Mineral Chemistry of Magnetite from the Duotoushan Deposit in the Eastern Tianshan: Constraints on the Evolution of Ore-Forming Fluids
-
摘要: 多头山矿床位于阿齐山-雅满苏成矿带西段,是东天山地区海相火山岩型铁铜矿床的代表,但目前缺乏对其矿石矿物的直接研究.磁铁矿是一种常见的矿石矿物,其化学成分可以用于指示成矿演化过程.在详细划分磁铁矿形成期次的基础上,对东天山地区的多头山矿床展开磁铁矿化学成分研究.结果表明按照磁铁矿的生成顺序和共生矿物组合的不同,多头山铁铜矿床中的磁铁矿从早期到晚期可以划分为M1a、M1b和M2型.其中,M1a型磁铁矿为粒状结构,与绿帘石-角闪石-黄铁矿共生;M1b型磁铁矿也为粒状结构,与石英-绿帘石-角闪石-黄铁矿共生;M2型磁铁矿则呈长条状产出,与角闪石共生.这3类磁铁矿都有较低含量的Ti(84×10-6~1 117×10-6)、Al(417×10-6~5 273×10-6)和高场强元素,属于热液型磁铁矿.与M2型磁铁矿相比,前两类磁铁矿具有较高含量的Si、Ca、Al和Mn,可能受到微细包体的影响.从M1a型到M2型磁铁矿,Ti含量呈现逐渐降低的趋势,可能与结晶温度逐渐降低有关;V和Cr含量表现出先升高后降低的变化规律,暗示成矿流体的氧逸度先降低后升高.综合考虑区域地质特征及M2型磁铁矿更加富Mg,表明有一定比例的海水参与到多头山矿床中磁铁矿形成的晚期阶段.Abstract: The Duotoushan Fe-Cu deposit is a typical submarine volcanic rock-hosted iron oxide deposit and situated in the western margin of the Aqishan-Yamansu belt, eastern Tianshan. Nevertheless, studies on its ore minerals are absent. As a common mineral in many types of hydrothermal deposits, mineral chemistry of magnetite can reveal the ore-forming processes in mineralization systems. In this paper, we present integrated study on paragenesis and mineral chemistry data of magnetite at the Duotoushan deposit, eastern Tianshan. Based on the mineral paragenesis and mineral assemblages, it is found that there are three representative magnetite types in the Duotoushan deposit. The granular M1a type magnetite grains coexist with epidote, amphibole and pyrite, whereas the M1b magnetite is intergrown with quartz, epidote, amphibole and pyrite. The branch shape magnetite grains of M2 type coexist with amphibole only. Due to depletion in Ti (84×10-6-1 117×10-6), Al (417×10-6-5 273×10-6) and high field-strength elements, all the magnetite grains are identified as a hydrothermal origin. Compared with the M2 magnetite, M1a and M1b magnetite are enriched in Si, Ca, Al and Mn, which can be attributed to the influence of micro-scale inclusions. The gradually reduced concentrations of titanium in the magnetite samples from M1a to M2 may be attributed to the decreasing crystallization temperatures. In addition, the variable compositions of vanadium and chromium suggest oxygen fugacity decreased first and then increased during the fluids evolution. Given that M2 magnetite contains higher magnesium contents and geological constrains, we propose that seawater may have contributed to the hydrothermal system during late magnetite mineralization stage.
