LA-ICP-MS Zircon U-Pb Dating of Granitic Gneiss from Yadong Area in South Tibet and Its Geochemical Characteristics
-
摘要: 亚东地区出露高喜马拉雅结晶岩系,是研究喜马拉雅造山带地质演化的理想地区.为探讨该区花岗质片麻岩的成因类型、岩浆源区、形成时代以及大地构造意义,对其进行了LA-ICP-MS锆石定年和地球化学特征研究.结果显示,该区的花岗质片麻岩具有高SiO2、Al2O3、Na2O、K2O含量和低Fe2O3、MgO、MnO含量,轻、重稀土明显分馏,相对富集LREE和LILE元素(Rb、Th、U、K),亏损HFSE元素(Ba、Nb、Ta、Sr、P、Ti),锆石表面年龄介于498.5±14.7 Ma~480.0±11.7 Ma.总体显示未分异的钙碱性强铝质S型花岗岩类的特征,可能是后碰撞造山阶段陆源杂砂岩经历高温深熔作用的产物.Abstract: The high Himalaya crystalline rock series occurred in Yadong area, which is an ideal area for studying the tectonic evolution of the Himalayan orogenic belt. In order to discuss the genetic type, magmatic source, formation age and tectonic significance of granitic gneiss in the Yadong area, the LA-ICP-MS zircon dating and geochemical characteristics of these granitic gneisses were studied. The results show that the granite gneisses have high SiO2, Al2O3, Na2O and K2O contents, while they are low in Fe2O3, MgO and MnO contents. The granitic gneisses have experienced obvious REE fractionation, which are relatively enriched in LREE and LILE (Rb, Th, U and K elements) but are depleted in HFSE (Ba, Nb, Ta, Sr, P and Ti elements), and their zircon 206Pb/238U ages vary from 498.5±14.7 Ma to 480.0±11.7 Ma. Thus, the granitic gneisses generally show the geochemical characteristics of undifferentiated S-type granites with calcium-alkaline and strong peraluminous properties, which might be formed by the high-temperature anatexis of terrigenous greywacke during the post-collision orogeny stage.
-
Key words:
- granitic gneiss /
- zircon dating /
- Yadong /
- South Tibet /
- geochemistry
-
图 1 亚东地区地质简图
Ⅰ.喜马拉雅特提斯岩系北带;Ⅱ.喜马拉雅特提斯岩系南带;Ⅲ.高喜马拉雅结晶岩系;Ⅳ.低喜马拉雅岩系;Ⅴ.次喜马拉雅岩系;Ⅵ.印度地块;MCT.主中央逆冲断裂;STDS.藏南拆离系;MBT.主边界逆冲断裂;MFT.主前缘逆冲断裂;GDT.岗巴-多庆措逆冲断裂.底图据张祥信等(2005)和唐磊(2016)修改
Fig. 1. Geological sketch of Yadong area in South Tibet
图 5 亚东地区花岗质片麻岩SiO2-K2O(a)和A/CNK-A/NK(b)图解
底图a据Grunsky and Massey(1995);底图b据Maniar and Piccoli(1989)
Fig. 5. SiO2-K2O (a) and A/CNK-A/NK (b) diagrams of the granitic gneiss from Yadong area
图 6 亚东地区花岗质片麻岩稀土元素配分图(a)与微量元素蛛网图(b)
标准化数值据Sun and McDonough(1989)
Fig. 6. Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element patterns (b) of the granitic gneiss from Yadong area
图 7 亚东地区花岗质片麻岩岩石成因判别图解
底图a, b据Whalen et al.(1987);底图c, d据Chappell and White(1992)和Chappell(1999);底图f据Jung and Pfänder(2007)
Fig. 7. Discrimination diagrams for the genesis types of the granitic gneiss from Yadong area
图 8 亚东地区花岗质片麻岩源岩判别图解
底图a据Gerdes et al.(2000);底图b据Sylvester(1998)
Fig. 8. Discrimination diagrams for the source rocks of the granitic gneiss from Yadong area
图 9 亚东地区花岗质片麻岩构造环境图解
Fig. 9. Discrimination diagrams for the tectonic environment of the granitic gneiss from Yadong area
表 1 亚东地区花岗质片麻岩锆石LA-ICP-MS U-Pb分析结果
Table 1. LA-ICP-MS zircon U-Pb dating results for the granitic gneiss from Yadong area in South Tibet
点号 同位素比值 年龄(Ma) 元素含量(10-6) Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th Th U 比值 1σ 比值 1σ 比值 1σ 比值 1σ 年龄 1σ 年龄 1σ 年龄 1σ 年龄 1σ G06A01 0.055 3 0.002 1 0.606 1 0.021 6 0.080 3 0.002 5 0.022 5 0.001 9 433.4 85.2 481.1 13.7 497.8 15.0 450.6 37.6 194.7 366.5 0.53 G06A02 0.056 0 0.001 3 0.625 1 0.021 9 0.080 1 0.002 3 0.025 2 0.001 3 453.8 17.6 493.0 13.7 496.4 13.6 503.5 24.8 1 839.6 1 645.2 1.12 G06A03 0.056 7 0.001 4 0.631 3 0.016 2 0.080 2 0.001 2 0.023 3 0.001 1 479.7 83.3 496.9 10.1 497.4 7.2 466.2 21.5 242.9 388.3 0.63 G06A04 0.054 9 0.001 3 0.611 9 0.014 3 0.080 3 0.001 0 0.025 6 0.001 3 409.3 53.7 484.7 9.0 498.2 6.2 510.2 24.9 190.6 442.2 0.43 G06A05 0.065 0 0.001 5 0.733 2 0.030 8 0.080 2 0.002 7 0.024 3 0.001 5 775.9 52.8 558.4 18.1 497.5 15.8 486.0 29.5 183.4 1 012.7 0.18 G06A06 0.057 1 0.001 4 0.640 3 0.017 8 0.080 3 0.001 4 0.025 4 0.001 3 494.5 53.7 502.5 11.0 497.9 8.5 507.0 26.2 222.8 556.8 0.40 G06A07 0.059 0 0.001 3 0.652 4 0.013 6 0.079 8 0.001 1 0.025 6 0.001 2 568.6 48.1 510.0 8.3 495.1 6.3 510.9 23.2 174.6 501.1 0.35 G06A08 0.058 0 0.001 5 0.650 9 0.019 7 0.080 3 0.001 5 0.027 1 0.001 5 531.5 57.4 509.1 12.2 498.0 9.0 541.3 30.3 286.9 609.4 0.47 G06A09 0.056 8 0.002 0 0.634 7 0.023 3 0.080 3 0.001 9 0.025 1 0.001 6 483.4 47.2 499.0 14.5 497.9 11.6 500.2 32.5 344.0 456.9 0.75 G06A10 0.063 4 0.002 6 0.705 5 0.027 7 0.080 3 0.001 6 0.026 4 0.001 5 724.1 88.9 542.1 16.5 498.1 9.6 527.6 29.2 223.4 184.2 1.21 G06A11 0.058 8 0.001 3 0.654 3 0.014 