Zircon U-Pb Ages, Sr-Nd Isotopes and Geological Significance of Early Jurassic Volcanic Rocks from Southwest Fujian
-
摘要: 华南陆缘在湘南、湘东南、赣南及闽西南地区早中生代发育一条呈近EW向展布的火山岩带,闽西南永定堂堡和五湖藩坑组火山岩是其中的典型代表之一,利用锆石U-Pb测定其形成年龄分别为(189±6)~(195±2)Ma和184±2 Ma,是早侏罗世火山喷发形成的.为了解闽西南早侏罗世火山岩岩浆来源及形成构造背景等信息,对火山岩进行了岩石学鉴定、主量、微量元素地球化学特征和Sr-Nd同位素测试分析.藩坑组火山岩基性和酸性端员戴里间断达20左右,是典型的双峰式火山岩.基性端员玄武岩(碱玄岩)主量元素高TiO2、高TFe2O3(全铁),(Rb/Sr)N、(La/Nb)N、(Ba/Nb)N和(Rb/Yb)N的比值均高于原始地幔值,具有∑REE较高、轻稀土富集,δEu有微弱异常的特征,Isr值在0.704 4~0.707 5之间,εNd(t)介于-1.19~4.30,说明岩浆源可能为较深的软流圈地幔,同时存在部分来自岩石圈地幔的组分.酸性端员流纹岩(英安岩)(Rb/Sr)N和(Rb/Yb)N比值均高于原始地幔值,(Ba/Nb)N比值全部低于原始地幔值,(La/Nb)N既有高值也有低值.具有∑REE较高、轻稀土富集、δEu存在异常的特征.Isr值在0.701 2~0.705 3之间,εNd(t)介于-5.40~-1.95,说明岩浆物质来源为壳幔混熔型,主要为壳源成因,但有幔源组分参与.闽西南早侏罗世双峰式火山岩形成于板内靠近大陆边缘的特殊构造位置,受到古太平洋板块的低角度俯冲-弧后伸展-玄武岩浆底侵作用影响.Abstract: An Early Mesozoic volcanic belt with nearly EW distribution develops in South Hunan, Southeast Hunan, South Jiangxi and Southwest Fujian of the South China continental margin, which is represented by the volcanic rocks of Fankeng Formation from Tangpu and Wuhu villages of Yongding County in the Southwest Fujian. The zircon U-Pb dating results indicate that the volcanic rocks of Fankeng Formation formed in 189±6 Ma-195±2 Ma and 184±2 Ma, i.e., the Early Jurassic. In order to reveal the magma source and tectonic setting of the Early Jurassic volcanic rocks in the Southwest Fujian, the lithology identification, major and trace elements, and Sr-Nd isotope data are presented in this paper. The Daly gap of the basic end-member and the acid end-member of volcanic rocks of Fankeng Formation reaches to about 20, and they therefore constitute a typical bimodal association of volcanic rocks. The basic end-member basalt (tephrite) has high TiO2 and TFe2O3 (all Fe) values, and high ratios of (Rb/Sr)N, (La/Nb)N, (Ba/Nb)N and (Rb/Yb)N ratios, which are all higher than the original mantle values. They are also characterized by the higher ∑REE, enrichment in light rare earth elements, and negative anomalies of Eu. Their Isr values are between 0.704 4 and 0.707 5 and the εNd(t) are between -1.19 and 4.30, respectively, indicating that the magma source was derived from the deeper asthenosphere mantle and some components were derived from the lithosphere mantle. The (Rb/Sr)N and (Rb/Yb)N ratios of acid end-member rhyolite (dacite) are all higher than the initial mantle values. However, the (Ba/Nb)N ratios are all less than the initial mantle values and the (La/Nb)N ratios are both high and low. They are characterized by the high ∑REE, enrichment in light rare earth elements, and obvious anomalies of Eu. Their Isr values are between 0.701 2 and 0.705 3 and the εNd(t) are between -5.40 and -1.95, respectively, indicating that the magma source is the crust-mantle misciblemagma, which is mainly composed of the crust-derived materials with involvement of the mantle-derived components. The Early Jurassic bimodal volcanic rocks in Southwest Fujian were formed in the intraplate with a special tectonic position near the continental margin. They were influenced by the effect of low angle subduction of paleo-Pacific plate-back arc extension-basaltic magma underplating.
-
Key words:
- volcanic rock /
- Early Jurassic /
- Southwest Fujian /
- zircon U-Pb dating /
- Sr-Nd isotope /
- geochemistry /
- tectonic setting
-
图 1 华南陆块和邻区构造单元划分示意图(a、b)和华南中-新生代盆地地质简图(c)
图a、b底图据Wang et al.(2013)修改,图c底图据舒良树等(2004).SCB.华南陆块;YC.扬子地块;Cathaysia.华夏地块;QDOB.秦岭-大别造山带;NCB.华北板块;IC.印支板块;SI.Sibumasu板块;SG.松潘-甘孜地体;WB.缅甸西部;HI.喜马拉雅;LS.拉萨地体;QT.羌塘地体;①江南中生代北界隐伏断裂;②绍兴-江山-萍乡断裂带;③赣江断裂带;④政和-大埔断裂带;⑤长乐-南澳断裂带;⑥台湾纵谷带;⑦郯庐断裂带
Fig. 1. Schematic diagram of South China block, neighborhood tectonic unit division (a, b) and basin geological sketch in Mesozoic and Cenozoic in South China (c)
图 5 火山岩TAS图(a),Zr/TiO2-SiO2图解(b)和火山岩硅-钾图解(c)
图a据Middlemost(1994); 图b据Winchester and Floyd(1977);图c据Morrison(1980)属于大陆区火山岩.
