• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    30 ka以来东阿拉伯海U1456站位粘土粒级碎屑沉积物来源及其古环境意义

    陈红瑾 徐兆凯 蔡明江 李铁刚

    陈红瑾, 徐兆凯, 蔡明江, 李铁刚, 2019. 30 ka以来东阿拉伯海U1456站位粘土粒级碎屑沉积物来源及其古环境意义. 地球科学, 44(8): 2803-2817. doi: 10.3799/dqkx.2018.185
    引用本文: 陈红瑾, 徐兆凯, 蔡明江, 李铁刚, 2019. 30 ka以来东阿拉伯海U1456站位粘土粒级碎屑沉积物来源及其古环境意义. 地球科学, 44(8): 2803-2817. doi: 10.3799/dqkx.2018.185
    Chen Hongjin, Xu Zhaokai, Cai Mingjiang, Li Tiegang, 2019. Provenance of Clay-Sized Detrital Sediments and Its Paleoenvironmental Implications at Site U1456 in the Eastern Arabian Sea since 30 ka. Earth Science, 44(8): 2803-2817. doi: 10.3799/dqkx.2018.185
    Citation: Chen Hongjin, Xu Zhaokai, Cai Mingjiang, Li Tiegang, 2019. Provenance of Clay-Sized Detrital Sediments and Its Paleoenvironmental Implications at Site U1456 in the Eastern Arabian Sea since 30 ka. Earth Science, 44(8): 2803-2817. doi: 10.3799/dqkx.2018.185

    30 ka以来东阿拉伯海U1456站位粘土粒级碎屑沉积物来源及其古环境意义

    doi: 10.3799/dqkx.2018.185
    基金项目: 

    中国科学院战略性先导科技专项(A类) XDA11030104

    国家自然科学基金项目 41106043

    国家自然科学基金委员会-山东省人民政府海洋科学研究中心联合资助项目 U1606401

    国家自然科学基金项目 41676038

    国家海洋局全球变化与海气相互作用专项项目 GASI-GEOGE-06-02

    国家海洋局全球变化与海气相互作用专项项目 GASI-GEOGE-04

    国家海洋局全球变化与海气相互作用专项项目 GASI-GEOGE-02

    国家自然科学基金项目 41230959

    国家自然科学基金项目 41476043

    国家自然科学基金项目 41376064

    详细信息
      作者简介:

      陈红瑾(1993-), 女, 硕士研究生, 主要从事海洋地质学研究工作

      通讯作者:

      徐兆凯

    • 中图分类号: P67

    Provenance of Clay-Sized Detrital Sediments and Its Paleoenvironmental Implications at Site U1456 in the Eastern Arabian Sea since 30 ka

    • 摘要: 通过对国际大洋发现计划U1456站位沉积物AMS 14C年代、粘土矿物、常量元素及粒度组成的综合分析,探讨了东阿拉伯海粘土粒级碎屑沉积物的源-汇过程及其古环境指示意义.30 ka以来U1456站位的粘土矿物组合以蒙脱石和伊利石为主,并含有少量的绿泥石和高岭石.物源分析结果表明粘土粒级碎屑沉积物主要来自于印度河与德干高原.30 ka以来西南季风很可能是影响喜马拉雅山脉以及印度大陆风化剥蚀的重要因素.在西南季风减弱的阶段,印度河物源端元对研究区的输入量减少,这可能与此时热带辐合带的南移及末次冰盛期喜马拉雅山脉冰川覆盖面积的增加有关,从而导致印度河径流量及喜马拉雅山脉可供风化剥蚀的区域减少.K/Al比值指示的源区大陆化学风化作用强度与前人重建的西南季风记录间较为同步,在东阿拉伯海可以作为晚第四纪以来西南季风演化的有效重建指标.

       

    • 图  1  阿拉伯海U1456站位,南亚季风、洋流及相关典型站位示意图

      1. ODP 722; 2. DSDP 222; 3. Indus-23; 4. SK 148/22; 5. SK 148/21; 6. SK 148/38; 7. GC 3; 8. GC 5

      Fig.  1.  Schematic map showing the site U1456, South Asian monsoon, ocean currents and typical sites

      图  2  U1456站位粘土矿物X-射线典型衍射图谱(样品深度92 cm,年龄20.9 ka)