9 0.079 9 0.001 2 0.025 5 0.001 3 561.1 50.0 511.1 9.2 495.4 7.5 509.9 25.5 276.3 656.8 0.42 G06A12 0.059 2 0.001 3 0.659 5 0.015 4 0.080 0 0.001 4 0.025 7 0.001 3 576.0 46.3 514.3 9.4 496.0 8.4 513.2 26.0 211.6 745.8 0.28 G06A13 0.057 2 0.001 5 0.633 8 0.023 9 0.080 2 0.002 8 0.026 8 0.001 3 498.2 63.9 498.4 14.8 497.0 16.4 533.7 24.8 400.8 982.0 0.41 G06A14 0.058 9 0.001 7 0.657 4 0.020 1 0.080 1 0.001 5 0.027 1 0.001 5 561.1 67.6 513.0 12.3 496.8 9.0 540.0 29.5 288.0 571.1 0.50 G06A15 0.060 2 0.001 5 0.668 2 0.015 3 0.080 3 0.001 4 0.027 4 0.001 3 609.3 55.5 519.6 9.3 497.6 8.4 546.1 26.2 247.5 394.3 0.63 G06A16 0.056 6 0.002 0 0.627 3 0.021 8 0.080 0 0.001 7 0.026 8 0.001 8 476.0 75.9 494.4 13.6 496.3 9.9 533.7 34.9 87.8 188.7 0.47 G06A17 0.058 8 0.001 4 0.654 4 0.015 2 0.080 1 0.001 4 0.026 8 0.001 2 566.7 50.0 511.2 9.3 496.9 8.4 534.9 22.9 624.7 814.2 0.77 G06A18 0.059 2 0.001 4 0.657 6 0.016 0 0.080 1 0.001 4 0.027 0 0.001 2 572.3 56.5 513.2 9.8 496.9 8.6 537.7 23.1 293.6 534.2 0.55 G06A19 0.061 2 0.002 1 0.684 0 0.027 0 0.080 4 0.002 5 0.027 8 0.001 6 655.6 74.1 529.2 16.3 498.5 14.7 554.4 31.9 258.5 341.5 0.76 G06A20 0.057 0 0.001 3 0.635 1 0.014 7 0.080 1 0.001 3 0.028 0 0.001 4 500.0 51.8 499.2 9.1 496.9 7.8 557.3 26.9 374.4 814.3 0.46 G06A21 0.058 7 0.001 3 0.648 2 0.014 4 0.079 4 0.001 3 0.028 1 0.001 4 566.7 50.0 507.4 8.9 492.5 7.7 559.2 26.6 241.0 746.1 0.32 G06A22 0.055 8 0.002 2 0.616 2 0.021 3 0.079 8 0.001 5 0.028 7 0.001 8 455.6 80.5 487.5 13.4 494.8 8.8 571.5 34.7 233.3 333.2 0.70 G06A23 0.059 5 0.001 4 0.663 3 0.019 9 0.079 7 0.001 8 0.029 4 0.001 5 587.1 18.4 516.6 12.1 494.5 10.6 585.9 29.1 228.4 717.7 0.32 G06A24 0.058 0 0.001 2 0.644 7 0.015 0 0.079 8 0.001 5 0.030 3 0.001 2 531.5 44.4 505.2 9.3 495.2 9.0 602.6 23.0 628.1 1 211.1 0.52 G06A25 0.056 4 0.001 2 0.624 2 0.014 2 0.079 7 0.001 4 0.027 3 0.001 1 477.8 50.9 492.4 8.9 494.3 8.5 543.9 21.0 397.5 869.2 0.46 G06A26 0.056 8 0.001 1 0.635 7 0.017 6 0.07 9 0.001 8 0.029 9 0.001 2 483.4 42.6 499.6 10.9 495.4 11.0 595.0 23.2 479.0 1 470.0 0.33 G06A27 0.058 5 0.001 4 0.653 9 0.015 3 0.080 0 0.001 2 0.030 4 0.002 4 546.3 51.8 510.9 9.4 495.9 7.1 604.5 46.1 164.9 806.3 0.20 G06A28 0.061 1 0.001 5 0.686 6 0.017 2 0.080 2 0.001 1 0.031 7 0.001 7 642.6 52.6 530.8 10.3 497.1 6.8 629.9 33.4 113.3 456.3 0.25 G06A29 0.057 3 0.001 4 0.634 8 0.013 6 0.080 0 0.001 4 0.027 8 0.001 3 505.6 58.3 499.1 8.5 495.8 8.6 553.6 25.9 346.6 591.4 0.59 G06A30 0.059 4 0.002 0 0.648 8 0.024 0 0.077 3 0.002 0 0.027 6 0.001 7 583.4 72.2 507.7 14.8 480.0 11.7 550.4 33.0 229.4 485.8 0.47 表 2 亚东地区花岗质片麻岩主量元素含量及参数值
Table 2. Major element contents and their parameter values of the granitic gneiss from Yadong area
样号 G03-1 G03-2 G03-3 G03-4 G03-5 G06-1 G06-2 G06-4 主量元素(%) SiO2 62.66 59.27 62.17 63.29 63.02 72.63 72.89 73.04 Al2O3 18.28 18.46 18.51 18.43 18.89 13.27 12.63 12.80 Fe2O3 0.72 0.91 0.8 1.36 0.57 0.53 0.61 0.57 FeO 4.06 6.02 4.34 3.6 3.38 2.85 3.18 3.06 CaO 2.62 2.23 2.25 2.19 2.73 1.83 1.69 1.80 MgO 1.72 2.45 1.73 1.75 1.43 0.92 1.00 0.94 K2O 3.34 3.92 3.61 3.03 3.28 3.32 3.39 3.15 Na2O 4.40 3.91 4.09 3.98 4.79 3.06 2.72 2.92 TiO2 0.66 1.00 0.71 0.71 0.54 0.56 0.64 0.60 P2O5 0.11 0.09 0.11 0.17 0.11 0.13 0.14 0.13 MnO 0.06 0.08 0.07 0.07 0.05 0.05 0.05 0.06 LOI 1.19 1.48 1.18 1.21 1.04 0.74 0.93 0.82 Total 99.82 99.82 99.57 99.79 99.83 99.89 99.87 99.89 A/NK 1.68 1.73 1.74 1.88 1.65 1.54 1.55 1.56 A/CNK 1.17 1.25 1.26 1.33 1.15 1.11 1.13 1.11 TFeO/MgO 2.74 2.79 2.92 2.76 2.72 3.62 3.73 3.80 CaO/Na2O 0.60 0.57 0.55 0.55 0.57 0.60 0.62 0.62 Al2O3/TiO2 27.70 18.46 26.07 25.96 34.98 23.70 19.73 21.33 DI 71.69 66.70 71.71 72.30 73.49 81.60 81.30 81.24 σ 3.05 3.77 3.09 2.42 3.25 1.37 1.25 1.23 CIPW(%) Q 13.93 9.50 14.86 19.98 12.84 35.70 37.79 37.51 An 12.45 10.65 10.61 9.89 12.98 8.30 7.55 8.16 Ab 37.75 33.64 35.17 34.16 41.03 26.11 23.26 24.94 Or 20.01 23.56 21.68 18.16 19.62 19.79 20.25 18.79 C 2.97 4.01 4.11 5.10 2.79 1.64 1.77 1.64 Hy 10.31 15.15 10.75 8.93 8.60 6.31 6.94 6.67 Il 1.27 1.93 1.37 1.37 1.04 1.07 1.23 1.15 Mt 1.06 1.34 1.18 2.00 0.84 0.78 0.89 0.83 Ap 0.26 0.21 0.26 0.40 0.26 0.30 0.33 0.30 Total 100.01 100.00 100.00 100.00 100.00 100.00 100.01 99.99 表 3 亚东地区花岗质片麻岩稀土、微量元素含量及参数值
Table 3. REE and trace element contents and their parameter values of the granitic gneiss from Yadong area