Fig. 5. The TAS diagram of volcanic rocks (a), diagram of Zr/TiO2-SiO2 (b) and the silicon-potassium diagram of volcanic rocks (c)
图 6 火山岩原始地幔标准化的微量元素蛛网图(a)和火山岩球粒陨石标准化REE配分型式(b)
图a原始地幔标准化数据引自Sun and McDonough(1989); 图b球粒陨石数据引自Sun and McDonough(1989),OIB值和N-MORB值数据引自Sun and McDonough(1989)
Fig. 6. The primitive mantle normalized trace elements spider diagram (a) and the chondrite-normalized REE distribution pattern (b)
图 7 εNd(t)-(87Sr/86Sr)i关系
华南下地壳数据来自Chen and Jahn(1999); 地幔端元投影区域引自Zindler and Hart(1986)
Fig. 7. εNd(t)-(87Sr/86Sr)i diagram of the Eocene volcanic rocks in the Liaohe segment of the Tan-Lu fault zone
图 8 Ti/100-Zr-Y×3图解(a),Nb×2-Zr/4-Y图解(b),Zr/Y-Zr图解(c)
图a底图据Pearce and Caan(1973); 图b底图据Meschede(1986); 图c底图据Pearce and Norry(1979).图a中,A.岛弧拉斑玄武岩;B.洋中脊玄武岩;C.钙碱性玄武岩.图b中,AI+AII.板内碱性玄武岩;AII+C.板内拉斑玄武岩;B.E型洋中脊玄武岩;D.正常洋中脊玄武岩;C+D.火山弧玄武岩.图c中,A.板内玄武岩;B.岛弧玄武岩;C.大洋中脊玄武岩
Fig. 8. Diagram of Ti/100-Zr-Y×3 (a), Nb×2-Zr/4-Y(b) and Zr/Y-Zr (c)
图 9 火山岩Y-Nb(a)和(Y+Nb)-Rb(b)、Hf-Rb/10-Ta×3(c)和Hf-Rb/30-Ta×3(d)判别图解
图a, b底图据Pearce et al.(1984);图c, d底图据Harris et al.(1986)
Fig. 9. The Y-Nb (a) and (Y+Nb)-Rb (b) discrimination diagrams of the volcanic rocks, the Hf-Rb/10-Ta×3 (c) and the Hf-Rb/30-Ta×3 (d) discrimination diagrams
表 1 藩坑组火山岩常量元素(%)、微量、稀土元素(10-6)含量和元素比值
Table 1. The contents of constant (%), trace elements and rare earth elements (10-6) and the element ratios of volcanic rocks of Fankeng Formation
样品号 TB1 TB5 TB7 TB13 TB15 TB18 WH7 WH8 WH9 WH10 WH11 WH13 SiO2 74.40 47.10 70.56 45.10 44.15 47.86 72.12 73.16 45.01 46.29 46.48 46.84 Al2O3 13.66 18.71 16.95 22.67 23.94 21.10 12.47 12.17 13.67 15.6 15.31 15.13 TFe2O3 4.53 21.41 4.03 15.31 14.56 14.35 5.74 5.27 15.3 12.02 12.48 12.42 FeO 0.49 1.26 0.42 1.00 0.92 2.98 1.81 2.85 9.2 7.79 9.35 9.93 MgO 0.24 0.55 0.24 1.36 1.48 3.40 0.14 0.15 5.14 6.28 6.98 6.84 CaO 0.11 0.47 0.12 0.97 0.78 0.80 0.17 0.16 9.85 9.76 9.42 8.90 Na2O 0.31 1.18 0.34 1.00 0.92 1.29 2.70 2.89 3.19 3.01 2.89 2.94 K2O 3.55 2.52 4.23 4.21 4.64 1.71 3.68 3.18 0.21 0.71 0.72 0.83 MnO 0.16 0.07 0.02 0.13 0.17 0.10 0.10 0.11 0.25 0.19 0.19 0.19 TiO2 0.42 3.65 0.28 4.48 4.40 2.96 0.34 0.35 3.39 2.21 2.19 2.18 P2O5 0.05 0.07 0.05 0.46 0.32 0.46 0.04 0.04 0.36 0.18 0.22 0.21 LOI 2.52 4.26 3.15 4.29 4.63 5.94 2.50 1.98 3.60 3.68 3.04 3.50 σ 0.47 3.34 0.76 12.93 26.88 1.85 1.40 1.22 5.75 4.21 3.74 3.70 Mg# 10.80 5.61 12.00 17.20 19.20 35.60 5.45 6.34 43.90 54.90 56.60 56.20 Li 8.31 27.40 4.58 57.50 63.10 107.00 10.60 10.40 47.20 64.50 58.10 57.10 Be 3.81 6.38 5.61 5.11 5.72 3.24 3.23 3.34 1.27 0.70 0.62 0.80 Sc 10.10 27.30 4.45 33.50 34.60 22.30 8.31 8.65 38.70 35.80 38.00 36.80 V 7.94 387.00 11.80 350.00 376.00 200.00 5.14 4.85 504.00 359.00 367.00 355.00 Cr 13.1 36.7 13.1 127.0 112.0 32.0 17.9 11.7 75.5 157.0 166.0 159.0 Co 20.80 43.20 1.09 26.70 28.40 44.80 1.51 1.58 49.60 48.60 57.00 52.90 Ni 7.48 38.00 9.77 19.50 24.40 42.60 3.34 2.43 40.70 73.60 94.00 89.90 Cu 14.90 42.80 5.56 19.10 20.40 76.30 8.37 6.46 250.00 139.00 157.00 147.00 Zn 45.5 94.3 44.9 130.0 155.0 246.0 184.0 241.0 160.0 101.0 116.0 110.0 Ga 24.0 31.3 33.3 35.2 39.7 30.2 30.7 30.9 25.1 20.1 22.4 21.2 Rb 173.00 130.00 174.00 208.00 246.00 82.40 140.00 119.00 5.09 24.40 36.50 42.40 Sr 45.1 300.0 87.7 251.0 209.0 534.0 110.0 106.0 265.0 803.0 824.0 899.0 Y 38.1 42.9 74.9 48.1 50.2 69.3 93.9 84.3 51.9 28.9 27.4 26.3 Mo 2.13 0.60 1.69 0.50 0.52 0.26 4.34 2.22 1.21 1.52 1.09 0.74 Cd 0.03 0.06 0.01 0.20 0.23 0.23 0.22 0.61 0.15 0.12 0.11 0.05 In 0.10 0.11 0.07 0.08 0.11 0.10 0.18 0.17 0.10 0.07 0.07 0.08 Sb 0.16 0.26 0.29 0.14 0.14 0.36 1.75 1.45 0.24 0.12 0.32 0.29 Cs 5.31 9.68 6.58 11.60 11.70 7.06 4.47 4.49 0.83 3.30 6.13 4.92 Ba 986.0 618.0 475.0 1 353.0 1 444.0 305.0 973.0 811.0 94.8 210.0 957.0 1 091.0 W 1.75 0.07 2.95 0.25 0.23 0.09 2.63 2.31 0.18 0.21 0.20 0.20 Tl 1.18 0.93 1.39 1.27 1.50 0.65 0.79 0.66 0.06 0.21 0.46 0.56 Pb 22.40 21.50 19.60 12.00 12.30 14.90 55.70 44.30 2.47 1.28 1.46 1.56 Bi 0.30 0.10 0.01 0.05 0.05 0.05 0.08 0.37 0.02 0.12 0.04 0.05 Th 26.30 5.74 31.80 6.68 6.61 8.67 16.90 16.80 1.26 0.66 0.73 0.73 U 5.49 1.84 4.39 2.10 2.07 1.86 4.24 3.79 0.39 0.18 0.21 0.22 Nb 45.40 6.03 79.40 13.30 12.30 11.90 53.80 59.30 14.70 9.67 10.80 10.70 Ta 3.66 0.21 5.66 0.91 0.83 0.39 3.75 3.80 1.02 0.62 0.70 0.70 Zr 441 364 582 441 442 374 691 654 233 132 154 153 Hf 12.70 9.89 17.70 11.70 12.10 10.20 18.30 19.70 6.33 3.62 