Mesozoic-Cenozoic Episodic Subsidence and Migration of Jianghan Basin in Extensional Composite Basin-Mountain System
-
摘要: 江汉盆地与周缘山系构成伸展型复合盆山体系,周缘山系的差异隆升可能与江汉盆地沉降、迁移和构造变形具有协同演化关系.通过沉降史模拟,表明江汉盆地裂陷期具有幕式特征,可分为3个裂陷幕:裂陷Ⅰ幕发生在晚白垩世,裂陷Ⅱ幕发生在古新世沙市组-早始新世新沟咀组沉积时期,而裂陷Ⅲ幕则发生在早始新世荆沙组-渐新世荆河镇组沉积时期.沉降中心发生有规律的迁移,裂陷Ⅱ幕沉降中心由裂陷Ⅰ幕条带状、多方向、多中心向西迁移到江陵凹陷,裂陷Ⅲ幕沉降中心向东迁移到潜江凹陷.伸展型复合盆山体系下盆地沉降中心有规律的迁移可能受多种因素的影响,其盆地周缘山系的差异隆升与盆地沉降中心的迁移显示出此消彼长的响应关系.晚白垩世末至始新世初盆地东缘山系(大别造山带、幕阜山和鄂东冲断带)剥蚀隆升,盆地沉降中心向西迁移.始新世末至渐新世盆地西缘山系(黄陵隆起、湘鄂西冲断带)抬升,盆地沉降中心向东迁移,沉降中心呈现出远离隆起端的"背离式"迁移.地幔底辟作用的差异性变化控制着盆地沉降中心的迁移.Abstract: An extensional composite basin-mountain system is formed by Jianghan basin and its peripheral mountains, and there might be coupling relationship between the basin and orogenic belt. In this study, the subsidence history analysis shows the feature of episodic subsidence in Jianghan basin, which is divided into three rifting stages:Episodic Ⅰ Late Cretaceous, Episodic Ⅱ Paleocene Shashi-Early Eocene Xingouzui phase and Episodic Ⅲ Early Eocene Jingsha-Oligocene Jinghezhen phase. The subsidence center migrated regularly, and it moved to Jiangling depression in the Episodic Ⅱ and Qianjiang depression in the Episodic Ⅲ. The regular migration of subsidence center in the extensional composite basin-mountain system might be affected by many factors. In the meantime, it displays the response relationship between the migration of subsidence center and the peripheral mountains. The east mountains (Dabie orogen, Mufushan massif and Edong fold-thrust belt) uplift as the subsidence center migrates westward. And west mountains (Huangling massif and Xiang'exi fold-thrust belt) uplift as the subsidence center migrates eastward. In addition, the subsidence center shows the character of "deviation type" which migrates farther away from where the orogen uplifts. Meanwhile, the migration of subsidence center may also be affected by the changes of mantle diapir.
-
Key words:
- composite basin-mountain system /
- episodic subsidence /
- subsidence center /
- migration /
- Jianghan basin /
- tectonics
-
图 1 江汉盆地构造位置和构造单元示意图
数据来源:a据Grimmer et al.(2002);b据许长海等(2004);c据许长海(2002);d据Xu et al.(2010);e据Richardson et al.(2010);f据石红才等(2013);g据王韶华等(2009);LSH.龙赛湖低凸起;THK.通海口低凸起;YJ.丫角新沟低凸起;YK.岳口低凸起;AHe41.3.磷灰石(U-Th/He)年龄(Ma);AFT68.4.磷灰石裂变径迹年龄(Ma)
Fig. 1. Tectonic location and tectonic units of Jianghan Basin
图 3 江汉盆地不整合界面反射特征
位置在图 1中标注
Fig. 3. Reflection characteristics of the unconformity in the Jianghan basin
图 5 单井沉降史曲线
井位在图 1标注.江陵凹陷:a.赤3井;b.江深12井;c.江深11井;潜江凹陷:d.潜深10井;e.浩59井;f.老深1井
Fig. 5. Curves of subsidence for wells
图 9 沉降中心迁移与山系隆升关系
位置在图 1中标注
Fig. 9. The relationship between settlement center migration and mountains uplift
表 1 不同岩性的压实系数与地表孔隙度
Table 1. Compacting factor and surface porosity of different lithologies
岩性 砂岩 粉砂岩 灰质粉砂岩 砂屑灰岩 微晶灰岩 泥岩 压实系数
(km-1)0.4 0.33 0.20 0.56 0.41 0.70 地表孔隙度
(%)45 55 41 42 30 60 表 2 江汉盆地幕式沉降特征
Table 2. Characteristics of episodic subsidence of Jianghan basin
裂陷幕 盆地沉降特征 沉降强度 沉降中心形态 分布 沉降中心位置 裂陷Ⅰ幕 速率较小 多方向线状 孤立 多中心全盆分布 裂陷Ⅱ幕 速率由大变小 面状 集中 江陵凹陷 裂陷Ⅲ幕 速率由大变小 面状 集中 潜江凹陷 -