      Fig.  2.  Typical X-ray diagrams of clay mineral at site U1456

      图  3  U1456站位线性沉积速率(LSR)、中值粒径及粘土矿物组成、结晶度和比值剖面变化

      YD代表新仙女木事件;H1、H2和H3分别代表Heinrich 1、Heinrich 2和Heinrich 3事件;LGM代表末次盛冰期

      Fig.  3.  Vertical changes of linear sedimentation rate, median grain size, clay mineral composition, clay mineral crystallinity and clay mineral ratio of site U1456

      图  4  U1456站位线性沉积速率(LSR)、中值粒径及常量元素(K、Al、Mg)百分含量及比值剖面变化

      Fig.  4.  Vertical changes of linear sedimentation rate, median grain size, percentages of major elements (K, Al, Mg), major element ratios of site U1456

      图  5  U1456站位不同阶段粘土矿物组合及其与潜在物源(印度河、德干高原及片麻岩区)粘土矿物组合间对比

      Fig.  5.  Comparison of clay mineral assemblages among site U1456 during different stages and the potential provenances

      图  6  U1456站位典型粘土矿物比值与前人研究成果间对比

      Fig.  6.  Comparison of typical clay minerals ratio at site U1456 and previous research results

      表  1  U1456站位C孔AMS14C年代数据

      Table  1.   AMS14C age, calibrated calendar age, and sedimentation rate of site U1456

      层位(cm) AMS 14C年龄(a) 日历年龄(cal. a; ±2σ) 沉积速率(cm/ka) 测试材料
      12 6 550±30 7 652~7 480 1.64 Globigeriniodes sacculifer
      22 8 510±30 9 865~9 549 4.74
      42 1 110±40 13 272~13 035 5.86
      62 1 456±50 18 091~17 705 4.21
      92 17 120±60 21 080~20 622 10.33
      102 17 330±70 21 412~20 869 37.45
      132 20 760±80 25 542~25 012 7.32
      142 21 810±80 26 424~25 948 9.24
      182 24 680±100 29 185~28 596 15.01
      192 24 910±100 29 438~28 802 46.51
      下载: 导出CSV

      表  2  东阿拉伯海U1456站位常量元素含量(%)间相关性

      Table  2.   Correlation of major elements at site U1456 in the eastern Arabian Sea a)

      Al Ca Fe K Mg Mn Na P Ti
      Al 1.00
      Ca -0.26 1.00
      Fe -0.07 -0.20 1.00
      K 0.45* 0.17 -0.13 1.00
      Mg 0.66* -0.24 -0.06 0.48* 1.00
      Mn 0.26 0.21 -0.04 0.58* 0.48* 1.00
      Na -0.24 0.24 -0.15 -0.39* -0.29 -0.05 1.00
      P -0.26 0.43* -0.12 0.30 -0.10 0.29 0.30 1.00
      Ti -0.05 0.18 0.30 -0.34 -0.42* -0.23 0.31 0.21 1.00
      注:*代表在0.05水平上显著相关
      下载: 导出CSV

      表  3  东阿拉伯海潜在物源的粘土矿物组合对比(a)

      Table  3.   Comparison among the clay mineral assemblages of potential provenances for the eastern Arabian Sea