4.17 4.22 (Rb/Sr)N 127.00 14.40 65.90 27.50 39.10 5.13 42.30 37.30 0.64 1.01 1.47 1.57 (Ba/Nb)N 2.22 10.50 0.61 10.40 12.00 2.61 1.85 1.40 0.66 2.22 9.04 10.40 (La/Nb)N 0.59 7.26 1.48 4.89 4.13 6.58 1.12 1.23 1.41 1.18 1.12 1.10 (Rb/Yb)N 37.73 24.98 17.08 42.38 46.58 12.59 12.62 10.49 1.04 8.46 11.91 13.89 La 25.8 42.2 113.0 62.7 48.9 75.4 57.9 70.2 20.0 11.0 11.7 11.3 Ce 113.0 83.1 170.0 109.0 103.0 161.0 118.0 145.0 42.5 23.5 28.5 27.5 Pr 6.19 11.20 24.70 15.70 13.80 19.30 15.40 18.60 7.06 4.05 4.45 4.39 Nd 24.2 48.8 92.0 66.2 61.9 80.8 64.7 75.3 35.1 20.0 21.9 21.2 Sm 5.27 10.80 16.50 13.10 13.80 16.40 15.00 16.00 8.67 5.26 5.45 5.57 Eu 1.54 4.03 1.46 4.06 4.05 4.93 3.57 3.63 2.86 1.88 1.90 1.80 Gd 5.41 9.43 13.70 11.20 11.60 14.20 13.20 13.80 7.97 4.54 4.96 4.80 Tb 1.07 1.73 2.54 2.02 2.20 2.61 2.83 2.81 1.60 0.97 1.04 0.96 Dy 6.26 8.90 13.80 10.30 11.30 13.30 15.90 15.20 8.68 5.24 5.29 5.16 Ho 1.24 1.64 2.74 1.89 2.03 2.52 3.21 3.07 1.72 1.01 1.03 1.04 Er 3.49 4.34 7.67 4.74 4.98 6.35 8.68 8.42 4.34 2.53 2.61 2.61 Tm 0.58 0.68 1.24 0.66 0.70 0.89 1.35 1.42 0.62 0.39 0.40 0.41 Yb 3.56 4.04 7.91 3.81 4.10 5.08 8.61 8.81 3.80 2.24 2.38 2.37 Lu 0.500 0.560 1.130 0.540 0.550 0.690 1.260 1.260 0.540 0.326 0.341 0.350 ∑REE 198.11 231.45 468.39 305.92 282.91 403.47 329.61 383.52 145.46 82.94 91.95 89.46 ∑HREE 16.70 21.89 37.03 23.96 25.86 31.44 41.84 40.99 21.30 12.71 13.09 12.90 LREE/HREE 10.86 9.57 11.65 11.77 9.94 11.83 6.88 8.36 5.83 5.53 6.02 5.93 (La/Yb)n 5.20 7.49 10.25 11.80 8.56 10.65 4.82 5.72 3.78 3.52 3.53 3.42 (Ce/Yb)n 8.82 5.71 5.97 7.95 6.98 8.80 3.81 4.57 3.11 2.91 3.33 3.22 (La/Sm)n 3.16 2.52 4.42 3.09 2.29 2.97 2.49 2.83 1.49 1.35 1.39 1.31 (Gd/Yb)n 1.26 1.93 1.43 2.43 2.34 2.31 1.27 1.30 1.74 1.68 1.72 1.68 δEu 0.88 1.22 0.30 1.02 0.98 0.99 0.78 0.75 1.05 1.18 1.12 1.06 δCe 2.19 0.94 0.79 0.85 0.97 1.03 0.97 0.98 0.88 0.86 0.97 0.96 注:样品由核工业北京地质研究院分析测试研究中心完成.常量元素用X射线荧光光谱仪测定;微量稀土元素用ICP-MS质谱仪测定,下标N为原始地幔数值;δEu=Eun/[(Smn)(Gdn)]1/2、δCe=Cen/[(Lan)(Prn)]1/2(Sun and McDnough, 1989),下标n为球粒陨石标准化值.TFe2O3表示该数据为全铁,Mg#=Mg2+/(Mg2++Fe3++Fe2+). 表 2 Sr-Nd同位素组成
Table 2. Sr-Nd isotopic compositions
样品号 TB1 TB7 WH7 TB5 TB13 WH11 WH13 岩性 流纹岩 英安岩 流纹岩 玄武岩 碱玄岩 玄武岩 玄武岩 Rb(10-6) 173.0 174.0 140.0 130.0 208.0 36.5 42.4 Sr(10-6) 45.1 87.7 110.0 300.0 251.0 824.0 899.0 87Rb/86Sr 11.070 5 5.725 9 3.673 1 1.250 6 2.391 6 0.127 8 0.136 1 87Sr/86Sr 0.730 2 0.719 0 0.714 9 0.708 9 0.711 1 0.707 5 0.707 9 err 0.000 007 0.000 006 0.000 006 0.000 009 0.000 007 0.000 006 0.000 007 Isr 0.701 2 0.704 1 0.705 3 0.705 5 0.704 4 0.707 1 0.707 5 Sm(10-6) 5.27 16.50 98.04 10.80 13.10 35.62 36.41 Nd(10-6) 24.20 92.00 138.54 48.80 66.20 46.90 45.40 147Sm/144Nd 0.131 8 0.108 5 0.428 1 0.133 9 0.119 7 0.459 5 0.485 2 143Nd/144Nd 0.512 4 0.512 4 0.512 6 0.512 7 0.512 8 0.513 0 0.512 9 err 0.000 006 0.000 005 0.000 006 0.000 005 0.000 007 0.000 005 0.000 004 T(Ma) 184 184 184 189 195 189 189 εNd(0) -5.29 -4.02 0.04 1.93 2.38 6.14 5.77 εNd(t) -3.76 -1.95 -5.40 3.45 4.30 -0.20 -1.19 fSm/Nd -0.33 -0.45 1.18 -0.32 -0.39 1.34 1.47 TDM1 1 454 1 040 -364 789 633 -123 -122 TDM2 1 272 1 125 1 414 690 625 991 1 072 表 3 闽西南地区永定地区藩坑组锆石LA-ICP-MS定年数据
Table 3. Zircon LA-ICP-MS dating of the Fankeng Formation in the Yongding area of Southwest Fujian
样品点 Th(10-6) U(10-6) Th/U 同位素比值 年龄(Ma) 207Pb/206Pb 1δ 207Pb/235U 1δ 206Pb/238U 1δ 207P/235U 1δ 206Pb/238U 1δ TB5 TB5-1 264 405 0.65 0.047 57 0.001 62 0.203 96 0.007 28 0.031 09 0.000 76 1 88 6 197 5 TB5-2 199 177 1.13 0.048 41 0.003 91 0.188 98 0.015 11 0.028 31 0.000 82 176 13 180 5 TB5-3 447 558 0.80 0.048 91 0.002 29 0.199 00 0.009 44 0.029 51 0.000 75 184 8 187 5 TB5-4 642 521 1.23 0.049 38 0.002 37 0.185 40 0.009 03 0.027 23 0.000 69 173 8 173 4 TB5-5 89 153 0.58 0.054 73 0.003 89 0.229 56 0.016 18 0.030 42 0.000 86 210 13 193 5 TB5-6 524 560 0.94 0.051 25 0.001 88 0.204 09 0.007 73 0.028 88 0.000 70 189 7 184 4 TB5-7 70 159 0.44 0.050 39 0.002 80 0.212 30 0.011 81 0.030 56 0.000 79 195 10 194 5 TB5-8 172 229 0.75 0.048 75 0.002 28 0.209 38 0.009 93 0.031 15 0.000 78 193 8 198 5 TB5-9 537 1 018 0.53 0.053 67 0.001 76 0.225 02 0.007 72 0.030 41 0.000 73 206 6 193 5 TB5-10 71.0 130 0.55 0.053 05 0.003 36 0.226 31 0.014 27 0.030 95 0.000 83 207 12 196 5 TB5-11 233 281 0.83 0.050 96 0.002 12 0.214 10 0.009 07 0.030 48 0.000 74 197 8 194 5 TB13 TB13-1 229 425 0.54 0.049 22 0.002 57 0.201 17 0.010 60 