样号 G03-1 G03-2 G03-3 G03-4 G03-5 G06-1 G06-2 G06-4 稀土元素(10-6) La 60.20 55.40 58.40 59.50 76.50 37.10 31.20 34.10 Ce 112.00 108.00 114.00 115.00 150.00 72.20 56.20 56.80 Pr 13.00 12.30 13.00 13.80 17.30 9.38 7.86 8.74 Nd 49.40 45.00 48.60 50.30 61.80 35.00 29.50 33.30 Sm 9.69 8.64 9.26 10.00 11.90 7.69 6.44 7.07 Eu 1.44 1.30 1.36 1.07 1.64 1.01 0.75 0.68 Gd 7.77 6.64 7.33 7.66 9.68 7.74 6.41 6.34 Tb 0.96 0.83 0.92 0.94 1.16 1.22 1.01 0.85 Dy 4.10 3.23 3.84 3.70 4.99 7.56 6.08 4.48 Ho 0.63 0.50 0.60 0.50 0.74 1.48 1.20 0.80 Er 1.50 1.11 1.34 1.10 1.72 3.81 3.11 2.02 Tm 0.19 0.14 0.16 0.13 0.22 0.52 0.42 0.27 Yb 1.09 0.77 0.96 0.73 1.32 2.85 2.44 1.56 Lu 0.16 0.11 0.14 0.10 0.19 0.40 0.33 0.22 Y 14.60 11.50 13.90 11.80 17.90 35.30 28.70 20.20 ΣREE 262.13 243.97 259.91 264.53 339.16 187.96 152.95 157.23 LREE 245.73 230.64 244.62 249.67 319.14 162.38 131.95 140.69 HREE 16.40 13.33 15.29 14.86 20.02 25.58 21.00 16.54 LREE/HREE 14.98 17.30 16.00 16.80 15.94 6.35 6.28 8.51 (La/Yb)N 39.62 51.61 43.64 58.46 41.57 9.34 9.17 15.68 (La/Sm)N 4.01 4.14 4.07 3.84 4.15 3.11 3.13 3.11 δEu 0.49 0.50 0.49 0.36 0.45 0.40 0.35 0.30 δCe 0.94 0.97 0.97 0.95 0.97 0.92 0.86 0.79 La/Sm 6.21 6.41 6.31 5.95 6.43 4.82 4.84 4.82 Eu/Sm 0.15 0.15 0.15 0.11 0.14 0.13 0.12 0.10 微量元素(10-6) Cr 64.0 112.0 71.7 61.8 41.3 19.2 20.1 21.9 Ni 16.20 30.60 19.10 17.00 12.30 6.95 8.34 8.94 Co 10.40 15.50 10.30 9.20 8.40 6.28 6.99 6.80 Li 152.0 245.0 172.0 126.0 126.0 53.4 65.6 56.7 Rb 222.0 358.0 281.0 108.0 206.0 199.0 103.0 66.1 Cs 19.00 32.60 31.80 21.80 17.00 13.70 10.20 8.71 Mo 0.07 0.11 0.09 0.13 0.13 0.15 0.09 0.27 Sr 194.0 175.0 172.0 95.3 214.0 57.5 32.2 20.8 Ba 245 261 254 120 260 306 245 204 V 78.3 113.0 78.6 79.3 66.0 50.5 57.3 53.5 Sc 11.40 20.00 13.20 10.50 11.40 11.00 7.45 5.44 Nb 26.6 38.2 29.0 29.9 23.1 14.1 15.3 13.8 Ta 2.13 2.91 2.21 2.36 1.73 1.15 1.18 1.05 Zr 70.0 75.4 53.9 71.0 108.0 151.0 110.0 137.0 Hf 2.26 2.46 1.84 2.37 3.68 4.70 3.47 4.22 Be 6.96 4.75 7.49 6.64 5.46 3.86 3.31 3.20 Ga 26.8 33.3 28.5 28.3 26.2 19.0 17.0 16.7 U 4.04 3.93 4.11 3.66 5.06 2.98 2.19 2.53 Th 33.0 30.8 32.1 32.7 41.7 32.2 23.2 30.5 La/Ta 28.26 19.04 26.43 25.21 44.22 32.26 26.44 32.48 Nb/Ta 12.49 13.13 13.12 12.67 13.35 12.26 12.97 13.14 Rb/Sr 1.14 2.05 1.63 1.13 0.96 3.46 3.20 3.18 -
[1] Barth, M.G., McDonough, W.F., Rudnick, R.L., 2000.Tracking the Budget of Nb and Ta in the Continental Crust.Chemical Geology, 165(3-4):197-213.https://doi.org/10.1016/s0009-2541(99)00173-4 doi: 10.1016/S0009-2541(99)00173-4 [2] Beaumont, C., Jamieson, R.A., Nguyen, M.H., et al., 2001.Himalayan Tectonics Explained by Extrusion of a Low-Viscosity Crustal Channel Coupled to Focused Surface Denudation.Nature, 414(6865):738-742. https://doi.org/10.1038/414738a [3] Bhanot, V.B., Bhandari, A.K., Singh, V.P., 1979.Geochronological and Geological Studies on a Granite of Higher Himalaya, Northeast of Manikaran, Himachal-Pradesh.Journal of the Geological Society of India, 20(2):90-94. [4] Brown, M., Pressley, R.A., 1999.Crustal Melting in Nature:Prosecuting Source Processes.Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy, 24(3):305-316.https://doi.org/10.1016/s1464-1895(99)00034-4 doi: 10.1016/S1464-1895(99)00034-4 [5] Burchfiel, B.C., Royden, L.H., 1985.North-South Extension within the Convergent Himalayan Region.Geology, 13(10):679-682.https://doi.org/10.1130/0091-7613(1985)13<679:newtch>2.0.co;2 doi: 10.1130/0091-7613(1985)13<679:NEWTCH>2.0.CO;2 [6] Burg, J.P., Guiraud, M., Chen, G.M., et al., 1984.Himalayan Metamorphism and Deformations in the North Himalayan Belt (Southern Tibet, China).Earth and Planetary Science Letters, 69(2):391-400.https://doi.org/10.1016/0012-821x(84)90197-3 doi: 10.1016/0012-821X(84)90197-3 [7] Cai, Z.H., Xu, Z.Q., Duan, X.D., et al., 2013.Early Stage of Early Paleozoic Orogenic Event in Western Yunnan Province, Southeastern Margin of Tibet Plateau.Acta Petrologica Sinica, 29(6):2123-2140 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201306019 [8] Cawood, P.A., Buchan, C., 2007.Linking Accretionary Orogenesis with Supercontinent Assembly.Earth-Science Reviews, 82(3-4):217-256. https://doi.org/10.1016/j.earscirev.2007.03.003 [9] Chappell, B.W., 1999.Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites.Lithos, 46(3):535-551.https://doi.org/10.1016/s0024-4937(98)00086-3 doi: 10.1016/S0024-4937(98)00086-3 [10] Chappell, B.W., White, A.J.R., 1992.I-and S-Type Granites in the Lachlan Fold Belt.Transactions of the Royal Society of Edinburgh:Earth Sciences, 83(1-2):1-26.https://doi.org/10.1017/s0263593300007720 doi: 10.1017/S0263593300007720 [11] Deng, J.F., Luo, Z.H., Su, S.G., et al., 2004.Lithogenesis, Tectonic Environment and Mineralization.Geological Publishing House, Beijing, 33-49 (in Chinese). [12] Dong, X., Zhang, Z.M., Wang, J.L., et al., 2009.Provenance and Formation Age of the Nyingchi Group in the Southern Lhasa Terrane, Tibetan Plateau:Petrology and Zircon U-Pb Geochronology.Acta Petrologica Sinica, 25(7):1678-1694 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200907013.htm [13] Foster, G.L., 2000.The Pre-Neogene Thermal History of the Nanga Parbat Haramosh Massif and the NW Himalaya (Dissertation).Open University, Buckinghamshire, 345-346. [14] Gansser, A., 1964.The Geology of the Himalayas.Wiley Interscience, London, 288-230. [15] Gehrels, G.E., DeCelles, P.G., Martin, A., et al., 2003.Initiation of the Himalayan Orogen as an Early Paleozoic Thin-Skinned Thrust Belt.GSA Today, 13(9):4-9.https://doi.org/10.1130/1052-5173(2003)13<4:iothoa>2.0.co;2 doi: 10.1130/1052-5173(2003)13<4:IOTHOA>2.0.CO;2 [16] Gerdes, A., Worner, G., Henk, A., 2000.Post-Collisional Granite Generation and HT-LP Metamorphism by Radiogenic Heating:The Variscan South Bohemian Batholith.Journal of the Geological Society, 157(3):577-587. https://doi.org/10.1144/jgs.157.3.577 [17] Godin, L., Grujic, D., Law, R.D., et al., 2006.Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones:An Introduction.Geological Society, London, Special Publications, 268(1):1-23.https://doi.org/10.1144/gsl.sp.2006.268.01.01 doi: 10.1144/GSL.SP.2006.268.01.01 [18] Godin, L., Parrish, R.R., Brown, R.L., et al., 2001.Crustal Thickening Leading to Exhumation of the Himalayan Metamorphic Core of Central Nepal:Insight from U-Pb Geochronology and 40Ar/39Ar Thermochronology.Tectonics, 20(5):729-747.https://doi.org/10.1029/2000tc001204 doi: 10.1029/2000TC001204 [19] Gou, Z.B., Zhang, Z.M., Dong, X., et al., 2015.Petrogenesis and Tectonic Significance of the Early Paleozoic Granitic Gneisses from the Yadong Area, Southern Tibet.Acta Petrologica Sinica, 31(12):3674-3686 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201512012 [20] Green, T.H., 1995.Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System.Chemical Geology, 120(3-4):347-359.https://doi.org/10.1016/0009-2541(94)00145-x doi: 10.1016/0009-2541(94)00145-X [21] Groppo, C., Rolfo, F., Indares, A., 2012.Partial Melting in the Higher Himalayan Crystallines of Eastern Nepal:The Effect of Decompression and Implications for the 'Channel Flow' Model.Journal of Petrology, 53(5):1057-1088. https://doi.org/10.1093/petrology/egs009 [22] Grujic, D., Casey, M., Davidson, C., et al., 1996.Ductile Extrusion of the Higher Himalayan Crystalline in Bhutan:Evidence from Quartz Microfabrics.Tectonophysics, 260(1-3):21-43. https://doi.org/10.1016/0040-1951(96)00074-1 [23] Grunsky, E., Massey, N., 1995.Using Geochemical Data:Evaluation, Presentation, Interpretation.Computers & Geosciences, 21(3):439-441.https://doi.org/10.1016/0098-3004(95)90001-2 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0212504962/ [24] Gu, P.Y., He, S.P., Li, R.S., et al., 2013.Geochemical Features and Tectonic Significance of Granitic Gneiss of Laguigangri Metamorphic Core Complexes in Southern Tibet.Acta Petrologica Sinica, 29(3):756-768 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201303002 [25] Harris, N.B.W., Pearce, J.A., Tindle, A.G., 1986.Geochemical Characteristics of Collision-Zone Magmatism.Geological Society, London, Special Publications, 19(1):67-81.https://doi.org/10.1144/gsl.sp.1986.019.01.04 doi: 10.1144/GSL.SP.1986.019.01.04 [26] Hodges, K.V., Hurtado, J.M., Whipple, K.X., 2001.Southward Extrusion of Tibetan Crust and Its Effect on Himalayan Tectonics.Tectonics, 20(6):799-809.https://doi.org/10.1029/2001tc001281 doi: 10.1029/2001TC001281 [27] Hodges, K.V., Parrish, R.R., Housh, T.B., et al., 1992.Simultaneous Miocene Extension and Shortening in the Himalayan Orogen.Science, 258(5087):1466-1470. https://doi.org/10.1126/science.258.5087.1466 [28] Hodges, K.V., Parrish, R.R., Searle, M.P., 1996.Tectonic Evolution of the Central Annapurna Range, Nepalese Himalayas.Tectonics, 15(6):1264-1291.https://doi.org/10.1029/96tc01791 doi: 10.1029/96TC01791 [29] Hofmann, A.W., 1988.Chemical Differentiation of the Earth:The Relationship between Mantle, Continental Crust, and Oceanic Crust.Earth and Planetary Science Letters, 90(3):297-314.https://doi.org/10.1016/0012-821x(88)90132-x doi: 10.1016/0012-821X(88)90132-X [30] Hoskin, P.W.O., Black, L.P., 2002.Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon.Journal of Metamorphic Geology, 18(4):423-439. https://doi.org/10.1046/j.1525-1314.2000.00266.x [31] Imayama, T., Takeshita, T., Yi, K., et al., 2012.Two-Stage Partial Melting and Contrasting Cooling History within the Higher Himalayan Crystalline Sequence in the Far-Eastern Nepal Himalaya.Lithos, 134-135:1-22. https://doi.org/10.1016/j.lithos.2011.12.004 [32] Jamieson, R.A., Beaumont, C., Medvedev, S., et al., 2004.Crustal Channel Flows:2.Numerical Models with Implications for Metamorphism in the Himalayan-Tibetan Orogen.Journal of Geophysical Research:Solid Earth, 109(B6):117-132.https://doi.org/10.1029/2003jb002811 doi: 10.1029-2003JB002811/ [33] Jung, S., Pfänder, J.A., 2007.Source Composition and Melting Temperatures of Orogenic Granitoids:Constraints from CaO/Na2O, Al2O3/TiO2 and Accessory Mineral Saturation Thermometry.European Journal of Mineralogy, 19(6):859-870. https://doi.org/10.1127/0935-1221/2007/0019-1774 [34] Kalsbeek, F., Jepsen, H.F., Nutman, A.P., 2001.From Source Migmatites to Plutons:Tracking the Origin of ca.435 Ma S-Type Granites in the East Greenland Caledonian Orogen.Lithos, 57(1):1-21.https://doi.org/10.1016/s0024-4937(00)00071-2 http://www.sciencedirect.com/science/article/pii/S0024493700000712 [35] Klootwijk, C.T., Conaghan, P.J., Powell, C.M., 1985.The Himalayan Arc:Large-Scale Continental Subduction, Oroclinal Bending and Back-Arc Spreading.Earth and Planetary Science Letters, 75(2-3):167-183.https://doi.org/10.1016/0012-821x(85)90099-8 doi: 10.1016/0012-821X(85)90099-8 [36] Kohn, M.J., 2008.P-T-t Data from Central Nepal Support Critical Taper and Repudiate Large-Scale Channel Flow of the Greater Himalayan Sequence.Geological Society of America Bulletin, 120(3-4):259-273.https://doi.org/10.1130/b26252.1 doi: 10.1130/B26252.1 [37] Lassiter, J.C., DePaolo, D.J., 1997.Plume-Lithosphere Interaction in Generation of the Continental and Oceanic Flood Basalts:Chemical and Isotopic Constraints.Geophysical Monograph, 100:335-355. doi: 10.1029/GM100p0335/summary [38] Li, W.C., Zhang, Z.M., Xiang, H., et al., 2015.Metamorphism and Anatexis of the Himalayan Orogen:Petrology and Geochronology of HP Pelitic Granulites from the Yadong Area, Southern Tibet.Acta Petrologica Sinica, 31(5):1219-1234 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201505003 [39] Li, Y.G., Wang, S.S., Liu, M.W., et al., 2015.U-Pb Dating Study of Baddeleyite by LA-ICP-MS:Technique and Application.Acta Geologica Sinica, 89(12):2400-2418 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZXE201512015.htm [40] Liégeois, J.P., Navez, J., Hertogen, J., et al., 1998.Contrasting Origin of Post-Collisional High-K Calc-Alkaline and Shoshonitic versus Alkaline and Peralkaline Granitoids:The Use of Sliding Normalization.Lithos, 45(1-4):1-28.https://doi.org/10.1016/s0024-4937(98)00023-1 doi: 10.1016/S0024-4937(98)00023-1 [41] Liu, H., Zhang, H., Li, G.M., et al., 2016.Petrogenesis of the Early Cretaceous Qingcaoshan Strongly Peraluminous S-Type Granitic Pluton, Southern Qiangtang, Northern Tibet:Constraints from Whole-Rock Geochemistry and Zircon U-Pb Geochronology.Acta Scientiarum Naturalium Universitatis Pekinensis, 52(5):848-860 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-BJDZ201605010.htm [42] Liu, W.C., Zhou, Z.G., Zhang, X.X., et al., 2006.SHRIMP Zircon Geochronological Constraints on a Pan-African Orogeny in the Yadong Area, Southern Tibet.Geochimica et Cosmochimica Acta, 70(18):A365.https://doi.org/10.1016/j.gca.2006.06.738 http://www.sciencedirect.com/science/article/pii/S0016703706010799 [43] Ludwig, K.R., 2003.ISOPLOT 3.00:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center, California. [44] Ma, H.W., 1990.Granitoids and Mineralization of Yulong Porphyry Copper Belt in Tibet.China University of Geosciences Press, Wuhan, 1-158 (in Chinese). [45] Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643.https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 [46] Meert, J.G., 