      阶段 潜在物源 数据来源 蒙脱石(%) 伊利石(%) 高岭石(%) 绿泥石(%) 伊利石结晶度
      晚更新世 印度河 SK 148/22(c) 7.00 70.00 5.00 18.00
      SK 148/21(c) 9.00 61.00 6.00 23.00
      Keti Bandar(b) 40.50±3.74 46.25±2.76 4.13±1.36 9.12±0.83 0.30±0.03
      德干高原 SK 148/38(c) 62.00 21.00 12.00 5.00
      片麻岩区 GC 3 34.00±3.20 32.00±6.92 19.00±4.81 14.00±2.86 0.45±0.13
      GC 5 24.00±6.80 31.00±7.21 27.00±5.32 17.00±2.65
      全新世 印度河 SK 148/22(c) 34.00 44.00 4.00 18.00
      SK 148/21(c) 31.00 48.00 5.00 16.00
      Keti Bandar(b) 45.11±3.40 40.47±2.14 4.42±1.43 9.68±2.52 0.31±0.03
      Indus-23 40.05±3.88 49.38±3.95 3.08±0.53 7.85±1.44 0.34±0.02
      德干高原 SK 148/38(c) 76.00 12.00 7.00 5.00
      坎贝湾(c) 73.00 7.00 10.00 10.00
      片麻岩区 GC 3 27.00±2.44 41.00±6.28 20.00±3.37 12.00±1.77 0.41±0.13
      GC 5 36.00±8.24 16.00±8.54 31.00±3.85 17.00±2.79
      注:a.潜在物源的粘土矿物组合据文献(Rao and Rao, 1995; Thamban et al., 2002; Kessarkar et al., 2003; Alizai et al., 2012; Limmer et al., 2012a);b.位于印度河三角洲(图 1);c.粘土矿物组合为多个样品平均值
      下载: 导出CSV
    • [1] Ali, S., Hathorne, E. C., Frank, M., et al., 2015. South Asian Monsoon History over the Past 60 kyr Recorded by Radiogenic Isotopes and Clay Mineral Assemblages in the Andaman Sea. Geochemistry Geophysics Geosystems, 16(2): 505-521. https://doi.org/10.1002/2014gc005586
      [2] Alizai, A., Carter, A., Clift, P. D., et al., 2011. Sediment Provenance, Reworking and Transport Processes in the Indus River by U-Pb Dating of Detrital Zircon Grains. Global and Planetary Change, 76(1-2): 33-35. https://doi.org/10.1016/j.gloplacha.2010.11.008
      [3] Alizai, A., Hillier, S., Clift, P. D., et al., 2012. Clay Mineral Variations in Holocene Terrestrial Sediments from the Indus Basin. Quaternary Research, 77(3): 368-381. https://doi.org/10.1016/j.yqres.2012.01.008
      [4] Altabet, M. A., Higginson, M. J., Murray, D. W., 2002. The Effect of Millennial-Scale Changes in Arabian Sea Denitrification on Atmospheric CO2. Nature, 415(6868): 159-162. https://doi.org/10.1038/415159a
      [5] Beaumont, C., Jamieson, R. A., Nguyen, M. H., et al., 2001. Himalayan Tectonics Explained by Extrusion of a Low-Viscosity Crustal Channel Coupled to Focused Surface Denudation. Nature, 414(6865): 738-742. https://doi.org/10.1038/414738a
      [6] Biscaye, P. E., 1965. Mineralogy and Sedimentation of Recent Deep-Sea Clay in the Atlantic Ocean and Adjacent Seas and Oceans. Geological Society of America Bulletin, 76(7): 803-831. doi: 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2
      [7] Broccoli, A. J., Dahl, K. A., Stouffer, R. J., 2006. Response of the ITCZ to Northern Hemisphere Cooling. Geophysical Research Letters, 33(1):1-4. https://doi.org/10.1029/2005gl024546
      [8] Cabarcos, E., Flores, J. A., Singh, A. D., et al., 2014. Monsoonal Dynamics and Evolution of the Primary Productivity in the Eastern Arabian Sea over the Past 30 ka. Palaeogeography, Palaeoclimatology, Palaeoecology, 411(1): 249-256. https://doi.org/10.1016/j.palaeo.2014.07.006
      [9] Chamely, 1989. Clay Sedimentology. Springer, Berlin, 1-623.
      [10] Chauhan, O. S., Gujar, A. R., 1996. Surficial Clay Mineral Distribution on the Southwestern Continental Margin of India: Evidence of Input from the Bay of Bengal. Continental Shelf Research, 16(3): 321-333. https://doi.org/10.1016/0278-4343(95)00015-S
      [11] Chauhan, O. S., Patil, S. K., Suneethi, J., 2004. Fluvial Influx and Weathering History of the Himalayas since Last Glacial Maxima-Isotopic, Sedimentological and Magnetic Records from the Bay of Bengal. Current Science, 87(4): 509-515. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000000983663