0.029 65 0.000 77 186 9 188 5 TB13-2 3 008 2189 1.37 0.050 07 0.001 27 0.208 05 0.005 88 0.030 14 0.000 73 192 5 191 5 TB13-3 254 364 0.70 0.052 88 0.002 46 0.220 31 0.010 45 0.030 22 0.000 78 202 9 192 5 TB13-4 2 360 1 191 1.98 0.052 30 0.001 80 0.219 02 0.007 93 0.030 37 0.000 75 201 7 193 5 TB13-5 295 385 0.77 0.054 04 0.002 05 0.227 60 0.008 96 0.030 55 0.000 76 208 7 194 5 TB13-6 375 492 0.76 0.051 19 0.002 45 0.216 39 0.010 52 0.030 66 0.000 79 199 9 195 5 TB13-7 5 054 2 303 2.19 0.052 24 0.001 37 0.222 18 0.006 43 0.030 85 0.000 75 204 5 196 5 TB13-8 3 926 1 916 2.05 0.048 94 0.001 36 0.206 96 0.006 28 0.030 67 0.000 74 191 5 195 5 TB13-9 578 540 1.07 0.050 97 0.001 64 0.219 94 0.007 51 0.031 30 0.000 77 202 6 199 5 TB13-10 282 431 0.65 0.050 46 0.002 35 0.212 59 0.010 08 0.030 56 0.000 78 196 8 194 5 TB13-11 16 097 5 606 2.87 0.050 20 0.001 16 0.213 55 0.005 60 0.030 85 0.000 74 197 5 196 5 TB13-12 2 941 1 111 2.65 0.051 43 0.001 78 0.222 11 0.008 09 0.031 32 0.000 78 204 7 199 5 TB13-13 7 799 3 827 2.04 0.050 29 0.001 26 0.216 24 0.006 02 0.031 19 0.000 75 199 5 198 5 TB13-14 479 506 0.95 0.049 61 0.001 58 0.210 99 0.007 14 0.030 85 0.000 76 194 6 196 5 TB13-15 10 682 5 014 2.13 0.051 89 0.001 18 0.222 01 0.005 75 0.031 03 0.000 75 204 5 197 5 TB13-16 243 285 0.85 0.050 20 0.001 88 0.213 55 0.008 32 0.030 85 0.000 77 197 7 196 5 TB13-17 7 173 2 943 2.44 0.049 92 0.001 24 0.214 46 0.005 95 0.031 16 0.000 75 197 5 198 5 TB13-18 216 313 0.69 0.052 33 0.002 31 0.222 25 0.010 02 0.030 80 0.000 79 204 8 196 5 TB13-19 8 448 3 013 2.80 0.049 32 0.001 31 0.207 61 0.006 07 0.03053 0.000 74 192 5 194 5 TB13-20 221 267 0.83 0.048 95 0.002 72 0.206 21 0.011 54 0.030 55 0.000 81 190 10 194 5 TB13-21 343 377 0.91 0.051 80 0.002 61 0.211 78 0.010 78 0.029 65 0.000 78 195 9 188 5 TB13-22 386 437 0.88 0.052 89 0.002 48 0.216 92 0.010 34 0.029 75 0.000 77 199 9 189 5 TB13-23 248 416 0.60 0.048 28 0.001 98 0.205 10 0.008 67 0.030 81 0.000 78 189 7 196 5 TB13-24 363 364 0.99 0.049 19 0.001 72 0.210 31 0.007 72 0.031 01 0.000 77 194 6 197 5 TB13-25 15 455 5 714 2.70 0.049 26 0.001 09 0.206 76 0.005 27 0.030 44 0.000 73 191 4 193 5 TB13-26 15 728 5 168 3.04 0.048 98 0.001 16 0.206 21 0.005 53 0.030 53 0.000 74 190 5 194 5 WH7 WH7-1 112 169 0.66 0.049 64 0.004 40 0.193 45 0.016 91 0.028 26 0.000 85 180 14 180 5 WH7-2 98 149 0.66 0.049 77 0.003 24 0.201 13 0.013 04 0.029 30 0.000 79 186 11 186 5 WH7-3 103 155 0.67 0.050 11 0.003 21 0.199 23 0.012 75 0.028 83 0.000 76 184 11 183 5 WH7-4 86 135 0.63 0.049 65 0.003 69 0.197 67 0.014 60 0.028 87 0.000 80 183 12 183 5 WH7-5 1 259 1 627 0.77 0.050 05 0.001 33 0.203 80 0.005 88 0.029 53 0.000 69 188 5 188 4 WH7-6 245 279 0.88 0.049 99 0.003 02 0.196 30 0.011 83 0.028 48 0.000 75 182 10 181 5 WH7-7 3 027 3 318 0.91 0.050 99 0.001 34 0.203 15 0.005 79 0.028 89 0.000 68 188 5 184 4 WH7-8 643 425 1.51 0.049 42 0.003 41 0.191 57 0.013 13 0.028 11 0.000 77 178 11 179 5 WH7-9 1 505 1 679 0.90 0.050 50 0.001 34 0.207 55 0.005 96 0.029 80 0.000 70 191 5 189 4 WH7-10 517 504 1.03 0.054 80 0.002 74 0.213 37 0.010 73 0.028 23 0.000 72 196 9 179 5 WH7-11 49 99 0.50 0.053 25 0.005 11 0.207 92 0.019 64 0.028 32 0.00089 192 17 180 6 WH7-12 239 312 0.77 0.048 76 0.002 08 0.196 78 0.008 54 0.029 27 0.000 72 182 7 186 5 WH7-13 86 138 0.62 0.050 47 0.003 07 0.201 01 0.012 21 0.028 88 0.000 75 186 10 184 5 WH7-14 90 171 0.53 0.053 27 0.002 88 0.205 42 0.011 12 0.027 97 0.000 72 190 9 178 5 WH7-15 1 593 1 495 1.07 0.049 68 0.001 53 0.198 44 0.006 41 0.028 97 0.000 68 184 5 184 4 WH7-16 165 232 0.71 0.055 07 0.004 00 0.217 47 0.015 61 0.028 63 0.000 81 200 13 182 5 WH7-17 1 204 1 519 0.79 0.050 62 0.001 32 0.207 11 0.005 82 0.029 67 0.000 69 191 5 188 4 WH7-18 92 146 0.63 0.051 44 0.003 69 0.204 98 0.014 56 0.028 90 0.000 80 189 12 184 5 WH7-19 81 132 0.61 0.051 26 0.003 21 0.206 29 0.012 86 0.029 18 0.000 77 190 11 185 5 -
