The Thermodynamic Characteristics of Quartz E' Center and Their Significance
-
摘要: 石英EPR是一种利用矿物吸收的累积辐射能进行测年的技术方法,尽管多用于第四纪,但石英E'心在热活化后极大增强的EPR信号为拓展EPR的测年范围提供了契机.然而石英E'心的热活化条件及形成转化机理存在诸多争议.通过对花岗岩和断层带样品施加人工γ辐照,并通过步进式的阶梯退火实验,运用电子顺磁共振技术测定了不同辐射条件及温度条件下的石英E'心信号强度,探讨了石英E'心的增长和成因机理.结果表明,石英E'心可在常温常规γ辐照和高温加热2种条件下增长,并分别探讨了常温和高温E'心的测年方法及其地质意义.常温E'心的信号强度在150℃以下相对稳定,可用常规附加剂量法标定EPR信号强度以求取累积辐射能,常用于测定第四纪范围内断层的形成年龄;石英E'心在热活化后信号得到极大增强,可测定第四纪前的地质年龄,但需采用已知年龄的石英E'心热力学峰值强度作标杆或通过高剂量的γ辐照或中子辐照使氧空位再生,建立石英氧空位的剂量响应曲线以标定高温E'心代表的累积辐射能.E'心的热力学峰值通过步进式的阶梯退火实验确定,其在高温和常温时的信号强度比(I2/I1)具有记录辐射能和地质计时的意义.Abstract: The electron paramagnetic resonance of quartz is a dating technique through accumulated irradiation energy absorbed by minerals. Although it is commonly used in Quaternary period,the greatly enhanced EPR signals of quartz E' center after thermal activation provide opportunity for extending the dating range of EPR,while there are many different opinions on the thermal activation physical conditions and the formation and transformation mechanism of quartz E' center. In this paper,through the artificial γ ray radiation and stepwise annealing experiments to the granite and fault zone samples,the quartz E' center signal intensities under different irradiation conditions and different temperatures are measured by EPR technique,and the growth and formation mechanisms of quartz E' center are studied. The results indicate that the signal intensity of quartz E' center can be enhanced by normal artificial γ ray radiation under room temperature and by high temperature heating. The dating method and geological significance of E' center at normal and high temperature is discussed separately. The signal intensity of normal E' center is relatively constant below 150℃,and can be calibrated to calculate the accumulated dose and date fault forming age within Quaternary by normal additive dose method. The signal intensity of quartz E' center can be greatly enhanced by thermal activation and can be used to date geological age before Quaternary,but the activated peak signal intensity of known age quartz E' center should be used as a benchmark or the oxygen vacancy should be regenerated by high-dose γ ray irradiation or neutron irradiation. Then,the dose response curve of oxygen vacancy in quartz can be fitted to calculate the accumulated irradiation energy represented by the high temperature E' center. The thermodynamic peak of E' center should be determined by stepped annealing experiment and its signal intensity ratio (I2/I1) at high temperature and room temperature has the geological significance of recording irradiation energy and geological age.
-
图 7 氧空位、E′心、Al心的结构模型
据Rink and Odom(1991)改编. a.石英正常的晶格位置;b.连接硅原子的桥接氧移位,形成氧空位;c.氧空位处捕获一个自由电子,形成E′心;d. Al心
Fig. 7. Structure model of oxygen vacancy, E′ center and Al center
图 8 石英中E′心、Al心和Ti心在加热后EPR信号强度的变化
据Toyoda(2005).石英中Al心和Ti心的信号强度随温度升高而下降,而E′心在300 ℃左右信号强度达到最强后才开始下降
Fig. 8. Change of intensity of the EPR signals of the E′, Al and Ti centers in quartz
图 9 Al心和热处理E′心的剂量响应
据Toyoda and Hattori(2000);Toyoda(2005);Toyoda et al.(2016). Al心的强度增加而E′心在200 Gy以上饱和,表明饱和是由于氧空位的数量有限
Fig. 9. The dose response relationship of Al center and thermal activated E′ center
-