      [12] Chauhan, O. S., Sukhija, B. S., Gujar, A. R., et al., 2000. Late-Quaternary Variations in Clay Minerals Along the Sw Continental Margin of India: Evidence of Climatic Variations. Geo-Marine Letters, 20(2): 118-122. https://doi.org/10.1007/s003670000043
      [13] Chen, ,Z., Yan, W., 2000. Advance of the Studies on Clay Minerals in Marine Sediments and Its Response to Evolution of Paleoclimate and Paleoenvironment. Marine Sciences, 24(2): 25-27. (in Chinese)
      [14] Cheng, H., Edwards, R. L., Broecker, W. S., et al., 2009. Ice Age Terminations. Science, 326(5950): 248-252. https://doi.org/10.1126/science.1177840
      [15] Clift, P. D., 2002. A Brief History of the Indus River. Geological Society, London, Special Publications, 195(1):237-258. https://doi.org/10.1144/gsl.sp.2002.195.01.13
      [16] Clift, P. D., Giosan, L., Blusztajn, J., et al., 2008a. Holocene Erosion of the Lesser Himalaya Triggered by Intensified Summer Monsoon. Geology, 36(1): 79-82. https://doi.org/10.1130/g24315a.1
      [17] Clift, P. D., Hodges, K. V., Heslop, D., et al., 2008b. Correlation of Himalayan Exhumation Rates and Asian Monsoon Intensity. Nature Geoscience, 1(12): 875-880. https://doi.org/10.1038/ngeo351
      [18] Clift, P. D., Wan, S., Blusztajn, J., 2014. Reconstructing Chemical Weathering, Physical Erosion and Monsoon Intensity since 25 Ma in the Northern South China Sea: A Review of Competing Proxies. Earth-Science Reviews, 130(3): 86-102. https://doi.org/10.1016/j.earscirev.2014.01.002
      [19] Das, S. S., Rai, A. K., Akaram, V., et al., 2013. Paleoenvironmental Significance of Clay Mineral Assemblages in the Southeastern Arabian Sea During Last 30 Ka. Journal of Earth System Science, 122(1): 173-185. https://doi.org/10.1007/s12040-012-0251-1
      [20] Dou, Y. G., Yang, S. Y., Liu, Z. X., et al., 2010. Clay Mineral Evolution in the Central Okinawa Trough since 28 ka: Implications for Sediment Provenance and Paleoenvironmental Change. Palaeogeography, Palaeoclimatology, Palaeoecology, 288(1-4): 108-117. https://doi.org/10.1016/j.palaeo.2010.01.040
      [21] Ferrier, K. L., Mitrovica, J. X., Giosan, L., et al., 2015. Sea-Level Responses to Erosion and Deposition of Sediment in the Indus River Basin and the Arabian Sea. Earth and Planetary Science Letters, 416(3): 12-20. https://doi.org/10.1016/j.epsl.2015.01.026
      [22] Fleitmann, D., Burns, S. J., Mangini, A., 2007. Holocene ITCZ and Indian Monsoon Dynamics Recorded in Stalagmites from Oman and Yemen (Socotra). Quaternary Science Review, 26(1-2): 170-188. https://doi.org/10.1016/j.quascirev.2006.04.012
      [23] Garcin, Y., Vincens, A., Williamson, D., et al., 2007. Abrupt Resumption of the African Monsoon at the Yonger Dryas-Holocene Climatic Transition. Quaternary Science Reviews, 26(5-6): 690-704. https://doi.org/10.1016/j.quascirev.2006.10.014
      [24] Gebregiorgis, D., Hathorne, E. C., Sijinkumar, A. V., et al., 2016. South Asian Summer Monsoon Variability During the Last ~54 ka Inferred from Surface Water Salinity and River Runoff Proxies. Quaternary Science Reviews, 138: 6-15. https://doi.org/10.1016/j.quascirev.2016.02.012
      [25] Goswami, V., Singh, S. K., Bhushan, R., et al., 2012. Temporal Variations in 87Sr/86Sr and εNd in Sediments of the Southeastern Arabian Sea: Impact of Monsoon and Surface Water Circulation. Geochemistry, Geophysics, Geosystems, 13(1):1-3. https://doi.org/10.1029/2011gc003802
      [26] Griffin, J. J., Hent, W., Dorris, G. E., 1968. The Distribution of Clay Minerals in the World Ocean. Deep Sea Research and Oceanographic Abstracts, 15(4):433-459. doi: 10.1016/0011-7471(68)90051-X
      [27] Haug, G. H., Hughen, K. A., Sigman, D. M., et al., 2001. Southward Migration of the Intertropical Convergence Zone through the Holocene. Science. 293(5533): 1304-1308. doi: 10.1126/science.1059725