[1] Arndt, N.T., Christensen, U., 1992.The Role of Lithospheric Mantle in Continental Flood Volcanism:Thermal and Geochemical Constraints.Journal of Geophysical Research, 97(B7):10967. https://doi.org/10.1029/92jb00564 [2] Bird, P., Perry, F.V., Livaccari, R.F., 1993.Isotopic Evidence for Preservation of Cordilleran Lithospheric Mantle during the Sevier-Laramide Orogeny, Western United States:Comment and Reply.Geology, 22(7):670-672. https://doi.org/10.1130/0091-7613(1993)0212.3.co; 2 [3] Chen, B., Zhai, M.G., 2003.Geochemistry of Late Mesozoic Lamprophyre Dykes from the Taihang Mountains, North China, and Implications for the Sub-Continental Lithospheric Mantle.Geological Magazine, 140(1):87-93. https://doi.org/10.1017/s0016756802007124 [4] Chen, J.F., Jahn, B.M., 1999.Nd, Sr, Pb Isotope Tracing and Crust Evolution of Southeast China.Geochimica, 28:127-140. [5] Chen, R.S., 2014.The Correlation of Early Jurassic Volcanic Stratigraphy and Lithofacies-Paleogeography Characteristics, Fujian Province.Geology of Fujian, 33(4):239-250(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fujdz201404001 [6] Chen, R.S., 2015.The Petrogeochemical Characteristics and Petrogenesis of Early Mesozoic Volcanic Rocks, Fujian Province.Geology of Fujian, 34(1):1-16(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fujdz201501001 [7] Chen, R.S., Lin, D.Y., 2006.On Research of Early Mesozoic Volcanism in Fujian Province.Geology of Fujian, 25(4):169-179(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-FJDZ200604000.htm [8] Cherniak, D.J., Watson, E.B., 2000.Pb Diffusion in Zircon.Chemical Geology, 172(1-2):5-24. https://doi.org/10.1016/s0009-2541(00)00233-3 [9] Debari, S.M., 1994.Petrogenesis of the Fiambala Gabbroic Intrusion, Northwestern Argentina, a Deep Crustal Syntectonic Pluton in a Continental Magmatic Arc.Journal of Petrology, 35(3):679-713. https://doi.org/10.1093/petrology/35.3.679 [10] Deng, P., Shu, L.S., Yu, X.Q., et al., 2004.Early-Middle Jurassic Basins and Features of Igneous Rocks in the Western Fujian-Southern Jiangxi Region.Acta Petrologica Sinica, 20(3):521-532(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=67923cf54ace1366ad3cb974fb81695c&encoded=0&v=paper_preview&mkt=zh-cn [11] Ewart, A., Milner, S.C., Armstrong, R.A., et al., 1998.Etendeka Volcanism of the Goboboseb Mountains and Messum Igneous Complex, Namibia.Part I:Geochemical Evidence of Early Cretaceous Tristan Plume Melts and the Role of Crustal Contamination in the Parana-Etendeka CFB.Journal of Petrology, 39(2):191-225. https://doi.org/10.1093/petroj/39.2.191 [12] Garland, F., Turner, S., Hawkesworth, C., 1996.Shifts in the Source of the Paraná Basalts through Time.Lithos, 37(2-3):223-243. https://doi.org/10.1016/0024-4937(95)00038-0 [13] Harris, N.B.W., Pearce, J.A., Tindle, A.G., 1986.Geochemical Characteristics of Collision-Zone Magmatism.Geological Society, London, Special Publications, 19(1):67-81. https://doi.org/10.1144/gsl.sp.1986.019.01.04 [14] Lee, J.K.W., Williams, I.S., Ellis, D.J., 1997.Pb, U and Th Diffusion in Natural Zircon.Nature, 390(6656):159-162. https://doi.org/10.1038/36554 [15] Li, W.X., Zhao, X.L., Xing, G.F., et al., 2013.Geochronology of the Detrital Zircons from Early Jurassic Sedimentary Rocks from the Dongkeng Basin and Its Geological Implications.Geotectonica et Metallogenia, 37(1):78-86(in Chinese with English abstract). [16] Li, X., 2013.Subdivision and Characteristic of Tectonic Units in Fujian Province.Global Geology, 32(3):549-557(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjdz201303012 [17] Li, X.H., Zhou, H.W., Liu, Y., et al., 2001.Mesozoic Shoshonitic Intrusives in the Yangchun Basin, Western Guangdong, and Their Tectonic Significance:Ⅱ.Trace Elements and Sr-Nd Isotopes.Geochimica, 30(1):57-65(in Chinese with English abstract). [18] Lightfoot, P.C., Hawkesworth, C.J., Hergt, J., et al., 1993.Remobilisation of the Continental Lithosphere by a Mantle Plume:Major-, Trace-Element, and Sr-, Nd-, and Pb-Isotope Evidence from Picritic and Tholeiitic Lavas of the Noril'sk District, Siberian Trap, Russia.Contributions to Mineralogy and Petrology, 114(2):171-188. https://doi.org/10.1007/bf00307754 [19] Liu, S.L., He.M., Hu, S.H., et al., 2000.Precise Determination of Trace Elements in Geological Samples by ICP-MS Using Compromise Conditions and Fine Matrix-Matching Strategy.Analytical Sciences, 16(12):1291-1296. https://doi.org/10.2116/analsci.16.1291 [20] Lu, Q.D., 1997.On the Petrochemical and Geochemical Characteristics and the Petrogenesis of the Mesozoic Volcanic Rocks in Fujian Province.Geology of Fujian, 16(1):10-20(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-JXTW200309017.htm [21] Lu, Q.D., 2001.Basic Characteristics and Tectonic Setting of Mesozoic Volcanic Rocks in Fujian Province.Acta Petrologica et Mineralogica, 