2003.A Synopsis of Events Related to the Assembly of Eastern Gondwana.Tectonophysics, 362(1-4):1-40.https://doi.org/10.1016/s0040-1951(02)00629-7 doi: 10.1016/S0040-1951(02)00629-7 [47] Miller, C., Thöni, M., Frank, W., et al., 2001.The Early Palaeozoic Magmatic Event in the Northwest Himalaya, India:Source, Tectonic Setting and Age of Emplacement.Geological Magazine, 138(3):237-251.https://doi.org/10.1017/s0016756801005283 [48] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956 [49] Pitcher, W.S., 1983.Granite Type and Tectonic Environment.In: Hsü, K., ed., Mountain Building Processes.Academic Press, London, 19-40. [50] Rubatto, D., Chakraborty, S., Dasgupta, S., 2012.Timescales of Crustal Melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) Inferred from Trace Element-Constrained Monazite and Zircon Chronology.Contributions to Mineralogy and Petrology, 165(2):349-372.https://doi.org/10.1007/s00410-012-0812-y http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d536e5a01189d3279d5e77eff28f51b5 [51] Sahni, A., 1982.The Structure, Sedimentation and Evolution of Indian Continental Margin.In: Narin, A.E.M., Chrukin, M.J.R., Stehlil, F.R.G., eds., The Ocean Basins and Margins.Plenum Press, New York, 145(6): 353-398. [52] Shafiei, B., Haschke, M., Shahabpour, J., 2008.Recycling of Orogenic Arc Crust Triggers Porphyry Cu Mineralization in Kerman Cenozoic Arc Rocks, Southeastern Iran.Mineralium Deposita, 44(3):265-283.https://doi.org/10.1007/s00126-008-0216-0 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dbb5682e904e6056b2376d03fe760d62 [53] Shi, C., Li, R.S., He, S.P., et al., 2010.LA-ICP-MS Zircon U-Pb Dating for Gneissic Garnet-Bearing Biotite Granodiorite in the Yadong Area, Southern Tibet, China and Its Geological Significance.Geological Bulletin of China, 29(12):1745-1753(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201012003 [54] Song, S.G., Ji, J.Q., Wei, C.J., et al., 2007.Early Paleozoic Granite in Nujiang River of Northwest Yunnan in Southwestern China and Its Tectonic Implications.Chinese Science Bulletin, 52(17):2402-2406. https://doi.org/10.1007/s11434-007-0301-2 [55] Spencer, C.J., Harris, R.A., Dorais, M.J., 2012.Depositional Provenance of the Himalayan Metamorphic Core of Garhwal Region, India:Constrained by U-Pb and Hf Isotopes in Zircons.Gondwana Research, 22(1):26-35. https://doi.org/10.1016/j.gr.2011.10.004 [56] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19 [57] Sylvester, P.J., 1998.Post-Collisional Strongly Peraluminous Granites.Lithos, 45(1-4):29-44.https://doi.org/10.1016/s0024-4937(98)00024-3 doi: 10.1016/S0024-4937(98)00024-3 [58] Tang, L., 2016.Early Paleozoic Magmatism and Cenozoic Metamorphism of the Yadong Gneisses, Central Himalayan Orogen (Dissertation).China University of Geosciences, Beijing, 1-56 (in Chinese with English abstract). [59] Tatsumi, Y., Hamilton, D.L., Nesbitt, R.W., 1986.Chemical Characteristics of Fluid Phase Released from a Subducted Lithosphere and Origin of Arc Magmas:Evidence from High-Pressure Experiments and Natural Rocks.Journal of Volcanology and Geothermal Research, 29(1-4):293-309. https://doi.org/10.1016/0377-0273(86)90049-1 [60] Taylor, S.R., McLeannan, S.M., 1985.The Continental Crust:Its Composition and Evolution.Blackwell Scientific Publication, Oxford, 1-314. [61] van Achterbergh, E., Ryan, C.G., Jackson, S.E., et al., 2001.Data Reduction Software for LA-ICP-MS:Appendix.In:Sylvester, P.J., ed., Laser Ablation-ICP-Mass Spectrometry in the Earth Sciences:Principles and Applications.Mineralogical Association of Canada Short Course Series, Ottawa, 29:239-243. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1211.6485 [62] Wang, L., Wang, G.H., Lei, S.B., et al., 2015.Petrogenesis of Dahuabei Pluton from Wulashan, Inner Mongolia:Constraints from Geochemistry, Zircon U-Pb Dating and Sr-Nd-Hf Isotopes.Acta Petrologica Sinica, 31(7):1977-1994 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201507014 [63] Wang, X.X., Zhang, J.J., Santosh, M., et al., 2012.Andean-Type Orogeny in the Himalayas of South Tibet:Implications for Early Paleozoic Tectonics along the Indian Margin of Gondwana.Lithos, 154:248-262. https://doi.org/10.1016/j.lithos.2012.07.011 [64] Wang, X.X., Zhang, J.J., Wang, M., 2016.Early Paleozoic Orogeny in the Himalayas:Evidences from the Zircon U-Pb Chronology and