      [28] Hu, D. K., Böning, P., Köhler, C. M., et al., 2012. Deep Sea Records of the Continental Weathering and Erosion Response to East Asian Monsoon Intensification since 14 ka in the South China Sea. Chemical Geology, 326-327(11): 1-18. https://doi.org/10.1016/j.chemgeo.2012.07.024
      [29] Huang, J. B., Wang, S. W., Wen, X. Y., et al., 2008. Progress in Studies of the Climate of Humid Period and the Impacts of Changing Precession in Early-Mid Holocene. Progress in Natural Science, 18(12): 1459-1464. https://doi.org/10.1016/j.pnsc.2008.05.011
      [30] John, S., Michaele, K., Michel, F., et al., 2002. Marine Reservoir Corrections for the Indian Ocean and Southeast Asia. Radiocarbon, 44(1): 167-180. doi: 10.1017/S0033822200064778
      [31] Joussain, R., Colin, C., Liu, Z., et al., 2016. Climatic Control of Sediment Transport from the Himalayas to the Proximal Ne Bengal Fan During the Last Glacial-Interglacial Cycle. Quaternary Science Reviews, 148: 1-16. https://doi.org/10.1016/j.quascirev.2016.06.016
      [32] Kageyama, M., Mignot, J., Swingedouw, D., et al., 2009. Glacial Climate Sensitivity to Different States of the Atlantic Meridional Overturning Circulation: Results from the IPSL Model. Climate of the Past, 5: 551-570. https://doi.org/10.5194/cp-5-551-2009
      [33] Kessarkar, P. M., Purnachadra Rao, V., Naqvi, S. W. A., et al., 2013. Variation in the Indian Summer Monsoon Intensity During the Bølling-Ållerød and Holocene. Paleoceanography, 28(3): 413-425. https://doi.org/10.1002/palo.20040
      [34] Kessarkar, P. M., Rao, V. P., Ahmad, S. M., et al., 2003. Clay Minerals and Sr-Nd Isotopes of the Sediments along the Western Margin of India and Their Implication for Sediment Provenance. Marine Geology, 202(1-2): 55-69. https://doi.org/10.1016/s0025-3227(03)00240-8
      [35] Kolla, V., Kosteckl, J. A., Robinson, F., et al., 1981. Distributions and Origins of Clay Minerals and Quartz in Surface Sediments of the Arabian Sea. Journal of Sedimentary Petrology, 51(2): 563-569. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=uKgrngbN7OVFvtoiU0iRSNUFqFbP19jhJM+LacK+Ihs=
      [36] Kong, W. L., Li, S. Y., Wan, Q., et al. 2011. Differentiation and Discrimination of Marine Clay Minerals as Indicators of Paleoenvironment. Journal of Anhui University (Natural Science Edition), 35(5): 100-108(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ahdxxb201105020
      [37] Kotlia, B. S., Sanwal, J., Phartiyal, B., et al., 2010. Late Quaternary Climatic Changes in the Eastern Kumaun Himalaya, India, as Deduced from Multi-Proxy Studies. Quaternary International, 213(1-2): 44-55. https://doi.org/10.1016/j.quaint.2009.09.002
      [38] Lan, X. H., Li, R. H., Mi, B. B., et al., 2016. Distribution Characteristics of Rare Earth Elements in Surface Sediment and Their Provenance Discrimination in the Eastern Bohai and Northern Yellow Seas. Earth Science, 31(4): 463-474(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201603013
      [39] Laskar, J., Robutel, P., Joutel, F., et al., 2004. A Long-Term Numerical Solution for the Isolation Quantities Of the Earth. Astronomy & Astrophysics, 428(1): 261-285. https://doi.org/10.1051/0004-6361:20041335
      [40] Limmer, D. R., Boning, P., Giosan, L., et al., 2012a. Geochemical Record of Holocene to Recent Sedimentation on the Western Indus Continental Shelf, Arabian Sea. Geochemistry, Geophysics, Geosystems, 13(1): 1-26. https://doi.org/10.1029/2011gc003845
      [41] Limmer, D. R., Kolher, C. M., Hillier, S., et al., 2012b. Chemical Weathering and Provenance Evolution of Holocene-Recent Sediments from the Western Indus Shelf, Northern Arabian Sea Inferred from Physical and Mineralogical Properties. Marine Geology, 326-328(9): 101-115. https://doi.org/10.1016/j.margeo.2012.07.009
