• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    粤南海宴A型花岗岩与镁铁质包体的成因及意义

    贾小辉 谢国刚 孟德磊 万乐 吴俊 卜建军 吴富强 曾海良 卢加文 詹瑞华

    贾小辉, 谢国刚, 孟德磊, 万乐, 吴俊, 卜建军, 吴富强, 曾海良, 卢加文, 詹瑞华, 2018. 粤南海宴A型花岗岩与镁铁质包体的成因及意义. 地球科学, 43(7): 2294-2309. doi: 10.3799/dqkx.2018.184
    引用本文: 贾小辉, 谢国刚, 孟德磊, 万乐, 吴俊, 卜建军, 吴富强, 曾海良, 卢加文, 詹瑞华, 2018. 粤南海宴A型花岗岩与镁铁质包体的成因及意义. 地球科学, 43(7): 2294-2309. doi: 10.3799/dqkx.2018.184
    Jia Xiaohui, Xie Guogang, Meng Delei, Wan Le, Wu Jun, Bu Jianjun, Wu Fuqiang, Zeng Hailiang, Lu Jiawen, Zhan Ruihua, 2018. Petrogenesis and Implications of the Haiyan A-Type Granites and Mafic Microgranule Enclaves in Southern Guangdong Province. Earth Science, 43(7): 2294-2309. doi: 10.3799/dqkx.2018.184
    Citation: Jia Xiaohui, Xie Guogang, Meng Delei, Wan Le, Wu Jun, Bu Jianjun, Wu Fuqiang, Zeng Hailiang, Lu Jiawen, Zhan Ruihua, 2018. Petrogenesis and Implications of the Haiyan A-Type Granites and Mafic Microgranule Enclaves in Southern Guangdong Province. Earth Science, 43(7): 2294-2309. doi: 10.3799/dqkx.2018.184

    粤南海宴A型花岗岩与镁铁质包体的成因及意义

    doi: 10.3799/dqkx.2018.184
    基金项目: 

    中国地质调查局项目 DD20160064-01

    国家自然科学基金项目 41302046

    详细信息
      作者简介:

      贾小辉(1980-), 男, 助理研究员, 从事岩石学、地球化学相关研究

    • 中图分类号: P581

    Petrogenesis and Implications of the Haiyan A-Type Granites and Mafic Microgranule Enclaves in Southern Guangdong Province

    • 摘要: 华南晚中生代花岗岩及其形成的构造背景是目前研究的热点之一,通过对粤南地区A型花岗岩与镁铁质包体的年代学和地球化学组成的研究,探讨其岩石成因及构造意义.LA-ICP-MS锆石U-Pb测年结果显示,广东海宴花岗岩与镁铁质暗色微粒包体形成于早白垩世(分别为144.0±1.7 Ma和141.1±2.5 Ma).花岗岩具有典型的A型花岗岩特征:富硅、碱、铁而贫镁、钙,具有高的10 000×Ga/A1比值和Zr+Nb+Ce+Y含量等.包体具有钾玄质岩的特征:富碱更富钾、低钛、高铝及强烈富集大离子亲石元素和轻稀土元素等.花岗岩的ISr=0.706 6~0.712 2,εNdt)=-7.01~-2.03,镁铁质包体则显示了稍低的ISr(0.708 5~0.711 1)和稍高的εNdt)(-6.99~-2.23).元素及Sr-Nd同位素结果显示,花岗岩可能是中元古代地壳岩石部分熔融的产物,而钾玄质包体的初始岩浆可能源自俯冲沉积物交代的富集地幔.海宴A型花岗岩及其钾玄质包体的发现,暗示着区域早白垩世处于伸展的构造背景,不同于东南沿海地区的挤压构造应力环境.