[1] An, F. Y., Lai, Z. P., Liu, X. J., et al., 2018. Luminescence Chronology and Radiocarbon Reservoir Age Determination of Lacustrine Sediments from the Heihai Lake, NE Qinghai-Tibetan Plateau and Its Paleoclimate Implications. Journal of Earth Science, 29(3): 695-706. https://doi.org/10.1007/s12583-017-0972-9 [2] Blackwell, B. A. B., Skinner, A. R., Blickstein, J. I. B., et al., 2016. ESR in the 21st Century: From Buried Valleys and Deserts to the Deep Ocean and Tectonic Uplift. Earth-Science Reviews, 158: 125-159. https://doi.org/10.1016/j.earscirev.2016.01.001 [3] Chen, J.Y., Liang, X.Z., Feng, J.M., et al., 1991.A Study of Annealing on E' Center in Quartz. Journal of Sichuan University (Natural Science Edition), 28(3):314-317 (in Chinese with English abstract). [4] Chen, Y., Feng, J., Gao, J., et al., 1997. Investigation of the Potential Use of ESR Signals in Quartz for Palaeothermometry. Quaternary Science Reviews, 16(3-5): 495-499. https://doi.org/10.1016/s0277-3791(96)00094-7 [5] Choi, P., Hwang, J., Bae, H., et al., 2015. Kinematics and ESR Ages for Fault Gouges of the Quaternary Jingwan Fault, Dangjin, Western Korea. Journal of the Korean Earth Science Society, 36(1): 1-15. https://doi.org/10.5467/jkess.2015.36.1.1 [6] Deng, B., Liu, S.G., Liu, S., et al., 2013. Tectono-Thermal Events and Chronological Framework in Zoige and Its Periphery. Earth Science, 38(2): 317-328 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201302010 [7] Diao, S.B., Ye, Y.G., Sui, W.D., et al., 2004. The Estimation of the Average Life of Gypsum from Lanzhou Basin at g=2.004. Acta GeoscienticaSinica, 25(2): 209-212(in Chinese with English abstract). [8] Ehlers, T. A., Farley, K. A., 2003. Apatite (U-Th)/He Thermochronometry: Methods and Applications to Problems in Tectonic and Surface Processes. Earth and Planetary Science Letters, 206(1-2): 1-14. https://doi.org/10.1016/s0012-821x(02)01069-5 [9] Feigl, F. J., Fowler, W. B., Yip, K. L., 1974. Oxygen Vacancy Model for the E1' Centre in SiO2. Solid State Communications, 14(3): 225-229. https://doi.org/10.1016/0038-1098(74)90840-0 [10] Fu, Y.D., Cai, X.C., 1981. The Electron and Hole Centers in Minerals and Its Application. Geology and Geochemistry, (5): 37-42 (in Chinese). [11] Fukuchi, T., Imai, N., Shimokawa, K., 1986. ESR Dating of Fault Movement Using Various Defect Centres in Quartz: The Case in the Western South Fossa Magna, Japan. Earth and Planetary Science Letters, 78(1): 121-128. https://doi.org/10.1016/0012-821x(86)90178-0 [12] Gao, W., Jia, D. C., Jiang, Q. G., et al., 2014. ESR Age of a Quaternary Sedimentary Profile in Manjiang, Fusong County, Changbai Mountain Region, and Its Significance. Quaternary International, 349(6): 49-58. https://doi.org/10.1016/j.quaint.2014.04.044 [13] Gong, G.L., Li, S.H., Sun, W.D., et al., 2010. Quartz Thermoluminescence—Another Potential Paleothermometer for Sedimentary Basin Thermal History Study. Chinese Journal of Geophysics, 53(1):138-146 (in Chinese with English abstract). [14] Grün, R., 1989. Electron Spin Resonance (ESR) Dating. Quaternary International, 1: 65-109. https://doi.org/10.1016/1040-6182(89)90010-4 [15] Grün, R., Tani, A., Gurbanov, A., et al., 1999. A New Method for the Estimation of Cooling and Denudation Rates Using Paramagnetic Centers in Quartz: A Case Study on the Eldzhurtinskiy Granite, Caucasus. Journal of Geophysical Research: Solid Earth, 104(B8): 17531-17549. https://doi.org/10.1029/1999jb900173 [16] Guralnik, B., Jain, M., Herman, F., et al., 2015. OSL-Thermochronometry of Feldspar from the KTB Borehole, Germany. Earth and Planetary Science Letters, 423: 232-243. https://doi.org/10.1016/j.epsl.2015.04.032 [17] Jani, M.G., Bossoli, R.B., Halliburton, L.E., 