      [42] Li, J. R., Liu, S. F., Feng, X. L., et al., 2017. Major and Trace Element Geochemistry of the Mid-Bay of Bengal Surface Sediments: Implications for Provenance. Acta Oceanologica Sinica, 36(3): 82-90. https://doi.org/10.1007/s13131-017-1041-z
      [43] Liu, Z. F., 2010. Clay Mineral Assemblages in Sediments of the South China Sea: East Asian Monsoon Evolution Proxies? Acta Sedimentologica Sinica, 28(5): 1012-1019. (in Chinese with English Abstract) http://cn.bing.com/academic/profile?id=aebb71b1619fb1c98d3daabc52799637&encoded=0&v=paper_preview&mkt=zh-cn
      [44] Liu, Z. F., Colin, C., Li, X. J., et al., 2010. Clay Mineral Distribution in Surface Sediments of the Northeastern South China Sea and Surrounding Fluvial Drainage Basins: Source and Transport. Marine Geology, 277(1-4):48-60. https://doi.org/10.1016/j.margeo.2010.08.010
      [45] Liu, Z. F., Colin, C., Trentesaux, A., et al., 2005. Late Quaternary Climatic Control on Erosion and Weathering in the Eastern Tibetan Plateau and the Mekong Basin. Quaternary Research, 63(3): 316-328. https://doi.org/10.1016/j.yqres.2005.02.005
      [46] Liu, Z. F., Colin, C., Trentesaux, A., et al., 2004. Erosional History of the Eastern Tibetan Plateau Since 190 kyr ago: Clay Mineralogical and Geochemical Investigations from the Southwestern South China Sea. Marine Geology, 209(1-8): 1-4. https://doi.org/10.1016/j.margeo.2004.06.004
      [47] Liu, Z. F., Trentesaux, A., Clemens, S. C., et al., 2003. Clay Mineral Assemblages in the Northern South China Sea: Implications for East Asian Monsoon Evolution over the Past 2 Million Years. Marine Geology, 201(1-3): 133-146. https://doi.org/10.1016/s0025-3227(03)00213-5
      [48] Milliman, J. D., Farnsworth, K. L., 2011. River Discharge to the Coastal Ocean——A Global Synthesis. Cambridge University Press, Cambridge, 1-384.
      [49] Mulitza, S., Prange, M., Stuut, J. B., et al. 2008. Shale Megadrought Triggered by Glacial Slowdowns of Atlantic Meridional Overturning. Paleoceanography, 23(4):1-11. https://doi.org/10.1029/2008PA001637
      [50] Naidu, P. D., Malmgren, B. A., 1996. A High-Resolution Record of Late Quaternary Upwelling along the Oman Margin, Arabian Sea Based on Planktonic Foraminifera. Paleoceanography, 11(1): 129-140. https://doi.org/10.1029/95pa03198
      [51] Oliva, P., Viers, J., Dupré, B., 2003. Chemical Weathering in Granitic Environments. Chemical Geology, 202(3-4):225-256. https://doi.org/10.1016/j.chemgeo.2002.08.001
      [52] Owen, L. A., Finkel, R. C., Caffee, M. W., 2002. A Note on the Extent of Glaciation Throughout the Himalaya During the Global Last Glacial Maximum. Quaternary Science Reviews, 21(1-3): 147-157. https://doi.org/10.1016/S0277-3791(01)00104-4
      [53] Pandarinath, K., 2009. Clay Minerals in SW Indian Continental Shelf Sediment Cores as Indicators of Provenance and Palaeomonsoonal Conditions: A Statistical Approach. International Geology Review, 51(2): 145-165. https://doi.org/10.1080/00206810802622112
      [54] Pandey, D. K., Clift, P. D., Kulhanek, D. K., et al., 2015. Expedition 355 Preliminary Report: Arabian Sea Monsoon. International Ocean Discovery Program. https: //doi.org/10.14379/iodp.pr.355.2015
      [55] Pattan, J. N., Parthiban, G., Garg, A., et al., 2017. Intense Reducing Conditions during the Last Deglaciation and Heinrich Events (H1, H2, H3) in Sediments from the Oxygen Minimum Zone off Goa, Eastern Arabian Sea. Marine and Petroleum Geology, 84: 243-256. https://doi.org/10.1016/j.marpetgeo.2017.03.034