Hf Isotope Compositions of the Palung Granitic Gneiss in Nepal.Earth Science Frontiers, 23(2):190-205(in Chinese with English abstract).https://doi.org/10.13745/j.esf.2016.02.019 http://d.old.wanfangdata.com.cn/Periodical/dxqy201602019 [65] Wang, X.X., Zhang, J.J., Yang, X.Y., et al., 2011.Zircon SHRIMP U-Pb Ages, Hf Isotopic Features and Their Geological Significance of the Greater Himalayan Crystalline Complex Augen Gneiss in Gyirong Area, South Tibet.Earth Science Frontiers, 18(2):127-139 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201102011 [66] Webb, A.A.G., Yin, A., Harrison, T.M., et al., 2007.The Leading Edge of the Greater Himalayan Crystalline Complex Revealed in the NW Indian Himalaya:Implications for the Evolution of the Himalayan Orogen.Geology, 35(10):955-958.https://doi.org/10.1130/g23931a.1 doi: 10.1130/G23931A.1 [67] Whalen, J.B., Currie, K.L., Chappell, B.W., 1987.A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis.Contributions to Mineralogy and Petrology, 95(4):407-419.https://doi.org/10.1007/bf00402202 doi: 10.1007/BF00402202 [68] Wu, F.Y., Li, X.H., Yang, J.H., et al., 2007.Discussions on the Petrogenesis of Granites.Acta Petrologica Sinica, 23(6):1217-1238 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200706001 [69] Xia, B., Xu, L.F., Zhang, Y.Q., et al., 2008.U-Pb SHRIMP Zircon Ages of the Kangmar Granite in the Southern Tibet.Journal of Mineralogy and Petrology, 28(3):72-76(in Chinese with English abstract). [70] Xiao, Q.H., Deng, J.F., Ma, D.Q., et al., 2002.Research Thinking and Methods for Granitic Rocks.Geological Publishing House, Beijing, 1-294 (in Chinese). [71] Xu, Z.Q., Yang, J.S., Liang, F.H., et al., 2005.Pan-African and Early Paleozoic Orogenic Events in the Himalaya Terrane:Inference from SHRIMP U-Pb Zircon Ages.Acta Petrologica Sinica, 21(1):1-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200501001.htm [72] Yin, A., 2006.Erratum to "Cenozoic Tectonic Evolution of the Himalayan Orogen as Constrained by along-Strike Variation of Structural Geometry, Exhumation History, and Foreland Sedimentation"[Earth-Sci.Rev.76 (2006 1-131)].Earth-Science Reviews, 79(1-2):163-164. https://doi.org/10.1016/j.earscirev.2006.08.005 [73] Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211 [74] Yong, Y., Xiao, W.J., Yuan, C., et al., 2008.Geochronology and Geochemistry of Paleozoic Granitic Plutons from the Eastern Central Qilian and Their Tectonic Implications.Acta Petrologica Sinica, 24(4):855-866 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200804025.htm [75] Zhang, X.X., Liu, W.C., Zhou, Z.G., et al., 2005.The Foundation of the Precambrian Yadong Rock Group and Its Characteristics in the Yadong Area, Southern Tibet.Geoscience, 19(3):341-347(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz200503004 [76] Zhang, Z.C., Wang, F.S., Hao, Y.L., et al., 2004.Geochemistry of the Picrites and Associated Basalts from the Emeishan Large Igneous Basalt Province and Constraints on Their Source Region.Acta Geologica Sinica, 78(2):171-180 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200402005 [77] Zhang, Z.M., Dong, X., Santosh, M., et al., 2012.Petrology and Geochronology of the Namche Barwa Complex in the Eastern Himalayan Syntaxis, Tibet:Constraints on the Origin and Evolution of the North-Eastern Margin of the Indian Craton.Gondwana Research, 21(1):123-137. https://doi.org/10.1016/j.gr.2011.02.002 [78] Zhang, Z.M., Wang, J.L., Shen, K., et al., 2008.Paleozoic Circum-Gondwana Orogens:Petrology and Geochronology of the Namche Barwa Complex in the Eastern Himalayan Syntaxis, Tibet.Acta Petrologica Sinica, 24(7):1627-1637 (in Chinese with English abstract). [79] Zhao, X., Coe, R.S., Gilder, S.A., et al., 1996.Palaeomagnetic Constraints on the Palaeogeography of China:Implications for Gondwanaland.Australian Journal of Earth Sciences, 43(6):643-672. https://doi.org/10.1080/08120099608728285 [80] Zhao, Z.H., 2010.Trace Element Geochemistry of Accessory Minerals and Its Applications in Petrogenesis and Metallogenesis.Earth Science Frontiers, 17(1):267-286 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201001022 [81] Zhong, C.T., Deng, J.F., Wan, Y.S., et al., 2007.Magma Recording of Paleoproterozoic Orogeny in Central Segment of Northern Margin of North China Craton:Geochemical Characteristics and Zircon SHRIMP Dating