       

    • 图  1  广东南部海宴花岗岩地质简图(a)及大地构造位置(b)

      底图据广东省地质局,1964.1:20万广海幅(F-49-XXIII)区域地质调查报告

      Fig.  1.  Geological sketch (a) and tectonic position (b) of the Haiyan granites

      图  2  海宴花岗岩(a、b)及其镁铁质暗色微粒包体(c、d)锆石U-Pb年龄谐和图

      Fig.  2.  The U-Pb concordant diagrams for the representative zircons of the Haiyan granites (a, b) and MMEs (c, d)

      图  3  SiO2 vs.主量元素图解(a、c、e~h)、A/CNK vs. A/NK图解(b)和Na2O vs. K2O图解(d)

      Fig.  3.  SiO2 vs. selected major elements diagrams (a, c, e-h), A/CNK vs. A/NK diagram (b) and Na2O vs. K2O diagram (d)

      图  4  海宴花岗岩及其镁铁质暗色包体的稀土元素分布模式(a、c)和原始地幔标准化微量元素蜘蛛网图(b、d)

      原始地幔微量元素据Sun and McDonough(1989)

      Fig.  4.  The chondrite-normalized rare earth elements (REE) (a, c) and the primitive mantle-normalized multi-element diagrams (b, d) of the Haiyan granites and MMEs

      图  5  (87Sr/86Sr)i vs. εNd(t)图解(a)和Rb vs. Sr图解(b)

      DM.亏损地幔;MORB.洋中脊玄武岩;PREMA.初始地幔;HIMU.高U/Pb比值地幔;OIB.洋岛玄武岩;BSE.地球总成分;EMI.I型富集地幔;EMII.II型富集地幔

      Fig.  5.  (87Sr/86Sr)i vs. εNd(t) diagram (a) and Rb vs. Sr diagram (b)

      图  6  A型花岗岩判别图解

      b.据Whalen et al.(1987);c.据Frost and Frost(2011);d.据Eby(1990);f.据Dall'Agnol et al.(2012)

      Fig.  6.  Discriminant diagrams of A type granite

      图  7  Ta/Yb vs. Ce/Yb(a)和Ta/Yb vs. Th/Yb关系图解(b)

      Pearce(1982)

      Fig.  7.  Ta/Yb vs. Ce/Yb (a) and Ta/Yb vs. Th/Yb diagrams (b)

      图  8  Th vs. U/Th图解(a)和Pb vs. Pb/Ce图解(b)

      图a据Hawkesworth et al.(1997);图b据Othman et al.(1989)

      Fig.  8.  Th vs. U/Th (a) and Pb vs. Pb/Ce diagrams (b)

      表  1  海宴花岗岩及其镁铁质暗色微粒包体LA-ICPMS锆石U-Pb同位素分析数据

      Table  1.   LA-ICPMS U-Pb isotopic compositions for zircons of the Haiyan granites and MMEs