20(1):57-68(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz200101008 [22] Ludwig, K.R., 2003.User's Manual for Isoplot 3.0:A Geochronological, Toolkit for Microsoft Excel.Special Publication, Berkeley Geochronology Center, 4:1-71. doi: 10.1016-j.immuni.2011.10.010/ [23] Ma, J.Q., He, W.X., Feng, Z.Z., 1998.Features and Origin of Mesozoic Bimodal Volcanic Rocks in Fujian Province.Regional Geology of China, 17(3): 241-246(in Chinese with English abstract). [24] Ma, J.Q., Wang, W.T., 1993.Basic Characteristics and the Stratigraphic-Time Basis of Middle and Lower Proterozoic Metamorphic Rocks in the Yongding Area of Fujian Province.Geology of Fujian, 12(4):268-279(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-FJDZ199304003.htm [25] Martin, H., Bonin, B., Capdevila, R., et al., 1994.The Kuiqi Peralkaline Granitic Complex (SE China):Petrology and Geochemistry.Journal of Petrology, 35(4):983-1015. https://doi.org/10.1093/petrology/35.4.983 [26] Maruyama, S., Send, T., 1986.Orogeny and Relative Plate Motions:Example of the Japanese Islands.Tectonophysics, 127(3-4):305-329. https://doi.org/10.1016/0040-1951(86)90067-3 [27] Meschede, M., 1986.A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram.Chemical Geology, 56(3-4):207-218. https://doi.org/10.1016/0009-2541(86)90004-5 [28] Middlemost, E.A.K., 1994.Naming Materials in the Magma/Igneous Rock System.Earth-Science Reviews, 37(3-4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9 [29] Morrison, G.W., 1980.Characteristics and Tectonic Setting of the Shoshonite Rock Association.Lithos, 13(1):97-108. https://doi.org/10.1016/0024-4937(80)90067-5 [30] Pearce, J.A., Baker, P.E., Harvey, P.K., et al., 1995.Geochemical Evidence for Subduction Fluxes, Mantle Melting and Fractional Crystallization beneath the South Sandwich Island Arc.Journal of Petrology, 36(4):1073-1109. https://doi.org/10.1093/petrology/36.4.1073 [31] Pearce, J.A., Cann, J.R., 1973.Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses.Earth and Planetary Science Letters, 19(2):290-300. https://doi.org/10.1016/0012-821x(73)90129-5 [32] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956 [33] Pearce, J.A., Norry, M.J., 1979.Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks.Contributions to Mineralogy and Petrology, 69(1):33-47. https://doi.org/10.1007/bf00375192 [34] Rollison, H.R., 1993.Using Geochemical Data: Evaluation, Presentation, Interpretation.Longman Scientific & Technical Limited, London, 179-205. [35] Shu, L.S., 2012.An Analysis of Principal Features of Tectonic Evolution in South China Block.Geological Bulletin of China, 31(7):1035-1053(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201207003 [36] Shu, L.S., Yu, J.H., Jia D., et al., 2008.Early Paleozoic Orogenic Belt in the Eastern Segment of South China.Geological Bulletin of China, 27(10):1581-1593(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD200810002.htm [37] Shu, L.S., Zhou, X.M., Deng, P., et al., 2004.Geological Features and Tectonic Evolution of Meso-Cenozoic Basins in Southeastern China.Geological Bulletin of China, 23(9-10):876-884(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200409008 [38] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [39] Tan, Q.L., Wang, Y.J., Zhang, Y.Z., et al., 2017.Taohong Diorite from Pingshui Region in Eastern Jiangnan Orogen:Evidence for Early Neoproterozoic Oceanic Crust Subduction.Earth Science, 42(2):173-190(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD200810002.htm [40] Wang, Q., Xu, J.F., Jian, P., et al., 2006.Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China:Implications for the Genesis of Porphyry Copper Mineralization.Journal of Petrology, 47(1):119-144. https://doi.org/10.1093/petrology/egi070 [41] Wang, Y., 2003.The Early Mid-Jurassic Granodiorite in South Hunan—Its Petrochemical Characteristics, Tectonic Setting and Geological Implication.Beijing Geology, 15(3):1-7(in Chinese with English abstract). [42] Wang, Y.J., Liao, C.L., Fan, W.M., et al., 2004.Early Mesozoic OIB Type Alkaline Basalt in Central Jiangxi Province and Its Tectonic Implications.Geochimica, 33(2):109-117(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200402001 [43] Wang, Y.J., Zhang, A.M., Fan, W.M., et al., 2013.Origin of Paleosubduction-Modified Mantle for Silurian Gabbro in the Cathaysia Block:Geochronological and Geochemical Evidence.Lithos, 160-161(1):37-54. https://doi.org/10.1016/j.lithos.2012.11.004 [44] Winchester, J.A., Floyd, P.A., 1977.Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements.Chemical Geology, 20:325-343. https://doi.org/10.1016/0009-2541(77)90057-2 [45] Wu, J.H., Xie, K.R., Zhu, H.T., et al., 2016.Petrogenesis of Rhyolite from Hongshanzi Basin in Southern Greater Xing'an Range:Elements and Sr-Nd-Pb Isotope Constraints.Journal of Jilin University (Earth Science Edition), 46(6):1724-1739(in Chinese with English abstract). [46] Wu, Y.B., Zheng, Y.F., 2004.Zircons Genetic Mineralogy Study and the Constraint to the U-Pb Dating Explanation.Chinese Science Bulletin, 49(16):1589-1604(in Chinese). [47] Xie, X., Xu, X.S., Zou, H.B., et al., 2005.The Prelude of the Large Scale Magmatism of the Southeast of China in the Late Mesozoic:The Early J2 Basalt.Science China Earth Sciences, 35(7):587-605 (in Chinese). [48] Xing, G.F., Yang, Z.L., Mao, J.R., et al., 2002.Characteristics of Early Jurassic Igneous Rocks on the Continental Margin of Southeastern China and Their Tectonic Significance.Geological Bulletin of China, 21(7):384-391(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200207004 [49] Xu, M.H., 1992.Early Jurassic Bimodal Volcanic Rocks and Their Structure Environment in Yongding County, Fujian Province.Geology of Fujian, 11(2):115-125(in Chinese with English abstract). [50] Xu, X.S., Xie, X., 2005.Late Mesozoic-Cenozoic Basaltic Rocks and Crust-Mantle Interaction, SE China.Geological Journal of China Universities, 11(3):318-334(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/gxdzxb200503004 [51] Xu, Z.J., Cheng, R.H., Wang, L.L., et al., 2013.Mineralogical and Element Geochemical Characteristics of the Late Triassic-Middle Jurassic Sedimentary Rocks in Southwestern Fujian Province:Constraints on Changes of Basin Tectonic Settings.Acta Petrologica Sinica, 29(8):2913-2924(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201308027 [52] Xu, Z.J., Cheng, R.H., Wang, L.L., et al., 2015.Mineral and Elemental Geochemistry Records of the Paleoclimate and the Tectonic Background in Late Triassic Xiaoshui Formation-Early Jurassic Jinji Formation in East Guangdong.Journal of Jilin University(Earth Science Edition), 45(3):712-723(in Chinese with English abstract). [53] Xu, Z.J., Wang, L.L., Kong, Y., et al., 2017.Susceptibility, Geochemical Characteristics and Tectonic Significance of Volcanics of North Yellow Sea Basin from Pre-Mesozoic to Mesozoic.Earth Science, 42(2):191-206(in Chinese with English abstract). [54] Yang, Z.L., Shen, W.Z., Tao, K.Y., et al., 1999.Sr, Nd and Pb Isotopic Characteristics of Early Cretaceous Basaltic Rocks from the Coast of Zhejiang and Fujian:Evidences for Ancient Enriched Mantle Source.Scientia Geologica Sinica, 34(1):59-68(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX901.006.htm [55] Yi, L.W., Ma, C.Q., Wang, L.X., et al., 2014.Discovery of Late Ordovician Subvolcanic Rocks in South China:Existence of Subduction-Related Dacite from Early Paleozoic? Earth Science, 39(6):637-653(in Chinese with English abstract). [56] Zhang, G.H., Zhou, X.H., Sun, M., et al., 1998.Sr, Nd and Pb Isotopic Characteristics of Granulite and Pyroxenite Xenoliths in Hannuoba Basalts, Hebei Province, and Their Implications for Geologic Processes.Acta Petrologica Sinica, 14(2):190-197(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB802.005.htm [57] Zhang, W., Fang, N.Q., 2014.Geochemistry Characteristics of Eocene Volcanic Rocks in Sanshui Basin, Guangdong.Earth Science, 39(1):37-44(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201401004 [58] Zhi, X.C., Feng, J.L., 1992.Geochemistry of Hannuoba Basalts, Hebei Province.In:Liu, R.X., ed., Chinese Cenozoic Volcanic Chronology and Geochemistry.Seismological Press, Beijing, 114-118(in Chinese). [59] Zhou, J.C., Chen, R., 2001.Geochemistry of Late Mesozoic Interaction between Crust and Mantle in Southeastern Fujian Province.Geochimica, 30(6):547-558(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQHX200106006.htm [60] Zhou, J.C., Jiang, Y.S., Wang, X.L., et al., 2005.The Petrogeochemical Research to the Basalt of the Middle Jurassic in South China—Take the Basalt of Fujian Fankeng for Example.Science China Earth Sciences, 35(10):927-936(in Chinese). [61] Zhou, X.M., Li, W.X., 2000.Origin of Late Mesozoic Igneous Rocks in Southeastern China:Implications for Lithosphere Subduction and Underplating of Mafic Magmas.Tectonophysics, 326(3-4):269-287. https://doi.org/10.1016/s0040-1951(00)00120-7 [62] Zindler, A., Hart, S.R., 1986.Chemical Geodynamics.Annual Review of Earth and Planetary Sciences, 14:493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425 [63] 陈润生, 2014.