      [56] Phillips, S. C., Johnson, J. E., Underwood, M. B., et al., 2014. Long-Timescale Variation in Bulk and Clay Mineral Composition of Indian Continental Margin Sediments in the Bay of Bengal, Arabian Sea, and Andaman Sea. Marine and Petroleum Geology, 58: 117-138. https://doi.org/10.1016/j.marpetgeo.2014.06.018
      [57] Prins, M. A., Postma, G., 2000. Effects of Climate, Sea Level, and Tectonics Unraveled for Last Deglaciation Turbidite Records of the Arabian Sea. Geology, 28(4): 375-378. https://doi.org/10.1130/0091-7613(2000)28<375:eocsla>2.0.co;2 doi: 10.1130/0091-7613(2000)28<375:eocsla>2.0.co;2
      [58] Rao, V. P., Rao, B. R., 1995. Provenance and Distribution of Clay Minerals in the Sediments of Clay Minerals in the Sediments of the Western Continental Shelf and Slope of India. Continental Shelf Research, 15(14): 1757-1771 doi: 10.1016/0278-4343(94)00092-2
      [59] Rohling, E. J., Foster, G. L., Grant, K. M., et al., 2014. Sea-Level and Deep-Sea-Temperature Variability over the Past 5.3 Million Years. Nature, 508(7497): 477-482. https://doi.org/10.1038/nature13230
      [60] Saraswat, R., Lea, D. W., Nigam, R., et al., 2013. Deglaciation in the Tropical Indian Ocean Driven by Interplay between the Regional Monsoon and Global Teleconnections. Earth and Planetary Science Letters, 375: 166-175. https://doi.org/10.1016/j.epsl.2013.05.022
      [61] Sarkar, A., Ramesh, R., Somayajulu, B. L. K., et al., 2000. High Resolution Holocene Monsoon Record from the Eastern Arabian Sea. Earth and Planetary Science Letters, 177(3-4): 209-218. https://doi.org/10.1016/S0012-821x(00)00053-4
      [62] Singh, A. D., Jung, S. J. A., Darling, K., et al., 2011. Productivity Collapses in the Arabian Sea During Glacial Cold Phases. Paleoceanography, 26(3): 1318-1323. https://doi.org/10.1029/2009pa001923
      [63] Sinha, A., Cannariato, K. G., Stott, L. D., et al., 2005. Variability of Southwest Indian Summer Monsoon Precipitation During the Bølling-Ållerød. Geology, 33(10): 813-816. https://doi.org/10.1130/g21498.1
      [64] Stager, J. C., Ryves, D. B., Chase, B. M., et al., 2011. Catastrophic Drought in the Afro-Asian Monsoon Region During Heinrich Event 1. Science, 33: 1299-1302. https://doi.org/10.1126/science.1198322
      [65] Stoll, H. M., Vance, D., Arevalos, A., 2007. Records of the Nd Isotope Composition of Seawater from the Bay of Bengal: Implications for the Impact of Northern Hemisphere Cooling on Itcz Movement. Earth and Planetary Science Letters, 255(1-2): 213-228. https://doi.org/10.1016/j.epsl.2006.12.016
      [66] Stuiver, M., Reimer, P. J., Reimer, R., 1993. Extended 14C Database and Revised Calib Radiocarbon Calibration Program. Radiocarbon, 35(1): 215-230. doi: 10.1017/S0033822200013904
      [67] Svensson, A., Andersen, K. K., Bigler, M., et al., 2008. A 60 000 Year Greenland Stratigraphic Ice Core Chronology. Climate of the Past, 4(1): 47-57. https://doi.org/10.5194/cp-4-47-2008
      [68] Thamban, M., Rao, V. P., and Schneider, R. R., 2002. Reconstruction of Late Quaternary Monsoon Oscillations Based on Clay Mineral Proxies Using Sediment Cores from the Western Margin of India. Marine Geology, 186(3-4): 527-539. https://doi.org/PiiS0025-3227(02)00268-2 doi: 10.1016/S0025-3227(02)00268-2
      [69] Thiry, M., 2000. Palaeoclimatic Interpretation of Clay Minerals in Marine Deposits: An Outlook from the Continental Origin. Earth-Science Reviews, 49(1-4): 201-221. https://doi.org/10.1016/S0012-8252(99)00054-9
      [70] Tripathy, G. R., Singh, S. K., Ramaswamy, V., 2014. Major and Trace Element Geochemistry of Bay of Bengal Sediments: Implications to Provenances and Their Controlling Factors. Palaeogeography Palaeoclimatology Palaeoecology, 397: 20-30. https://doi.org/10.1016/j.palaeo.2013.04.012