-
Key words:
- magnetite /
- mineral chemistry /
- fluid evolution /
- Duotoushan deposit /
- eastern Tianshan
-
图 9 多头山矿床磁铁矿的(Ti+V)-(Al+Mn)图解
Fig. 9. The (Al+Mn) vs. (Ti+V) diagram of magnetite from the Duotoushan deposit
表 1 多头山矿床磁铁矿微量元素成分特征
Table 1. Representative trace element compositions of magnetite from the Duotoushan deposit
类型/样品 共生矿物 Si Ca Al Mg Ti Mn V Cr Co Ni Zn Ga Ge As Rb Sr Y Zr Nb Ba Th U Ni/Cr Ti+V Al+Mn M1aDT-009 绿帘石-角闪石-黄铁矿 15 626 5 591 4 579 1 382 1 011 1 633 59.8 22.2 5.11 21.1 152 6.95 3.32 16.5 0.87 5.98 1.39 1.66 0.58 3.16 0.17 0.20 0.95 0.11 0.62 17 160 6 852 5 273 1 140 855 1 760 45.9 6.31 5.49 24.2 57.1 8.47 2.90 34.9 1.46 8.12 2.26 0.59 1.33 5.89 0.35 0.38 3.84 0.09 0.70 13 383 4 815 2 873 836 685 1 586 49.7 5.11 5.11 18.2 137 5.54 3.14 23.5 1.02 10.0 2.29 8.56 1.16 4.71 0.84 0.91 3.56 0.07 0.45 11 645 4 625 3 894 1 121 556 1 474 37.4 2.20 11.7 5.63 137 6.31 0.73 8.50 0.77 5.06 0.40 2.57 0.27 3.73 0.41 0.36 2.56 0.06 0.54 14 111 5 578 4 439 1 120 823 1 748 41.5 12.0 3.60 13.4 70.8 9.43 3.08 39.1 1.23 6.98 1.32 0.53 0.98 5.03 0.32 0.34 1.11 0.09 0.62 9 724 2 985 2 566 689 425 1 077 46.1 2.94 8.30 7.07 38.2 5.64 2.01 3.27 0.44 3.17 0.07 0.05 0.11 1.32 0.01 0.06 2.40 0.05 0.36 9 060 3 031 1 788 928 219 1 070 49.9 26.7 4.76 12.5 80.1 3.94 2.76 1.95 0.32 3.41 0.84 3.58 0.20 1.98 0.20 0.22 0.47 0.03 0.29 M1bDT-018 绿帘石-角闪石-黄铁矿-石英 19 873 6 740 5 266 1 196 1 117 1 828 91.3 80.4 7.93 8.40 91.2 12.4 4.14 18.1 1.77 11.3 1.73 3.32 0.69 9.77 0.32 3.92 0.10 0.12 0.71 6 096 1 198 1 116 281 221 845 59.3 52.6 5.88 11.8 49.9 2.82 2.96 1.31 0.26 2.41 0.20 1.96 0.03 0.79 0.13 0.13 0.22 0.03 0.20 5 775 2 148 1 629 314 157 838 58.7 161 5.28 13.5 62.1 2.83 2.83 0.71 0.18 1.32 0.09 0.06 0.01 0.87 0.05 0.13 0.08 0.02 0.25 18 918 16 841 5 039 662 557 1483 72.7 208 5.32 9.45 108 5.98 4.44 3.09 0.65 4.64 3.27 7.93 0.30 2.71 1.13 2.12 0.05 0.06 0.65 15 785 9 164 4 271 820 624 1 354 71.0 114 5.90 8.24 125 5.79 4.46 2.73 0.50 4.63 1.03 0.31 0.12 3.07 0.06 0.05 0.07 0.07 0.56 12 450 3 848 3 886 809 690 1 654 73.1 76.0 5.50 7.58 81.2 9.11 4.39 5.04 1.08 5.14 0.53 0.24 0.12 3.80 0.09 0.10 0.10 0.08 0.55 14 065 7 558 3 487 834 477 1 220 70.7 56.5 6.01 8.79 85.5 6.04 4.14 2.85 0.27 3.95 1.72 0.24 0.16 1.15 0.08 0.09 0.16 0.05 0.47 8 745 2 728 1 486 491 281 1 031 66.1 53.5 5.14 10.2 73.5 4.01 6.70 1.19 0.81 5.02 0.47 0.13 0.00 1.36 0.08 0.09 0.19 0.03 0.25 M2DT-034 角闪石 3 454 3 511 527 655 178 848 36.8 1.44 9.94 20.4 33.5 3.28 3.39 11.9 0.44 5.01 2.04 0.21 0.59 3.03 2.90 2.90 14.2 0.02 0.14 3 058 367 1 013 1 597 84 760 38.1 2.88 9.99 19.4 34.3 3.58 1.87 9.34 0.38 1.24 0.60 0.35 0.63 2.76 2.18 2.15 6.76 0.01 0.18 3 035 803 391 528 143 797 37.8 4.11 9.57 21.7 32.2 3.59 3.97 11.2 0.38 2.78 2.09 0.17 0.61 3.19 3.32 3.23 5.27 0.02 0.12 5 998 703 1 879 2 833 101 847 35.6 7.82 10.9 17.4 51.5 3.26 3.88 13.8 0.57 2.45 1.20 0.54 0.50 3.91 2.77 2.82 2.23 0.01 0.27 3 395 451 1 019 1 351 106 767 35.7 1.07 9.72 19.3 47.7 3.51 4.59 15.5 0.47 1.73 0.95 0.36 0.49 2.59 2.90 2.88 17.9 0.01 0.18 4 357 1 