[1] Arenas, C., Millan, H., Pardo, G., et al., 2001.Ebro Basin Continental Sedimentation Associated with Late Compressional Pyrenean Tectonics (North-Eastern Iberia):Controls on Basin Margin Fans and Fluvial System.Basin Research, 13(1):65-89. https://doi.org/10.1046/j.1365-2117.2001.00141.x [2] Bell, R.E., Jackson, C.A.L., Whipp, P.S., et al., 2015.Strain Migration during Multiphase Extension:Observations from the Northern North Sea.Tectonics, 33(10):1936-1963. https://doi.org/10.1002/2014tc003551 [3] Bladon, A.J., Clarke, S.M., Burley, S.D., 2015.Complex Rift Geometries Resulting from Inheritance of Pre-Existing Structures:Insights and Regional Implications from the Barmer Basin Rift.Journal of Structural Geology, 71:136-154. https://doi.org/10.1016/j.jsg.2014.09.017 [4] Deng, X., Wu, K.B., Yang, K.G., 2013.Emplacement and Deformation of Shigujian Syntectonic Granite in Central Part of the Dabie Orogen:Implications for Tectonic Regime Transformation.Science China Earth Sciences, 56(6):980-992. https://doi.org/10.1007/s11430-013-4613-6 [5] Ding, R.X., Chen, G.N., Zhou, Z.Y., et al., 2012.The Paleoelevation Reconstruction of Late Cretaceous Dabie Orogen by Low-Temperature Thermochronological Modelling Data.Journal of Jilin University (Earth Science Edition), 42(Suppl.1):247-253 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CCDZ2012S1029.htm [6] Duffy, O.B., Bell, R.E., Jackson, C.A.L., et al., 2015.Fault Growth and Interactions in a Multiphase Rift Fault Network:Horda Platform, Norwegian North Sea.Journal of Structural Geology, 80:99-119. https://doi.org/10.1016/j.jsg.2015.08.015 [7] Ge, X., Shen, C.B., Yang, Z., et al., 2013.Low-Temperature Thermochronology Constraints on the Mesozoic-Cenozoic Exhumation of the Huangling Massif in the Middle Yangtze Block, Central China.Journal of Earth Science, 24(4):541-552. https://doi.org/10.1007/s12583-013-0348-8 [8] Gouiza, M., Hall, J., Bertotti, G., et al., 2015.Rifting and Pre-Rift Lithosphere Variability in the Orphan Basin, Newfoundland Margin, Eastern Canada.Basin Research, 27(4):367-386. https://doi.org/10.1111/bre.12078 [9] Grimmer, J.C., Jonckheere, R., Enkelmann, E., et al., 2002.Cretaceous-Cenozoic History of the Southern Tan-Lu Fault Zone:Apatite Fission-Track and Structural Constrains from the Dabie Shan (Eastern China).Tectonophysics, 359(3/4):225-253. https://doi.org/10.1016/s0040-1951(02)00513-9 [10] Hu, J.M., Chen, H., Qu, H.J., et al., 2012.Mesozoic Deformations of the Dabashan in the Southern Qinling Orogen, Central China.Journal of Asian Earth Sciences, 47(1):171-184. https://doi.org/10.1016/j.jseaes.2011.12.015 [11] Ji, W.B., Lin, W., Faure, M., et al., 2014.Origin and Tectonic Significance of the Huangling Massif within the Yangtze Craton, South China.Journal of Asian Earth Sciences, 86(2):59-75. https://doi.org/10.1016/j.jseaes.2013.06.007 [12] Li, D.W., Xia, Y.P., Xu, L.G., 2009.Coupling and Formation Mechanism of Continental Intraplate Basin and Orogen-Examples from