福建早侏罗世火山地层对比及岩相古地理特征.福建地质, 33(4):239-250. doi: 10.3969/j.issn.1001-3970.2014.04.001 [64] 陈润生, 2015.福建早侏罗世火山岩岩石地球化学特征及岩石成因研究.福建地质, 34(1):1-16. doi: 10.3969/j.issn.1001-3970.2015.01.001 [65] 陈润生, 林东燕, 2006.福建早中生代火山作用研究进展.福建地质, 25(4):169-179. doi: 10.3969/j.issn.1001-3970.2006.04.001 [66] 邓平, 舒良树, 余心起, 等, 2004.闽西-赣南早-中侏罗世盆地及其火成岩特征.岩石学报, 20(3):521-532. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200403016 [67] 李武显, 赵希林, 邢光福, 等, 2013.南岭东段早侏罗世沉积岩碎屑锆石U-Pb定年及其地质意义——以东坑盆地为例.大地构造与成矿学, 37(1):78-86. doi: 10.3969/j.issn.1001-1552.2013.01.009 [68] 李霞, 2013.福建省大地构造单元划分及基本特征.世界地质, 32(3):549-557. doi: 10.3969/j.issn.1004-5589.2013.03.012 [69] 李献华, 周汉文, 刘颖, 等, 2001.粤西阳春中生代钾玄质侵入岩及其构造意义:Ⅱ.微量元素和Sr-Nd同位素地球化学.地球化学, 30(1):57-65. http://d.old.wanfangdata.com.cn/Periodical/dqhx200101007 [70] 卢清地, 1997.福建中生代火山岩岩石化学、地球化学特征及岩石成因探讨.福建地质, 16(1):10-20. http://www.cnki.com.cn/Article/CJFDTOTAL-FJDZ199701001.htm [71] 卢清地, 2001.福建中生代火山活动的基本特征及构造环境.岩石矿物学杂志, 20(1):57-68. doi: 10.3969/j.issn.1000-6524.2001.01.008 [72] 马金清, 何文兴, 冯宗帜, 1998.福建省中生代双峰式火山岩的特征及成因.中国区域地质, 17(3):241-246. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD803.003.htm [73] 马金清, 王文腾, 1993.福建永定地区下、中元古界变质岩基本特征及地层时代依据.福建地质, 12(4):268-279. http://www.cnki.com.cn/Article/CJFDTOTAL-FJDZ199304003.htm [74] 舒良树, 2012.华南构造演化的基本特征.地质通报, 31(7):1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003 [75] 舒良树, 于津海, 贾东, 等, 2008.华南东段早古生代造山带研究.地质通报, 27(10):1581-1593. doi: 10.3969/j.issn.1671-2552.2008.10.001 [76] 舒良树, 周新民, 邓平, 等, 2004.中国东南部中、新生代盆地特征与构造演化.地质通报, 23(9-10):876-884. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200409008 [77] 谭清立, 王岳军, 张玉芝, 等, 2017.江南东段平水地区桃红闪长岩:早新元古代洋壳消减的证据.地球科学, 42(2):173-190. http://earth-science.net/WebPage/Article.aspx?id=3433 [78] 汪洋, 2003.湘南早中侏罗世花岗闪长岩的岩石化学特征、构造背景及地质意义.北京地质, 15(3):1-7. http://cdmd.cnki.com.cn/Article/CDMD-82501-2011012317.htm [79] 王岳军, 廖超林, 范蔚茗, 等, 2004.赣中地区早中生代OIB碱性玄武岩的厘定及构造意义.地球化学, 33(2):109-117. http://d.old.wanfangdata.com.cn/Periodical/dqhx200402001 [80] 巫建华, 解开瑞, 祝洪涛, 等, 2016.大兴安岭南端红山子盆地流纹岩的成因:元素和Sr-Nd-Pb同位素制约.吉林大学学报(地球科学版), 46(6):1724-1739. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201606010 [81] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [82] 谢昕, 徐夕生, 邹海波, 等, 2005.中国东南部晚中生代大规模岩浆作用序幕:J2早期玄武岩.中国科学(D辑:地球科学), 35(7):587-605. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200507001 [83] 邢光福, 杨祝良, 毛建仁, 等, 2002.东南大陆边缘早侏罗世火成岩特征及其构造意义.地质通报, 21(7):384-391. doi: 10.3969/j.issn.1671-2552.2002.07.004 [84] 许美辉, 1992.福建省永定地区早侏罗世双峰式火山岩及其构造环境.福建地质, 11(2):115-125. http://www.cnki.com.cn/Article/CJFDTotal-FJDZ199202005.htm [85] 徐夕生, 谢昕, 2005.中国东南部晚中生代-新生代玄武岩与壳幔作用.高校地质学报, 11(3):318-334. doi: 10.3969/j.issn.1006-7493.2005.03.004 [86] 许中杰, 程日辉, 王嘹亮, 等, 2013.闽西南地区晚三叠-中侏罗世沉积岩矿物和元素地球化学特征:对盆地构造背景转变的约束.岩石学报, 29(8):2913-2924. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201308027 [87] 许中杰, 程日辉, 王嘹亮, 等, 2015.粤东晚三叠世小水组早侏罗世金鸡组古气候及构造背景的矿物和地球化学记录.吉林大学学报(地球科学版), 45(3):712-723. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201503007 [88] 许中杰, 王嘹亮, 孔媛, 等, 2017.北黄海盆地前中生代-中生代火山岩磁化率、地球化学特征及构造意义.地球科学, 42(2):191-206. http://earth-science.net/WebPage/Article.aspx?id=3432 [89] 杨祝良, 沈渭洲, 陶奎元, 等, 1999.浙闽沿海早白垩世玄武岩锶、钕、铅同位素特征——古老富集型地幔的证据.地质科学, 34(1): 59-68. doi: 10.3321/j.issn:0563-5020.1999.01.007 [90] 易立文, 马昌前, 王连训, 等, 2014.华南晚奥陶世次火山岩的发现:早古生代与俯冲有关的英安岩?地球科学, 39(6):637-653. http://earth-science.net/WebPage/Article.aspx?id=2872 [91] 张国辉, 周新华, 孙敏, 等, 1998.河北汉诺坝玄武岩中麻粒岩类和辉石岩类捕虏体Sr、Nd、Pb同位素特征及其地质意义.岩石学报, 14(2): 190-197. http://d.old.wanfangdata.com.cn/Periodical/ysxb98199802006 [92] 张维, 方念乔, 2014.广东三水盆地始新世火山岩地球化学特征.地球科学, 39(1):37-44. http://earth-science.net/WebPage/Article.aspx?id=2827 [93] 支霞臣, 冯家麟.1992.汉诺坝玄武岩的地球化学.见:刘若新, 编, 中国新生代火山岩年代学与地球化学.北京:地震出版社, 114 -148. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201004021 [94] 周金城, 陈荣, 2001.闽东南晚中生代壳幔作用地球化学.地球化学, 30(6):547-558. doi: 10.3321/j.issn:0379-1726.2001.06.007 [95] 周金城, 蒋少涌, 王孝磊, 等, 2005.华南中侏罗世玄武岩的岩石地球化学研究——以福建藩坑玄武岩为例.中国科学(D辑:地球科学), 35(10): 927-936. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200510003