1983. Further Characterization of the E1′ Center in Crystalline SiO2. Physical Review B, 27(4): 2285-2293. https://doi.org/10.1103/physrevb.27.2285 [18] Kittel, C., 1971. Introduction to Solid State Physics. John Wiley and Sons, New York, 752. [19] Lee, H. K., Yang, J. S., 2003. ESR Dating of the Wangsan Fault, South Korea. Quaternary Science Reviews, 22(10-13): 1339-1343. https://doi.org/10.1016/s0277-3791(03)00018-0 [20] Lee, H. K., Yang, J. S., 2007. ESR Dating of the Eupchon Fault, South Korea. Quaternary Geochronology, 2(1-4): 392-397. https://doi.org/10.1016/j.quageo.2006.04.009 [21] Liu, C. R., Yin, G. M., Fang, F., et al., 2013a. ESR Dating of the Donggutuo Palaeolithic Site in the Nihewan Basin, Northern China. Geochronometria, 40(4): 348-354. https://doi.org/10.2478/s13386-013-0127-4 [22] Liu, C. R., Yin, G. M., Zhang, H. P., et al., 2013b. ESR Geochronology of the Minjiang River Terraces at Wenchuan, Eastern Margin of Tibetan Plateau, China. Geochronometria, 40(4): 360-367. https://doi.org/10.2478/s13386-013-0129-2 [23] Liu, C.R., Yin, G.M., Grün, R., et al., 2013.Research Progress of the Resetting Features of Quartz ESR Signal. Advances in Earth Science, 28(1):24-30 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201301003 [24] Nadzri, A., Schauries, D., Mota-Santiago, P., et al., 2017. Composition and Orientation Dependent Annealing of Ion Tracks in Apatite-Implications for Fission Track Thermochronology. Chemical Geology, 451(20): 9-16. https://doi.org/10.1016/j.chemgeo.2016.12.039 [25] Odom, A. L., Rink, W. J., 1989. Natural Accumulation of Schottky-Frenkel Defects: Implications for a Quartz Geochronometer. Geology, 17(1): 55-58. https://doi.org/10.1130/0091-7613(1988)017 < 0055:naosfd > 2.3.co; 2 doi: 10.1130/0091-7613(1988)017<0055:naosfd>2.3.co;2 [26] Porat, N., Schwarcz, H. P., Valladas, H., et al., 1994. Electron Spin Resonance Dating of Burned Flint from Kebara Cave, Israel. Geoarchaeology, 9(5): 393-407. https://doi.org/10.1002/gea.3340090504 [27] Qiu, D.F., Yun, J.B., Liu, Q.Y., et al., 2017.The Analysis of Influence Factors on Electron Spin Resonance Signal Intensity in Dating of Quartz in Fault Lines. Rock and Mineral Analysis, 36(1):22-31 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykcs201701003 [28] Ren, S. L., Song, C. Z., Li, J. H., 2016. Application of Electron Spin Resonance (ESR) Dating to Ductile Shearing: Examples from the Qinling Orogenic Belt, China. Journal of Structural Geology, 85: 12-17. https://doi.org/10.1016/j.jsg.2016.02.002 [29] Rink, W. J., Odom, A.L., 1991. Natural Alpha Recoil Particle Radiation and Ionizing Radiation Sensitivities in Quartz Detected with EPR: Implications for Geochronometry. Nuclear Tracks and Radiation Measurements, 18(1-2): 163-173. https://doi.org/10.1016/1359-0189(91)90108-t [30] Sarkar, S., Mathew, G., Pande, K. C., et al., 2013. Rapid Denudation of Higher Himalaya during Late Pliestocence, Evidence from OSL Thermochronology. Geochronometria, 40(4): 304-310. https://doi.org/10.2478/s13386-013-0124-7 [31] Song, L.J., Liu, C.Y., Yuan, B.Q., et al., 2018.The Dating of Formation Age of Clastic Rock Based on the Thermal Evolution History of Apatite Fission Track. Earth Science, 43(S2):214-225 (in Chinese with English abstract). [32] Toyoda, S., 1992. Production and Decay Characteristics of Paramagnetic Defects in Quartz: Applications to ESR Dating (Dissertation). Osaka University, Osaka, 106. [33] Toyoda, S., 2005. Formation