the Qinghai-Tibet Plateau and Adjacent Basins.Earth Science Frontiers, 16(3):110-119 (in Chinese with English abstract). doi: 10.1016/S1872-5791(08)60097-4 [13] Li, S.J., Xiao, K.H., Wang, X.W., et al., 2008.Thermochronology of Detrital Minerals in the Silurian Strata from Southern China and Its Geological Implications.Acta Geologica Sinica, 82(8):1068-1076 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200808007.htm [14] Lin, C.S., Zhang, Y.M., Li, S.T., et al., 2004.Episodic Rifting Dynamic Process and Quantitative Model of Mesozoic-Cenozoic Faulted Basins in Eastern China.Earth Science, 29(5):583-588 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dqkx200405012.htm [15] Liu, S.F., Li, W.P., Wang, K., et al., 2015.Late Mesozoic Development of the Southern Qinling-Dabieshan Foreland Fold-Thrust Belt, Central China, and Its Role in Continent-Continent Collision.Tectonophysics, 644-645:220-234. https://doi.org/10.1016/j.tecto.2015.01.015 [16] Liu, J.Y., Lin, C.S., Lu, L., et al., 2009.The Erosion Distribution of Major Unconformities and Its Tectonic Significance of Cretaceous-Neogene Jianghan Basin.Geological Science and Technology Information, 28(1):1-8 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200901002.htm [17] Liu, S.F., Zhang, G.W., 2005.Fundamental Ideas, Contents and Methods in Study of Basin and Mountain Relationships.Earth Science Frontiers, 12(3):101-111 (in Chinese with English abstract). [18] Liu, S.G., Luo, Z.L., Zhao, X.K., et al., 2003.Coupling Relationships of Sedimentary Basin-Orogenic Belt Systems and Their Dynamic Models in West China-A Case Study of the Longmenshan Orogenic Belt-West Sichuan Foreland Basin System.Acta Geologica Sinica, 77(2):177-186 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE200302007.htm [19] Mei, L.F., Dai, S, W., Shen, C, B., et al., 2008.Formation and Disintegration of Mesozoic-Cenozoic Intra-Continental Ramp Zone in Middle and Lower Yangtze Region.Geological Science and Technology Information, 27(4):1-7, 14 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dzkq200804002.htm [20] Naliboff, J., Buiter, S.J.H., 2015.Rift Reactivation and Migration during Multiphase Extension.Earth and Planetary Science Letters, 421:58-67. https://doi.org/10.1016/j.epsl.2015.03.050 [21] Percival, J.A., Green, A.G., Milkereit, B., et al., 1989.Seismic Reflection Profiles across Deep Continental Crust Exposed in the Kapuskasing Uplift Structure.Nature, 342(6248):416-420. https://doi.org/10.1038/342416a0 [22] Qi, J.F., Yang, Q., 2010.Cenozoic Structural Deformation and Dynamic Processes of the Bohai Bay Basin Province, China.Marine and Petroleum Geology, 27(4):757-771. https://doi.org/10.1016/j.marpetgeo.2009.08.012 [23] Ratschbacher, L., Hacker, B.R., Webb, L.E., et al., 2000.Exhumation of the Ultrahigh-Pressure Continental Crust in East Central China:Cretaceous and Cenozoic Unroofing and the Tan-Lu Fault.Journal of Geophysical Research:Solid Earth, 105(B6):13303-13338. https://doi.org/10.1029/2000jb900040 [24] Ren, J.Y., Tamaki, K., Li, S.T., et al., 2002.Late Mesozoic and Cenozoic Rifting and Its Dynamic Setting in Eastern China and Adjacent Areas.Tectonophysics, 344(3-4):175-205. https://doi.org/10.1016/s0040-1951(01)00271-2 [25] Richardson, N.J., Densmore, A.L., Seward, D., et al., 2010.Did Incision of the Three Gorges Begin in the Eocene?REPLY.Geology, 38(6):551-554. doi: 10.1130/G30527.1 [26] Shen, C.B., Mei, L.F., Liu, Z.Q., et al., 2009.Apatite and Zircon Fission Track Data, Evidences for the Mesozoic-Cenozoic Uplift of Huangling Dome, Central China.Journal of Mineralogy and Petrology, 29(2):54-60 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS200902010.htm [27] Shen, C.B., Mei, L.F., Xu, Z.P., et al., 2007.Architecture and Tectonic Evolution of Composite Basin-Mountain System in Sichuan Basin and Its Adjacent Areas.Geotectonica et Metallogenia, 31(3):288-299 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dgyk200703005.htm [28] Sherkati, S., Letouzey, J., 2004.Variation of Structural Style and Basin Evolution in the Central Zagros (Izeh Zone and Dezful Embayment), Iran.Marine and Petroleum Geology, 21(5):535-554. https://doi.org/10.1016/j.marpetgeo.2004.01.007 [29] Shi, H.C., Shi, X.B., Yang, X.Q., et al., 2013.The Exhumation Process of Mufusahn Granite in Jianghan Uplift since Cenozoic:Evidence from Low-Temperature Thermochronology.Chinese Journal of Geophysics, 56(6):1945-1957 (in Chinese with English abstract). [30] Wang, Y.S., Wang, H.F., Sheng, Y., et al., 2014.Early Cretaceous Uplift History of the Dabie Orogenic Belt:Evidence from Pluton Emplacement Depths.Science China Earth Sciences, 57(5):1129-1140. https://doi.org/10.1007/s11430-013-4659-5 [31] Wang, B.J., Lin, C.S., Chen, Y., et al., 2006.Episodic Tectonic Movement and Evolutional Character in Jianghan Basin.Oil Geophysical Prospecting, 41(2):226-230 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/sydqwlkt200602022 [32] Wang, S.H., Luo, K.P., Liu, G.X., 2009.Fission Track Records of Tectonic Uplift during the Cenozoic and Mesozoic in the Periphery of the Jianghan Basin.Oil & Gas Geology, 30(3):255-259 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200903001.htm [33] Wu, C.L., Du, Y.S., Mei, L.F., et al., 2006.Composite Basin- and-Range System and Reformation of Basin Prototype in Indosinian-Yanshanian in South China.Oil & Gas Geology, 27(3):305-315 (in Chinese with English abstract). [34] Wu, L.L., Mei, L.F., Liu, Y.S., et al., 2017.Multiple Provenance of Rift Sediments in the Composite Basin-Mountain System:Constraints from Detrital Zircon U-Pb Geochronology and Heavy Minerals of the Early Eocene Jianghan Basin, Central China.Sedimentary Geology, 349:46-61. https://doi.org/10.1016/j.sedgeo.2016.12.003 [35] Xie, H., Zhou, D., Li, Y.P., et al., 2014.Cenozoic Tectonic Subsidence in Deepwater Sags in the Pearl River Mouth Basin, Northern South China Sea.Tectonophysics, 615-616(4):182-198. https://doi.org/10.1016/j.tecto.2014.01.010 [36] Xu, C.H., 2002.The Tectonic Thermal Process and Magma Evolution of