, Y.X., et al., 2018.Reservoir Characteristics and Genesis of the Changxing Formation on the Margin of Yanting-Tongnan Trough, Central Sichuan Basin.Earth Science, 43(10):3553-3567 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.313 [14] Li, W., 2011.Formation of a Saline Environment and Evolution of a Sedimentary System in the Late Triassic Reservoirs of the Sichuan Basin.Natural Gas Industry, 31(9):31-38(in Chinese with English abstract). [15] Li, Y., Zhu, Y.M., Hao, F., et al., 2015.Thermal Evolution and Applications of Aromatic Hydrocarbons in Highly Mature Coal-Bearing Source Rocks of the Upper Triassic Xujiahe Formation in the Northern Sichuan Basin.Science China Earth Sciences, 58(11):1960-1969. https://doi.org/10.1007/s11430-015-5084-8 [16] Lin, R.Z., Wang, P.R., 1991.PAH in Fossil Fuels and Their Geochemical Significance.Journal of Southeast Asian Earth Sciences, 5(1-4):257-262. https://doi.org/10.1016/0743-9547(91)90034-u [17] Peters, K.E., Moldowan, J.M., 1993.The Biomarker Guide:Interpreting Molecular Fossil in Petroleum and Ancient Sediments.Prentice Hall, New Jersey. [18] Radke, M., Vriend, S.P., Ramanampisoa, L.R., 2000.Alkyldibenzofurans in Terrestrial Rocks:Influence of Organic Facies and Maturation.Geochimica et Cosmochimica Acta, 64(2):275-286. https://doi.org/10.1016/s0016-7037(99)00287-2 [19] Radke, M., Welte, D.H., Willsch, H., 1982.Geochemical Study on a Well in the Western Canada Basin:Relation of the Aromatic Distribution Pattern to Maturity of Organic Matter.Geochimica et Cosmochimica Acta, 46(1):1-10. https://doi.org/10.1016/0016-7037(82)90285-x [20] Radke, M., Welte, D.H., Willsch, H., 1986.Maturity Parameters Based on Aromatic Hydrocarbons:Influence of the Organic Matter Type.Organic Geochemistry, 10(1-3):51-63. https://doi.org/10.1016/0146-6380(86)90008-2 [21] Shen, Z.M., Liu, T., Lü, Z.X., et al., 2008.A Comparison Study on the Gas Source of Jurassic Natural Gas in the Western Sichuan Depression.Geological Journal of China Universities, 14(4):577-582 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200804011 [22] Shen, Z.M., Wei, J.H., Zhu, H.Q., et al., 2009.Comparative Research on Maturity Feature and Maturity Indicator of Coal Source Rock from West Sichuan Basin Depression.Journal of Mineralogy and Petrology, 29(4):83-88 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwys200904012 [23] Sinninghe Damsté, J.S., Kenig, F., Koopmans, M.P., et al., 1995.Evidence for Gammacerane as an Indicator of Water Column Stratification.Geochimica et Cosmochimica Acta, 59(9):1895-1900. https://doi.org/10.1016/0016-7037(95)00073-9 [24] Song, C.Y., Jin, H.R., Liu, X., et al., 2007.Distribution of Methyl Phenanthrene in Sediments and Its Impacting on Maturity Parameters.Petroleum Geology & Experiment, 29(2):183-187 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz200702014 [25] Song, Z.X., Zhou, Z.M., 2013.Identification of Chief Hydrocarbon Source Rocks in Lishu Fault Depression and Their Geochemical