and Decay of the E1′ Center and Its Precursor in Natural Quartz: Basics and Applications. Applied Radiation and Isotopes, 62(2): 325-330. https://doi.org/10.1016/j.apradiso.2004.08.014 [34] Toyoda, S., 2015. Paramagnetic Lattice Defects in Quartz for Applications to ESR Dating. Quaternary Geochronology, 30: 498-505. https://doi.org/10.1016/j.quageo.2015.05.010 [35] Toyoda, S., Hattori, W., 2000. Formation and Decay of the E1′ Center and of Its Precursor. Applied Radiation and Isotopes, 52(5): 1351-1356. https://doi.org/10.1016/s0969-8043(00)00094-4 [36] Toyoda, S., Ikeya, M., Morikawa, J., et al., 1992. Enhancement of Oxygen Vacancies in Quartz by Natural External β and γ Ray Dose: A Possible ESR Geochronometer of Ma-Ga Range. Geochemical Journal, 26(3): 111-115. https://doi.org/10.2343/geochemj.26.111 [37] Toyoda, S., Nagashima, K., Yamamoto, Y., 2016. ESR Signals in Quartz: Applications to Provenance Research—A Review. Quaternary International, 397: 258-266. https://doi.org/10.1016/j.quaint.2015.05.048 [38] Toyoda, S., Schwarcz, H. P., 1997. Counterfeit E1′ Signal in Quartz. Radiation Measurements, 27(1): 59-66. https://doi.org/10.1016/s1350-4487(96)00073-x [39] Ulusoy, Ü., 2004. ESR Dating of North Anatolian (Turkey) and Nojima (Japan) Faults. Quaternary Science Reviews, 23(1-2): 161-174. https://doi.org/10.1016/s0277-3791(03)00214-2 [40] Voinchet, P., Despriée, J., Tissoux, H., et al., 2010. ESR Chronology of Alluvial Deposits and First Human Settlements of the Middle Loire Basin (Region Centre, France). Quaternary Geochronology, 5(2-3): 381-384. https://doi.org/10.1016/j.quageo.2009.03.005 [41] Wieser, A., Regulla, D. F., 1989. ESR Dosimetry in the "Gigarad" Range. Applied Radiation and Isotopes, 40(10-12): 911-913. https://doi.org/10.1016/0883-2889(89)90016-6 [42] Yang, F., Fang, C.M., Huang, Z.G., et al., 2014.ESR Dating of Helan Mountain Fault Zone. Petroleum Geology & Experiment, 36(5):642-644 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201405020 [43] Yang, K.G., Liang, X.Z., Xie, J.L., et al., 2006. ESR Dating, the Principle and Application of a Method to Determine Active Ages of Brittle Faults. Advances in Earth Science, 21(4):430-435 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz200604013 [44] Yao, Y.M., Xiu, S.C., Wei, X.L., et al., 2002.Researches on the ESR Geochronometry in Palaeogene of Dongying Depression. Oil & Gas Recovery Technology, 9(2):31-34 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqdzycsl200202010 [45] Ye, Y.G., Diao, S.B., Dai, C.S., et al., 1997. Preliminary Study on ESR Dating for the Lower Tertiary Sandstone in Liaohe Basin. Marine Geology & Quaternary Geology, 17(1): 17-24 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700957273 [46] Ye, Y.G., Diao, S.B., Wu, X.L., et al., 2000. Thermodynamic Behavior of E' Center in Quartz from Sediments Application Potential in Geochronometry and Palaeothermometry. Rock and Mineral Analysis, 19(1): 4-6 (in Chinese with English abstract). [47] Ye, Y.G., Diao, S.B., Wu, X.L., et al., 2001. Thermodynamic Behavior of E' Center in Quartz from Deep Sediments, Tarim Basin. Petroleum Exploration and Development, 28(5): 23-24 (in Chinese with English abstract). [48] Ye, Y.G., Liang, H.D., 1996. The Oxygen Vacancy Concentration in Quartz and Its Geological Dating Significance. Petroleum Exploration and Development, 23(2): 95-97 (in Chinese with English abstract). [49] Ye, Y.G., Wu, X.L., Diao, S.B., et al., 