522 699 757 148 765 33.4 2.02 8.87 21.4 48.4 4.14 6.00 12.4 0.74 3.34 2.10 0.54 0.60 3.58 2.87 2.84 10.6 0.02 0.15 2 876 564 660 700 157 797 34.3 2.82 9.56 19.6 47.0 4.01 5.01 13.1 0.58 2.88 1.85 0.33 0.42 2.55 2.47 2.49 6.94 0.02 0.15 4 607 2 674 817 1 088 113 773 34.3 4.02 9.24 20.0 61.6 3.71 3.30 12.2 0.46 2.89 1.99 1.95 0.46 3.64 1.90 1.99 4.98 0.01 0.16 2 571 389 471 578 125 730 33.5 1.86 10.4 19.0 32.0 3.28 4.40 9.53 0.32 1.55 1.10 0.27 0.49 2.32 2.48 2.32 10.3 0.02 0.12 -
[1] Acosta-Góngora, P., Gleeson, S.A., Samson, I.M., et al., 2014.Trace Element Geochemistry of Magnetite and Its Relationship to Cu-Bi-Co-Au-Ag-U-W Mineralization in the Great Bear Magmatic Zone, NWT, Canada.Economic Geology, 109(7):1901-1928. https://doi.org/10.2113/econgeo.109.7.1901 [2] Berzina, A., 2012.Platinum-Group Element Geochemistry of Magnetite from Porphyry-Cu-Mo Deposits and Their Host Rocks (Siberia, Russia).Acta Geologica Sinica(English Edition), 86(1):106-117. https://doi.org/10.1111/j.1755-6724.2012.00615.x [3] Boutroy, E., Dare, S.A.S., Beaudoin, G., et al., 2014.Magnetite Composition in Ni-Cu-PGE Deposits Worldwide:Application to Mineral Exploration.Journal of Geochemical Exploration, 145:64-81. https://doi.org/10.1016/j.gexplo.2014.05.010 [4] Carew, M.J., 2004.Controls on Cu-Au Mineralization and Fe-Oxide Metasomatism in the Eastern Fold Belt, NW Queensland, Australia (Dissertation).James Cook University, Townsville. [5] Chen, H.Y., Wan, B., Pirajno, F., et al., 2018.Metallogenesis of the Xinjiang Orogens, NW China-New Discoveries and Ore Genesis.Ore Geology Reviews, Online.https: //doi.org/10.1016/j.oregeorev.2018.02.035 [6] Chen, W.T., Zhou, M.F., Gao, J.F., et al., 2015.Geochemistry of Magnetite from Proterozoic Fe-Cu Deposits in the Kangdian Metallogenic Province, SW China.Mineralium Deposita, 50(7):795-809. https://doi.org/10.1007/s00126-014-0575-7 [7] Dare, S.A.S., Barnes, S.J., Beaudoin, G., 2012.Variation in Trace Element Content of Magnetite Crystallized from a Fractionating Sulfide Liquid, Sudbury, Canada:Implications for Provenance Discrimination.Geochimica et Cosmochimica Acta, 88:27-50. https://doi.org/10.1016/j.gca.2012.04.032 [8] Dare, S.A.S., Barnes, S.J., Beaudoin, G., et al., 2014.Trace Elements in Magnetite as Petrogenetic Indicators.Mineralium Deposita, 49(7):785-796. https://doi.org/10.1007/s00126-014-0529-0 [9] Dupuis, C., Beaudoin, G., 2011.Discriminant Diagrams for Iron Oxide Trace Element Fingerprinting of Mineral Deposit Types.Mineralium Deposita, 46(4):319-335. https://doi.org/10.1007/s00126-011-0334-y [10] Han, C.M., Xiao, W.J., Zhao, G.C., et al., 2014.Late Paleozoic Metallogenesis and Evolution of the East Tianshan Orogenic Belt (NW China, Central Asia Orogenic Belt).Geology of Ore Deposits, 56(6):493-512. https://doi.org/10.1134/s1075701514060075 [11] Horita, J., Zimmermann, H., Holland, H.D., 2002.Chemical Evolution of Seawater during the Phanerozoic.Geochimica et Cosmochimica Acta, 66(21):3733-3756. https://doi.org/10.1016/s0016-7037(01)00884-5 [12] Hou, T., Zhang, Z.C., Santosh, M., et al., 2014.Geochronology and Geochemistry of Submarine Volcanic Rocks in the Yamansu Iron Deposit, Eastern Tianshan Mountains, NW China:Constraints on the Metallogenesis.Ore Geology Reviews, 56:487-502. https://doi.org/10.1016/j.oregeorev.2013.03.008 [13] Huang, X.L., Xu, Y.G., Lo, C.H., et al., 2007.Exsolution Lamellae in a Clinopyroxene Megacryst Aggregate from Cenozoic Basalt, Leizhou Peninsula, South China:Petrography and Chemical Evolution.Contributions to Mineralogy and Petrology, 154(6):691-705. https://doi.org/10.1007/s00410-007-0218-4 [14] Huang, X.W., Qi, L., Meng, Y., 2014.Trace Element Geochemistry of Magnetite from the Fe(-Cu) Deposits in the Hami Region, Eastern Tianshan Orogenic Belt, NW China.Acta Geologica Sinica (English Edition), 88(1):176-195. https://doi.org/10.1111/1755-6724.12190 [15] Jia, G.Z., Zhao, D.H., 2017.Ore Geology and Genesis of the Duotoushan Iron Deposit, Xinjiang, NW China.Xinjiang Youse Jinshu, 40(3):48-51 (in Chinese). [16] Jiang, H.J., Han, J.S., Chen, H.Y., et al., 2016.Hydrothermal Alteration, Fluid Inclusions and Stable Isotope Characteristics of the Shaquanzi Fe-Cu Deposit, Eastern Tianshan: Implications for Deposit Type and Metallogenesis.Ore Geology Reviews, Online.https://doi.org/10.1016/j.oregeorev.2016.09.025 [17] Knipping, J.L., Bilenker, L.D., Simon, A.C., et al., 2015.Trace Elements in Magnetite from Massive Iron Oxide-Apatite Deposits Indicate a Combined Formation by Igneous and Magmatic-Hydrothermal Processes.Geochimica et Cosmochimica Acta, 171:15-38.10.1016/j.gca.2015.08.010 doi: 10.1016/j.gca.2015.08.010 [18] Kotaś, J., Stasicka, Z., 2000.Chromium Occurrence in the Environment and Methods of Its Speciation.Environmental Pollution, 107(3): 263-283. https://doi.org/10.1016/s0269-7491(99)00168-2 [19] Lei, R.X., Wu, C.Z., Zhang, Z.Z., et al., 2013.Geochronology, Geochemistry and Tectonic Significances of the Yamansubei Pluton in Eastern Tianshan, Northwest China.Acta Petrologica Sinica, 29(8):2653-2664 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201308003 [20] Lindsley, D.H., 1976.The Crystal Chemistry and Structure of Oxide Minerals as Exemplified by the Fe-Ti Oxides.In: Rumble, Ⅲ.D., ed., Oxide Minerals.Reviews in Mineralogy: Mineralogical Society of America, Washington D.C.. [21] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 [22] Lu, H.Z., 1984.Eutectic Temperatures of Fluid Inclusions and Its Geological Significance.Journal of East China Institute of Technology, 7(1):61-65 (in Chinese). doi: 10.1080/02533839.1984.9676764 [23] Luo, T., Liao, Q.A., Chen, J.P., et al., 2012.LA-ICP-MS Zircon U-Pb Dating of the Volcanic Rocks from Yamansu Formation in the Eastern Tianshan, and Its Geological Significance.Earth Science, 37(6):1338-1352 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2012.141 [24] Luo, T., Liao, Q.A., Zhang, X.H., et al., 2016.Geochronology and Geochemistry of Carboniferous Metabasalts in Eastern Tianshan, Central Asia:Evidence of a Back-Arc Basin.International Geology Review, 58(6):756-772. https://doi.org/10.1080/00206814.2015.1114433 [25] Mao, J.W., Goldfarb, R.J., Wang, Y., et al., 2005.Late Paleozoic Base and Precious Metal Deposits, East Tianshan, Xinjiang, China:Characteristics and Geodynamic Setting.Episodes, 28(1):23-36. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027203778/ [26] McIntire, W.L., 1963.Trace Element Partition Coefficients-A Review of Theory and Applications to Geology.Geochimica et Cosmochimica Acta, 27(12):1209-1264. https://doi.org/10.1016/0016-7037(63)90049-8 [27] Nadoll, P., Angerer, T., Mauk, J.L., et al., 2014.The Chemistry of Hydrothermal Magnetite:A Review.Ore Geology Reviews, 61:1-32. https://doi.org/10.1016/j.oregeorev.2013.12.013 [28] Righter, K., Leeman, W.P., Hervig, R.L., 2006.Partitioning of Ni, Co and V between Spinel-Structured Oxides and Silicate Melts:Importance of Spinel Composition.Chemical Geology, 227(1-2):1-25. https://doi.org/10.1016/j.chemgeo.2005.05.011 [29] Ryabchikov, I., Kogarko, L., 2006.Magnetite Compositions and Oxygen Fugacities of the Khibina Magmatic System.Lithos, 91(1-4):35-45. https://doi.org/10.1016/j.lithos.2006.03.007 [30] Şengör, A.M.C., Natal'in, B.A., Burtman, V.S., 1993.Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia.Nature, 364(6435):299-307. https://doi.org/10.1038/364299a0 [31] Shi, Y., Wang, Y.W., Wang, J.B., et al., 2017.Olivine Composition of Erhongwa Complex, East Tianshan, and Its Implications to CuNi-VTiFe Composite Mineralizaion.Earth Science, 42(3):325-338 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.025 [32] Sun, X.M., Lin, H., Fu, Y., et al., 2017.Trace Element Geochemistry of Magnetite from the Giant Beiya Gold-Polymetallic Deposit in Yunnan Province, Southwest China and Its Implications for the Ore Forming Processes.Ore Geology Reviews, 91:477-490. https://doi.org/10.1016/j.oregeorev.2017.09.007 [33] Takeno, N., 2005.Atlas of Eh-pH Diagrams.Intercomparison of Thermodynamic Databases.National Institute of Advanced Industrial Science and Technology.Research Center for Deep Geological Environments.Geological Survey of Japan Open File Report No.419.National Institute of Advanced Industrial Science and Technology, Tokyo. [34] Toplis, M.J., Corgne, A., 2002.An Experimental Study of Element Partitioning between Magnetite, Clinopyroxene and Iron-Bearing Silicate Liquids with Particular Emphasis on Vanadium.Contributions to Mineralogy and Petrology, 144(1):22-37. https://doi.org/10.1007/s00410-002-0382-5 [35] Tu, X.L., Zhang, H., Deng, W.F., et al., 2011.Application of Resolution In-Situ Laser Ablation ICP-MS in Trace Element Analyses.Geochimica, 40(1):83-98 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQHX201101009.htm [36] Ward, L.A., Holwell, D.A., Barry, T.L., et al., 2018.The Use of Magnetite as a Geochemical Indicator in the Exploration for Magmatic Ni-Cu-PGE Sulfide Deposits:A Case Study from Munali, Zambia.Journal of Geochemical Exploration, 188:172-184. https://doi.org/10.1016/j.gexplo.2018.01.018 [37] Wechsler, B.A., Lindsley, D.H., Prewitt, C.T., 1984.Crystal Structure and Cation Distribution in Titanomagnetites (Fe3-xTixO4).American Mineralogist, 69:754-770. [38] Windley, B.F., Alexeiev, D., Xiao, W., et al., 2007.Tectonic Models for Accretion of the Central Asian Orogenic Belt.Journal of the Geological Society, 164(1):31-47. https://doi.org/10.1144/0016-76492006-022 [39] Wu, C.Z., Zhang, Z.Z., Zaw, K., et al., 2006.Geochronology, Geochemistry and Tectonic Significances of the Hongyuntan Granitoids in the Qoltag Area, Eastern Tianshan.Acta Petrologica Sinica, 22(5):1121-1134 (in Chinese with English abstract). [40] Xiao, W.J., Han, C.M., Yuan, C., et al., 2008.Middle Cambrian to Permian Subduction-Related Accretionary Orogenesis of Northern Xinjiang, NW China:Implications for the Tectonic Evolution of Central Asia.Journal of Asian Earth Sciences, 32(2-4):102-117. https://doi.org/10.1016/j.jseaes.2007.10.008 [41] Xiao, W.J., Windley, B.F., Allen, M.B., et al., 2013.Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage.Gondwana Research, 23(4):1316-1341. https://doi.org/10.1016/j.gr.2012.01.012 [42] Xiao, W.J., Windley, B.F., Yuan, C., et al., 2009.Paleozoic Multiple Subduction-Accretion Processes of the Southern Altaids.American Journal of Science, 309(3):221-270. https://doi.org/10.2475/03.2009.02 [43] Xiao, W.J., Zhang, L.C., Qin, K.Z., et al., 2004.Paleozoic Accretionary and Collisional Tectonics of the Eastern Tianshan (China):Implications for the Continental Growth of Central Asia.American Journal of Science, 304(4):370-395. https://doi.org/10.2475/ajs.304.4.370 [44] Zhang, L., 2008.Construe on Carboniferous Basin of Jueluotag in Eastern Tianshan, Xinjiang (Dissertation).Chang'an University, Xi'an (in Chinese with English abstract). [45] Zhang, W.F., Chen, H.Y., Han, J.S., et al., 2016.Geochronology and Geochemistry of Igneous Rocks in the Bailingshan Area:Implications for the Tectonic Setting of Late Paleozoic Magmatism and Iron Skarn Mineralization in the Eastern Tianshan, NW China.Gondwana Research, 38:40-59. https://doi.org/10.1016/j.gr.2015.10.011 [46] Zhang, W.F., Chen, H.Y., Jiang, H.J., et al., 2017.Geochronology, Geochemistry and Petrogenesis of Granitoids in the Duotoushan Fe-Cu Deposit, Eastern Tianshan, Xinjiang:Implications on Tectonic Setting of Late Paleozoic Magmatism.Geotectonica et Metallogenia, 41(6):1171-1191 (in Chinese with English abstract). [47] Zhang, W.F., Chen, H.Y., Peng, L.H., et al., 2017.Ore Genesis of the Duotoushan Fe-Cu Deposit, Eastern Tianshan, NW China: Constraints from Ore Geology, Mineral Geochemistry, Fluid Inclusion and Stable Isotopes.Ore Geology Reviews, Online.https://doi.org/10.1016/j.oregeorev.2017.02.021 [48] Zhang, X.H., Huang, X., Chen, J.P., et al., 2012.Stratigraphical Sequence of Carboniferous Marine Volcanic-Deposit Rock and Its Geological Age in Jueluotage Area, Eastern Tianshan.Earth Science, 37(6):1305-1314 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2012.138 [49] Zhang, Z.C., Chai, F.M., Xie, Q.H., 2016.High-Angle