Characteristics.Petroleum Geology & Experiment, 35(4):438-444 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201304014 [26] Summons, R.E., Volkman, J.K., Boreham, C.J., 1987.Dinosterane and Other Steroidal Hydrocarbons of Dinoflagellate Origin in Sediments and Petroleum.Geochimica et Cosmochimica Acta, 51(11):3075-3082. https://doi.org/10.1016/0016-7037(87)90381-4 [27] Sun, L.N., Zhang, Z.N., Wu, Y.D., et al., 2015.Evolution Patterns and Their Significances of Biomarker Maturity Parameters-A Case Study on Liquid Hydrocarbons from Type Ⅲ Source Rock under HTHP Hydrous Pyrolysis.Oil & Gas Geology, 36(4):573-580 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201504006 [28] Wang, T.G., Zhong, N.N., Hou, D.J., et al., 1995.Genetic Mechanism and Occurrence of Immature Hydrocarbon.Petroleum Industry Press, Beijing (in Chinese). [29] Wu, X.Q., Chen, Y.B., Liu, G.X., et al., 2017.Geochemical Characteristics and Origin of Natural Gas Reservoired in the 4th Member of the Middle Triassic Leikoupo Formation in the Western Sichuan Depression, Sichuan Basin, China.Journal of Natural Gas Geoscience, 2(2):99-108. https://doi.org/10.1016/j.jnggs.2017.05.001 [30] Wu, X.Q., Chen, Y.B., Zhao, G.W., et al., 2017.Evaluation of Source Rocks in the 5th Member of the Upper Triassic Xujiahe Formation in the Xinchang Gas field, the Western Sichuan Depression, Sichuan Basin.Natural Gas Geoscience, 28(11):1714-1722 (in Chinese with English abstract). [31] Wu, X.Q., Huang, S.P., Liao, F.R., et al., 2010.Carbon Isotopic Characteristics of Jurassic Alkane Gases in the Sichuan Basin, China.Energy Exploration & Exploitation, 28(1):25-36. https://doi.org/10.1260/0144-5987.28.1.25 [32] Wu, X.Q., Wang, P., Liu, Q.Y., et al., 2016.The Source of Natural Gas Reservoired in the 5thMember of the Upper Triassic Xujiahe Formation in Xinchang Gas field, the Western Sichuan Depression and Its Implication.Natural Gas Geoscience, 27(8):1409-1418 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX201608007.htm [33] Xing, F.C., Hu, H.R., Hou, M.C., et al., 2018.Carbonate Reservoirs Cycles and Assemblages under the Tectonic and Palaeogeography Control:A Case Study from Sichuan Basin.Earth Science, 43(10):3540-3552 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.310 [34] Yin, J., Wang, Q., Hao, F., et al., 2017.Palaeolake Environment and Depositional Model of Source Rocks of the Lower Submember of Sha1 in Raoyang Sag, Bohai Bay Basin.Earth Science, 42(7):1209-1222 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.098 [35] Zhang, L.P., Huang, D.F., Liao, Z.Q., 1999.Gammacerane-Geochemical Indicator of Water Column Stratification.Acta Sedimentologica Sinica, 17(1):136-140 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb199901022 [36] Zhang, M., Huang, G.H., Li, H.B., et al., 2012.Molecular Geochemical Characteristics of Gas Source Rocks from the Upper Triassic Xujiahe Formation Indicate Transgression Events in the Sichuan Basin.Science China Earth Sciences, 