      [71] Wan, S. M., Clift, P. D., Li, A. C., et al., 2012. Tectonic and Climatic Controls on Long-Term Silicate Weathering in Asia since 5 Ma. Geophysical Research Letters, 39(15): 151-155. https://doi.org/10.1029/2012gl052377
      [72] Wan, S. M., Clift, P. D., Zhao, D. B., et al., 2017. Enhanced Silicate Weathering of Tropical Shelf Sediments Exposed during Glacial Lowstands: A Sink for aAtmospheric CO2. Geochimica et Cosmochimica Acta, 200: 123-144. https://doi.org/10.1016/j.gca.2016.12.010
      [73] Wang, Y. Y., Huang, S. B., Zhao, L., et al., 2017. Evolution of Quaternary Sedimentary Environment in Shallow Aquifers, at Shahu Area, Jianghan Plain. Earth Science, 42(5): 751-760. https://doi.org/10.3799/dqkx.2017.063 (in Chinese with English abstract)
      [74] Wei, G. J., Li, Liu, Y.X. H., et al., 2006. Geochemical Record of Chemical Weathering and Monsoon Climate Change since the Early Miocene in the South China Sea. Paleoceanography, 24(4): 1-11. https://doi.org/10.1029/2006PA001300
      [75] Xu, Z. K., Chang, F. M., Li, T. G., et al., 2012a. Provenance of Sediments in the Northern Okinawa trough over the Last 24 ka: High Resolution Record from Major Elements. Marine Geology & Quaternary Geology, 32(4):73-82(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=ba0a91bd18c113a882dd13e3a87e2159&encoded=0&v=paper_preview&mkt=zh-cn
      [76] Xu, Z. K., Li, T. G., Wan, S. M., et al., 2012b. Evolution of East Asian Monsoon: Clay Mineral Evidence in the Western Philippine Sea over the Past 700 kyr. Journal of Asian Earth Sciences, 60: 188-196. https://doi.org/10.1016/j.jseaes.2012.08.018
      [77] Xu, Z. K., Li, T. G., Clift, P. D., et al., 2017. Sediment Provenance and Paleoenvironmental Change in the Middle Okinawa Trough During the Last 18.5 ka: Clay Mineral and Geochemical Evidence. Quaternary International, 440: 139-149. https://doi.org/10.1016/j.quaint.2016.07.058
      [78] Xu, Z. K., Li, T. G., Yu, X. K., et al., 2013. Sediment Provenance and Evolution of the East Asian Winter Monsoon since 700 ka Recorded by Major Elements in the West Philippine Sea. Chinese Science Bulletin, 58(9): 1044-1052, https://doi.org/10.1007/s11434-012-5538-8
      [79] Yu, Z. J., Wan, S. M., Colin, C., et al., 2016. Co-Evolution of Monsoonal Precipitation in East Asia and the Tropical Pacific Enso System since 2.36 Ma: New Insights from High-Resolution Clay Mineral Records in the West Philippine Sea. Earth and Planetary Science Letters, 446:45-55. https://doi.org/10.1016/j.epsl.2016.04.022
      [80] Zorzi, C., Sanchez Goni, M. F., Anupama, K., et al., 2015. Indian Monsoon Variations during Three Contrasting Climate Periods: The Holocene, Heinrich Stadial 2 and the Last Interglacial-Glacial Transition. Quaternary Science Reviews, 125: 50-60. https://doi.org/10.1016/j.quascirew.2015.06.009
      [81] 陈忠, 颜文, 2000.海洋沉积粘土矿物与古气候, 古环境演化响应的研究进展.海洋科学, 24(2): 25-27. http://d.old.wanfangdata.com.cn/Periodical/hykx200002009
      [82] 孔为伦, 李双应, 万秋, 等, 2011.海洋粘土矿物的古环境含义辨析.安徽大学学报(自然科学版), 35(5): 100-108. doi: 10.3969/j.issn.1000-2162.2011.05.020
      [83] 蓝先洪, 李日辉, 密蓓蓓, 等, 2016.渤海东部和黄海北部表层沉积物稀土元素的分布特征与物源判别.地球科学, 41(3): 463-474. http://earth-science.net/WebPage/Article.aspx?id=3272
      [84] 刘志飞, 2010.南海沉积物中的黏土矿物:指示东亚季风演化历史?沉积学报, 28(5):1012-1019. http://d.old.wanfangdata.com.cn/Periodical/kxtb200704013
      [85] 王妍妍, 黄爽兵, 赵龙, 等, 2017.江汉平原沙湖地区浅层含水层第四纪沉积环境演化.地球科学, 42(5): 751-760. http://earth-science.net/WebPage/Article.aspx?id=3573
      [86] 徐兆凯, 常凤鸣, 李铁刚, 等, 2012.24 ka来冲绳海槽背部沉积物来源的高分辨率常量元素记录.海洋地质与第四纪地质, 32(4):73-82. http://www.cqvip.com/QK/96122X/201204/43148733.html
    • 加载中
    图(6) / 表(3)
    计量
    • 文章访问数:  5767
    • HTML全文浏览量:  1759
    • PDF下载量:  49
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-01-18
    • 刊出日期:  2019-08-15

    目录

      /

      返回文章
      返回