1999. ESR Study of Kuqa River Geological Profile, Tarim Basin. Petroleum Exploration and Development, 26(25): 25-27(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900598234 [50] Yi, C. L., Bi, W. L., Li, J. P., 2016. ESR Dating of Glacial Moraine Deposits: Some Insights about the Resetting of the Germanium (Ge) Signal Measured in Quartz. Quaternary Geochronology, 35: 69-76. https://doi.org/10.1016/j.quageo.2016.06.003 [51] Yin, G.M., Zhao, B., Xu, J.D., et al., 2013.Electron Spin Resonance Data of the Xiaoshan Volcano in Cangzhou, Hebei Province. Acta Petrologica Sinica, 29(12):4415-4420 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201312025 [52] Yu, S., Chen, W., Lü, X.X., et al., 2014. (U-Th)/He Thermochronometry Constraints on the Mesozoic-Cenozoic Tectono-Thermal Evolution of Kuqa Basin: A Case Study of Well TZ2.Chinese Journal of Geophysics, 57(1):62-74 (in Chinese with English abstract). [53] Zeng, F. M., Xiang, S. Y., 2017. Geochronology and Mineral Composition of the Pleistocene Sediments in Xitaijinair Salt Lake Region, Qaidam Basin: Preliminary Results. Journal of Earth Science, 28(4): 622-627. https://doi.org/10.1007/s12583-016-0712-6 [54] Zheng, R.C., 1998. Application of ESR Dating to Petroleum Geology. Oil & Gas Geology, 19(2): 93-98(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800570571 [55] 陈继镛, 梁兴中, 冯家岷, 等, 1991.石英中E′心的热活化研究.四川大学学报(自然科学版), 28(3):314-317. [56] 邓宾, 刘树根, 刘顺, 等, 2013.川西若尔盖地区中-新生代构造-热事件及其年代学框架.地球科学, 38(2):317-328. doi: 10.3799/dqkx.2013.031 [57] 刁少波, 业渝光, 隋卫东, 等, 2004.兰州盆地石膏g=2.004峰平均寿命的估算.地球学报, 25(2):209-212. doi: 10.3321/j.issn:1006-3021.2004.02.022 [58] 富毓德, 蔡秀成, 1981.矿物中的电子-空穴中心及其应用.地质地球化学, (5): 37-42. [59] 龚革联, 李盛华, 孙卫东, 等, 2010.石英热释光——沉积盆地热史研究中另一种潜在的古温标.地球物理学报, 53(1):138-146. doi: 10.3969/j.issn.0001-5733.2010.01.015 [60] 刘春茹, 尹功明, Grün, R., 等, 2013.石英ESR测年信号衰退特征研究进展.地球科学进展, 28(1): 24-30. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201301003 [61] 邱登峰, 云金表, 刘全有, 等, 2017.断层电子自旋共振定年中石英信号强度的影响因素分析.岩矿测试, 36(1):22-31. http://d.old.wanfangdata.com.cn/Periodical/ykcs201701003 [62] 宋立军, 刘池阳, 袁炳强, 等, 2018.基于碎屑磷灰石裂变径迹热史判别碎屑岩形成时代的方法.地球科学, 43(增刊2):214-225. http://www.cnki.com.cn/Article/CJFDTotal-DQKX2018S2017.htm [63] 杨帆, 方成名, 黄泽光, 等, 2014.贺兰山断裂带的ESR年龄测定.石油实验地质, 36(5):642-644. http://d.old.wanfangdata.com.cn/Periodical/sysydz201405020 [64] 杨坤光, 梁兴中, 谢建磊, 等, 2006.ESR定年:一种确定脆性断层活动年龄的方法原理与应用.地球科学进展, 21(4):430-435. doi: 10.3321/j.issn:1001-8166.2006.04.013 [65] 姚益民, 修申成, 魏秀玲, 等, 2002.东营凹陷下第三系ESR测年研究.油气地质与采收率, 9(2):31-34. doi: 10.3969/j.issn.1009-9603.2002.02.010 [66] 业渝光, 刁少波, 戴春山, 等, 1997.辽河盆地下第三系砂岩层ESR测年的初步研究.海洋地质与第四纪地质, 17(1):17-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700957273 [67] 业渝光, 刁少波, 邬象隆, 等, 2000.沉积物中石英E′心的热力学特性及其地质应用意义.岩矿测试, 19(1):4-6. doi: 10.3969/j.issn.0254-5357.2000.01.002 [68] 业渝光, 刁少波, 邬象隆, 等, 2001.塔里木盆地深层沉积物石英E′心热力学特性.石油勘探与开发, 28(5):23-24. doi: 10.3321/j.issn:1000-0747.2001.05.006 [69] 业渝光, 梁鸿德, 1996.石英氧空位浓度及其地质计时意义.石油勘探与开发, 23(2):95-97. doi: 10.3321/j.issn:1000-0747.1996.02.024 [70] 业渝光, 邬象隆, 刁少波, 等, 1999.塔里木盆地库车河地质剖面ESR研究.石油勘探与开发, 26(25):25-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900598234 [71] 尹功明, 赵波, 许建东, 等, 2013.河北沧州小山火山的ESR年代学研究.岩石学报, 29(12):4415-4420. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201312025 [72] 喻顺, 陈文, 吕修祥, 等, 2014.(U-Th)/He技术约束下库车盆地北缘构造热演化——以吐孜2井为例.地球物理学报, 57(1):62-74. [73] 郑荣才, 1998. ESR测年在石油地质研究中的应用.石油与天然气地质, 19(2):93-98. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800570571