55(8):1260-1268. https://doi.org/10.1007/s11430-012-4408-1 [37] Zhu, R.K., Zhao, X., Liu, L.H., et al., 2009.Depositional System and Favorable Reservoir Distribution of Xujiahe Formation in Sichuan Basin.Petroleum Exploration and Development, 36(1):46-55 (in Chinese with English abstract). doi: 10.1016/S1876-3804(09)60110-5 [38] Zhu, Y.M., Gu, S.X., Li, Y., et al., 2012.Biological Organic Source and Depositional Environment of Over-Mature Source Rocks of Longtan Formation in Sichuan Basin.Geochimica, 41(1):35-44 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx201201004 [39] 陈冬霞, 黄小惠, 李林涛, 等, 2010.川西坳陷上三叠统烃源岩排烃特征与排烃史.天然气工业, 30(5):41-45. doi: 10.3787/j.issn.1000-0976.2010.05.010 [40] 陈致林, 李素娟, Alexander, R., 1994.甲藻甾烷——一种生源和沉积环境的生物标志物.石油勘探与开发, 21(3):60-64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400424362 [41] 程克明, 王铁冠, 钟宁宁, 1995.烃源岩地球化学.北京:科学出版社. [42] 黄世伟, 张廷山, 王顺玉, 等, 2004.四川盆地赤水地区上三叠统须家河组烃源岩特征及天然气成因探讨.天然气地球科学, 15(6):590-592. doi: 10.3969/j.issn.1672-1926.2004.06.005 [43] 江兴歌, 曾华盛, 朱建辉, 等, 2012.川西坳陷中部上三叠统烃源岩动态演化模拟.石油与天然气地质, 33(4):545-551. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201204008 [44] 李浩, 陆建林, 李瑞磊, 等, 2017.长岭断陷下白垩统湖相烃源岩形成古环境及主控因素.地球科学, 42(10):1774-1786. https://doi.org/10.3799/dqkx.2017.539 [45] 李秋芬, 苗顺德, 李永新, 等, 2018.四川盆地川中地区盐亭-潼南海槽台缘带二叠系长兴组储层特征及成因探讨.地球科学, 43(10):3553-3567. https://doi.org/10.3799/dqkx.2018.313 [46] 李伟, 2011.四川盆地晚三叠世咸化环境的形成与沉积体系的演化特征.天然气工业, 31(9):31-38. doi: 10.3787/j.issn.1000-0976.2011.09.006 [47] 沈忠民, 刘涛, 吕正祥, 等, 2008.川西坳陷侏罗系天然气气源对比研究.高校地质学报, 14(4):577-582. doi: 10.3969/j.issn.1006-7493.2008.04.011 [48] 沈忠民, 魏金花, 朱宏权, 等, 2009.川西坳陷煤系烃源岩成熟度特征及成熟度指标对比研究.矿物岩石, 29(4):83-88. doi: 10.3969/j.issn.1001-6872.2009.04.012 [49] 宋长玉, 金洪蕊, 刘璇, 等, 2007.烃源岩中甲基菲的分布及对成熟度参数的影响.石油实验地质, 29(2):183-187. doi: 10.3969/j.issn.1001-6112.2007.02.014 [50] 宋振响, 周卓明, 2013.梨树断陷主力烃源岩判定及其地球化学特征.石油实验地质, 35(4):438-444. http://d.old.wanfangdata.com.cn/Periodical/sysydz201304014 [51] 孙丽娜, 张中宁, 吴远东, 等, 2015.生物标志化合物热成熟度参数演化规律及意义——以Ⅲ型烃源岩HTHP生排烃热模拟液态烃产物为例.石油与天然气地质, 36(4):573-580. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201504006 [52] 王铁冠, 钟宁宁, 侯读杰, 等, 1995.低熟油气形成机理与分布.北京:石油工业出版社. [53] 吴小奇, 陈迎宾, 赵国伟, 等, 2017.四川盆地川西坳陷新场气田上三叠统须家河组五段烃源岩评价.天然气地球科学, 28(11):1714-1722. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201711011 [54] 吴小奇, 王萍, 刘全有, 等, 2016.川西坳陷新场气田上三叠统须五段天然气来源及启示.天然气地球科学, 27(8):1409-1418. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201608006 [55] 邢凤存, 胡华蕊, 侯明才, 等, 2018.构造和古地理控制下的碳酸盐岩储集体旋回和集群性探讨:以四川盆地为例.地球科学, 43(10):3540-3552. https://doi.org/10.3799/dqkx.2018.310 [56] 殷杰, 王权, 郝芳, 等, 2017.渤海湾盆地饶阳凹陷沙一下亚段古湖泊环境与烃源岩发育模式.地球科学, 42(7):1209-1222. https://doi.org/10.3799/dqkx.2017.098 [57] 张立平, 黄第藩, 廖志勤, 1999.伽马蜡烷——水体分层的地球化学标志.沉积学报, 17(1):136-140. doi: 10.3969/j.issn.1000-0550.1999.01.022 [58] 朱如凯, 赵霞, 刘柳红, 等, 2009.四川盆地须家河组沉积体系与有利储集层分布.石油勘探与开发, 36(1):46-55. doi: 10.3321/j.issn:1000-0747.2009.01.005 [59] 朱扬明, 顾圣啸, 李颖, 等, 2012.四川盆地龙潭组高热演化烃源岩有机质生源及沉积环境探讨.地球化学, 41(1):35-44. doi: 10.3969/j.issn.0379-1726.2012.01.004