of S-Type Granitoids.Geochimica, 36(6):585-600 (in Chinese with English abstract). [82] Zhou, Z.G., Liu, W.C., Liang, D.Y., 2004.Discovery of the Ordovician and Its Basal Conglomerate in the Kangmar Area, Southern Tibet-With a Discussion of the Relation of the Sedimentary Cover and Unifying Basement in the Himalayas.Geologcal Bulletin of China, 23(7):655-663 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200407004 [83] Zhou, Z.G., Zhao, X.G., Wang, K.Y., et al., 2003.Events of Geochemical Character for Dividing Tectonic-Stratigraphic Unit of Precambrian Crystal Rocks in the Yadong Area in Tibet.Geoscience, 17(3):237-242 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz200303002 [84] Zhu, D.C., Pan, G.T., Mo, X.X., et al., 2006.Geochemistry and Petrogenesis of the Triassic Volcanic Rocks in the East-Central Segment of Tethyan Himalaya.Acta Petrologica Sinica, 22(4):804-816 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200604005 [85] 蔡志慧, 许志琴, 段向东, 等, 2013.青藏高原东南缘滇西早古生代早期造山事件.岩石学报, 29 (6):2123-2140. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201306019 [86] 邓晋福, 罗照华, 苏尚国, 等, 2004.岩石成因、构造环境与成矿作用.北京:地质出版社, 33-49. [87] 董昕, 张泽明, 王金丽, 等, 2009.青藏高原拉萨地体南部林芝岩群的物质来源与形成年代:岩石学与锆石U-Pb年代学.岩石学报, 25(7):1678-1694. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200907013 [88] 苟正彬, 张泽明, 董昕, 等, 2015.藏南亚东地区早古生代花岗质片麻岩的成因与构造意义.岩石学报, 31(12):3674-3686. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201512012 [89] 辜平阳, 何世平, 李荣社, 等, 2013.藏南拉轨岗日变质核杂岩核部花岗质片麻岩的地球化学特征及构造意义.岩石学报, 29(3):756-768. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201303002 [90] 李旺超, 张泽明, 向华, 等, 2015.喜马拉雅造山带核部的变质作用与部分熔融:亚东地区高压泥质麻粒岩的岩石学与年代学研究.岩石学报, 31(5):1219-1234. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201505003 [91] 李艳广, 汪双双, 刘民武, 等, 2015.斜锆石LA-ICP-MS U-Pb定年方法及应用.地质学报, 89(12):2400-2418. doi: 10.3969/j.issn.0001-5717.2015.12.015 [92] 刘洪, 张晖, 李光明, 等, 2016.藏北羌塘南缘早白垩世青草山强过铝质S型花岗岩的成因:来自地球化学和锆石U-Pb年代学的约束.北京大学学报(自然科学版), 52(5):848-860. http://d.old.wanfangdata.com.cn/Periodical/bjdxxb201605010 [93] 马鸿文, 1990.西藏玉龙斑岩铜矿带花岗岩类与成矿.武汉:中国地质大学出版社, 1-158. [94] 时超, 李荣社, 何世平, 等, 2010.藏南亚东地区片麻状含石榴子石黑云花岗闪长岩LA-ICP-MS锆石U-Pb测年及其地质意义.地质通报, 29(12):1745-1753. doi: 10.3969/j.issn.1671-2552.2010.12.003 [95] 唐磊, 2016.喜马拉雅造山带中段亚东地区片麻岩的早古生代岩浆作用与新生代变质作用(硕士学位论文).北京:中国地质大学, 1-56. [96] 王梁, 王根厚, 雷时斌, 等, 2015.内蒙古乌拉山大桦背岩体成因:地球化学、锆石U-Pb年代学及Sr-Nd-Hf同位素制约.岩石学报, 31(7):1977-1994. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201507014 [97] 王晓先, 张进江, 王盟, 2016.喜马拉雅早古生代造山作用:来自尼泊尔帕朗花岗质片麻岩锆石U-Pb年代学和Hf同位素证据.地学前缘, 23(2):190-205. http://d.old.wanfangdata.com.cn/Periodical/dxqy201602019 [98] 王晓先, 张进江, 杨雄英, 等, 2011.藏南吉隆地区早古生代大喜马拉雅片麻岩锆石SHRIMP U-Pb年龄、Hf同位素特征及其地质意义.地学前缘, 18(2):127-139. http://d.old.wanfangdata.com.cn/Periodical/dxqy201102011 [99] 吴福元, 李献华, 杨进辉, 等, 2007.花岗岩成因研究的若干问题.岩石学报, 23(6):1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001 [100] 夏斌, 徐力峰, 张玉泉, 等, 2008.西藏南部康马花岗岩锆石SHRIMP U-Pb年龄.矿物岩石, 28(3):72-76. doi: 10.3969/j.issn.1001-6872.2008.03.012 [101] 肖庆辉, 邓晋福, 马大铨, 等, 2002.花岗岩研究思维与方法.北京:地质出版社, 1-294. [102] 许志琴, 杨经绥, 梁凤华, 等, 2005.喜马拉雅地体的泛非-早古生代造山事件年龄记录.岩石学报, 21(1):1-12. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200501001 [103] 雍拥, 肖文交, 袁超, 等, 2008.中祁连东段古生代花岗岩的年代学、地球化学特征及其大地构造意义.岩石学报, 24(4):855-866. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200804024 [104] 张祥信, 刘文灿, 周志广, 等, 2005.藏南亚东地区前寒武纪亚东岩群的建立及其特征.现代地质, 19(3):341-347. doi: 10.3969/j.issn.1000-8527.2005.03.004 [105] 张招崇, 王福生, 郝艳丽, 等, 2004.峨眉山大火成岩省中苦橄岩与其共生岩石的地球化学特征及其对源区的约束.地质学报, 78(2):171-180. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200402005 [106] 张泽明, 王金丽, 沈昆, 等, 2008.环东冈瓦纳大陆周缘的古生代造山作用:东喜马拉雅构造结南迦巴瓦岩群的岩石学和年代学证据.岩石学报, 24(7):1627-1637. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200807019 [107] 赵振华, 2010.副矿物微量元素地球化学特征在成岩成矿作用研究中的应用.地学前缘, 17(1):267-286. http://d.old.wanfangdata.com.cn/Periodical/dxqy201001022 [108] 钟长汀, 邓晋福, 万渝生, 等, 2007.华北克拉通北缘中段古元古代造山作用的岩浆记录:S型花岗岩地球化学特征及锆石SHRIMP年龄.地球化学, 36(6):585-600. doi: 10.3321/j.issn:0379-1726.2007.06.007 [109] 周志广, 刘文灿, 梁定益, 2004.藏南康马奥陶系及其底砾岩的发现并初论喜马拉雅沉积盖层与统一变质基底的关系.地质通报, 23(7):655-663. doi: 10.3969/j.issn.1671-2552.2004.07.004 [110] 周志广, 赵兴国, 王克友, 等, 2003.西藏亚东地区前寒武纪结晶岩系岩石构造地层划分的岩石地球化学证据.现代地质, 17(3):237-242. doi: 10.3969/j.issn.1000-8527.2003.03.002 [111] 朱弟成, 潘桂棠, 莫宣学, 等, 2006.特提斯喜马拉雅带中段东部三叠纪火山岩的地球化学和岩石成因.岩石学报, 22(4):804-816. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200604005