Dabie Orogenic in Post-Collisional Period (Dissertation).Tongji University, Shanghai, 49-60 (in Chinese with English abstract). [37] Xu, C.H., Zhou, Z.Y., Chang, Y., et al., 2010.Genesis of Daba Arcuate Structural Belt Related to Adjacent Basement Upheavals:Constraints from Fission-Track and (U-Th)/He Thermochronology.Science China Earth Sciences, 53(11):1634-1646. https://doi.org/10.1007/s11430-010-4112-y [38] Xu, C.H., Zhou, Z.Y., Van Den Haute, P., et al., 2004.Research on Apatite Fission Track Chronology of Dabie Orogen.China Science (Series D), 34(7):622-634 (in Chinese). [39] Zhao, Z.X., Sun, Z., Sun, L.T., et al., 2016.Cenozoic Tectonic Subsidence in the Qiongdongnan Basin, Northern South China Sea.Basin Research, 30:269-288. doi: 10.1111/bre.12220/abstract [40] Zhou, D., Hu, D.K., He, M., et al., 2008.The Selection of Fitting Curve in Time-Depth Transformation of Deep-Seated Strata and Crust.Earth Science, 33(4):531-537 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200804011.htm [41] 丁汝鑫, 陈国能, 周祖翼, 等, 2012.利用低温热史恢复大别造山带晚白垩世以来的古高度.吉林大学学报(地球科学版), 42(增刊1):247-253. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2012S1029.htm [42] 李德威, 夏义平, 徐礼贵, 2009.大陆板内盆山耦合及盆山成因——以青藏高原及周边盆地为例.地学前缘, 16(3):110-119. doi: 10.3321/j.issn:1005-2321.2009.03.007 [43] 李双建, 肖开华, 汪新伟, 等, 2008.南方志留系碎屑矿物热年代学分析及其地质意义.地质学报, 82(8):1068-1076. doi: 10.3321/j.issn:0001-5717.2008.08.007 [44] 林畅松, 张燕梅, 李思田, 等, 2004.中国东部中新生代断陷盆地幕式裂陷过程的动力学响应和模拟模型.地球科学, 29(5):583-588. doi: 10.3321/j.issn:1000-2383.2004.05.013 [45] 刘景彦, 林畅松, 卢林, 等, 2009.江汉盆地白垩-新近系主要不整合面剥蚀量分布及其构造意义.地质科技情报, 28(1):1-8. http://d.old.wanfangdata.com.cn/Periodical/dzkjqb200901001 [46] 刘少峰, 张国伟, 2005.盆山关系研究的基本思路、内容和方法.地学前缘, 12(3):101-113. doi: 10.3321/j.issn:1005-2321.2005.03.012 [47] 刘树根, 罗志立, 赵锡奎, 等, 2003.中国西部盆山系统的耦合关系及其动力学模式——以龙门山造山带-川西前陆盆地系统为例.地质学报, 77(2):177-186. doi: 10.3321/j.issn:0001-5717.2003.02.005 [48] 梅廉夫, 戴少武, 沈传波, 等, 2008.中-下扬子区中-新生代陆内对冲带的形成及解体.地质科技情报, 27(4):1-7, 14. http://d.old.wanfangdata.com.cn/Periodical/dzkjqb200804001 [49] 沈传波, 梅廉夫, 刘昭茜, 等, 2009.黄陵隆起中-新生代隆升作用的裂变径迹证据.矿物岩石, 29(2):54-60. doi: 10.3969/j.issn.1001-6872.2009.02.009 [50] 沈传波, 梅廉夫, 徐振平, 等, 2007.四川盆地复合盆山体系的结构构造和演化.大地构造与成矿学, 31(3):288-299. doi: 10.3969/j.issn.1001-1552.2007.03.004 [51] 石红才, 施小斌, 杨小秋, 等, 2013.江南隆起带幕阜山岩体新生代剥蚀冷却的低温热年代学证据.地球物理学报, 56(6):1945-1957. http://d.wanfangdata.com.cn/Periodical/dqwlxb201306017 [52] 王必金, 林畅松, 陈莹, 等, 2006.江汉盆地幕式构造运动及其演化特征.石油地球物理勘探, 41(2):226-230. doi: 10.3321/j.issn:1000-7210.2006.02.022 [53] 王韶华, 罗开平, 刘光祥, 2009.江汉盆地周缘中、新生代构造隆升裂变径迹记录.石油与天然气地质, 30(3):255-259. doi: 10.3321/j.issn:0253-9985.2009.03.001 [54] 吴冲龙, 杜远生, 梅廉夫, 等, 2006.中国南方印支-燕山期复合盆山体系与盆地原型改造.石油与天然气地质, 27(3):305-315. doi: 10.3321/j.issn:0253-9985.2006.03.004 [55] 许长海, 2002.大别造山带碰撞后构造热/岩浆演化过程(博士学位论文).上海: 同济大学, 49-60. [56] 许长海, 周祖翼, Van Den Haute, P., 等, 2004.大别造山带磷灰石裂变径迹(AFT)年代学研究.中国科学:地球科学, 34(7):622-634. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200407004 [57] 周蒂, 胡登科, 何敏, 等, 2008.深部地层时深转换中的拟合式选择问题.地球科学, 33(4):531-537. doi: 10.3321/j.issn:1000-2383.2008.04.010