Subduction in a Thermal Structure with Warm Mantle-Cool Crust:Formation of Submarine Volcanics-Hosted Iron Deposits.Geology in China, 43(2):367-379 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DIZI201602001.htm [50] Zhang, Z.J., Sun, J.B., Hu, M.Y., et al., 2015.Study on Stable Isotopic Characteristics of the Hongyuntan Iron Deposit of Eastern Tianshan and Their Implications for the Process of Mineralization.Acta Geoscientica Sinica, 33(6):918-924 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKV20122013041200024490 [51] Zhao, L.D., Chen, H.Y., Zhang, L., et al., 2016.Magnetite Geochemistry of the Heijianshan Fe-Cu(-Au) Deposit in Eastern Tianshan: Metallogenic Implications for Submarine Volcanic-Hosted Fe-Cu Deposits in NW China.Ore Geology Reviews, Online.https://doi.org/10.1016/j.oregeorev.2016.07.022 [52] Zhou, T.F., Yuan, F., Zhang, D.Y., et al., 2010.Geochronology, Tectonic Setting and Mineralization of Granitoids in Jueluotage Area, Eastern Tianshan, Xinjiang.Acta Petrologica Sinica, 26(2):478-502 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-ysxb201002014.htm [53] Zhu, Y.F., An, F., Feng, W.Y., et al., 2016.Geological Evolution and Huge Ore-Forming Belts in the Core Part of the Central Asian Metallogenic Region.Journal of Earth Science, 27(3):491-506. https://doi.org/10.1007/s12583-016-0673-7 [54] 贾国章, 赵德怀, 2017.新疆多头山铁矿床地质特征及成因模式.新疆有色金属, 40(3):48-51. http://d.old.wanfangdata.com.cn/Periodical/xjysjs201703017 [55] 雷如雄, 吴昌志, 张遵忠, 等, 2013.东天山雅满苏北岩体的年代学、地球化学及其构造意义.岩石学报, 29(8):2653-2664. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=YSXB201308003&dbname=CJFD&dbcode=CJFQ [56] 卢焕章, 1984.液体包裹体的初熔温度及其地质意义.华东地质学院学报, 7(1):61-65. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001277273 [57] 罗婷, 廖群安, 陈继平, 等, 2012.东天山雅满苏组火山岩LA-ICP-MS锆石U-Pb定年及其地质意义.地球科学, 37(6):1338-1352. http://earth-science.net/WebPage/Article.aspx?id=2338 [58] 石煜, 王玉往, 王京彬, 等, 2017.东天山二红洼岩体橄榄石成分对CuNi-VTiFe复合矿化的启示.地球科学, 42(3):325-338. http://earth-science.net/WebPage/Article.aspx?id=3546 [59] 涂湘林, 张红, 邓文峰, 等, 2011.Resolution激光剥蚀系统在微量元素原位微区分析中的应用.地球化学, 40(1):83-98. http://d.old.wanfangdata.com.cn/Periodical/dqhx201101009 [60] 吴昌志, 张遵忠, Zaw, K., 等, 2006.东天山觉罗塔格红云滩花岗岩年代学、地球化学及其构造意义.岩石学报, 22(5):1121-1134. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200605006 [61] 张雷, 2008.东天山觉罗塔格构造带石炭纪沉积盆地分析(硕士学位论文).西安: 长安大学. [62] 张维峰, 陈华勇, 江宏君, 等, 2017.新疆东天山多头山铁-铜矿区花岗岩类的年代学、地球化学、岩石成因及意义.大地构造与成矿学, 41(6):1171-1191. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201706014 [63] 张雄华, 黄兴, 陈继平, 等, 2012.东天山觉罗塔格地区石炭纪火山-沉积岩地层序列及地质时代.地球科学, 37(6):1305-1314. http://earth-science.net/WebPage/Article.aspx?id=2335 [64] 张增杰, 孙敬博, 胡明月, 等, 2015.东天山红云滩铁矿稳定同位素地质特征及其对成矿作用过程的指示.地球学报, 33(6):918-924. http://d.old.wanfangdata.com.cn/Periodical/dqxb201206012 [65] 张招崇, 柴凤梅, 谢秋红, 2016.热幔-冷壳背景下的高角度俯冲:海相火山岩型铁矿的形成.中国地质, 43(2):367-379. doi: 10.3969/j.issn.1000-3657.2016.02.001 [66] 周涛发, 袁峰, 张达玉, 等, 2010.新疆东天山觉罗塔格地区花岗岩类年代学、构造背景及其成矿作用研究.岩石学报, 26(2):478-502. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201002012