      点号 Th/U Th(10-6) U(10-6) 比值 年龄(Ma)
      207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ
      花岗岩TK18-1
      1 0.58 182 313 0.044 66 0.002 1 0.143 24 0.007 1 0.023 18 0.000 5 37 98 136 6 148 3
      2 0.59 210 354 0.050 34 0.002 4 0.159 27 0.008 0 0.022 81 0.000 4 211 111 150 7 145 2
      3 0.45 178 391 0.045 98 0.002 5 0.151 07 0.008 8 0.024 06 0.000 5 3 117 143 8 153 3
      4 0.64 298 467 0.049 48 0.002 1 0.156 92 0.006 4 0.023 08 0.000 4 170 88 148 6 147 3
      5 0.45 179 399 0.047 97 0.002 4 0.154 33 0.007 6 0.023 29 0.000 4 98 105 146 7 148 2
      6 0.57 270 477 0.050 83 0.002 2 0.156 16 0.006 3 0.022 28 0.000 3 233 89 147 6 142 2
      7 0.40 158 391 0.051 49 0.003 1 0.160 83 0.010 5 0.022 44 0.000 5 263 142 151 9 143 3
      8 0.45 160 354 0.047 07 0.002 2 0.148 53 0.007 1 0.022 65 0.000 4 53 100 141 6 144 2
      9 0.47 94 200 0.051 82 0.003 2 0.159 50 0.009 6 0.022 88 0.000 5 278 132 150 8 146 3
      10 0.83 457 553 0.047 31 0.002 1 0.146 05 0.006 6 0.022 13 0.000 4 65 93 138 6 141 2
      11 0.64 357 555 0.047 71 0.001 6 0.148 35 0.005 3 0.022 15 0.000 4 85 71 140 5 141 2
      12 0.45 100 225 0.052 48 0.002 9 0.161 87 0.008 7 0.023 12 0.000 5 306 115 152 8 147 3
      13 0.29 328 1 118 0.047 88 0.001 7 0.171 16 0.006 1 0.025 62 0.000 4 93 74 140 3 143 3
      14 0.58 469 802 0.048 57 0.001 6 0.149 60 0.005 1 0.021 97 0.000 3 127 74 142 4 140 2
      15 0.55 265 478 0.046 05 0.005 3 0.135 90 0.015 4 0.021 41 0.000 4 - 229 129 14 137 3
      16 0.44 183 413 0.049 64 0.002 3 0.151 45 0.006 7 0.022 30 0.000 4 178 94 143 6 142 3
      17 0.35 182 528 0.053 17 0.002 8 0.154 05 0.006 7 0.021 40 0.000 4 336 93 145 6 136 2
      18 0.45 131 288 0.051 76 0.002 6 0.158 36 0.007 4 0.022 45 0.000 4 275 101 149 7 143 3
      19 0.81 495 612 0.050 19 0.002 4 0.160 14 0.007 8 0.023 22 0.000 4 204 106 151 7 148 3
      20 0.50 182 362 0.046 89 0.002 1 0.148 21 0.006 4 0.022 91 0.000 4 43 85 140 6 146 3
      镁铁质暗色微粒包体TK17-3
      1 0.55 1 048 1 922 0.047 71 0.001 7 0.143 46 0.005 1 0.021 50 0.000 4 85 70 136 4 137 2
      2 0.18 1 073 5 805 0.047 89 0.001 3 0.141 91 0.004 0 0.021 13 0.000 3 94 57 135 4 135 2
      3 0.64 2 883 4 539 0.047 97 0.001 4 0.150 82 0.004 3 0.022 44 0.000 3 98 59 143 4 143 2
      4 0.34 1 186 3 493 0.047 00 0.001 3 0.141 20 0.004 0 0.021 41 0.000 3 49 54 134 4 137 3
      5 0.45 1 311 2 934 0.048 85 0.001 3 0.147 84 0.004 0 0.021 68 0.000 3 141 53 140 3 138 2
      6 0.71 4 180 5 887 0.047 45 0.001 1 0.141 89 0.003 4 0.021 35 0.000 3 72 48 135 3 136 2
      7 0.26 677 2 633 0.048 25 0.001 5 0.150 31 0.004 3 0.022 34 0.000 3 112 61 142 4 142 2
      8 0.24 779 3 212 0.047 76 0.001 3 0.144 28 0.003 9 0.021 57 0.000 3 87 56 137 3 138 2
      9 0.15 1 007 6 638 0.047 46 0.001 2 0.151 55 0.004 0 0.022 73 0.000 3 72 53 143 3 145 2
      10 0.55 2 364 4 317 0.050 75 0.001 4 0.160 80 0.004 7 0.022 59 0.000 3 229 60 151 4 144 2
      11 0.71 2 635 3 733 0.047 30 0.001 5 0.136 06 0.004 3 0.020 56 0.000 3 64 62 130 4 131 2
      12 0.85 4 900 5 779 0.047 40 0.001 2 0.141 38 0.003 6 0.021 28 0.000 3 69 51 134 3 136 2
      13 0.82 5 932 7 231 0.046 53 0.001 1 0.143 10 0.003 3 0.022 00 0.000 3 25 40 136 3 140 2
      14 0.20 724 3 579 0.045 86 0.001 1 0.138 27 0.003 4 0.021 54 0.000 3 10 40 131 3 137 2
      15 1.05 7 966 7 579 0.047 77 0.001 0 0.152 21 0.003 2 0.022 75 0.000 3 88 42 144 3 145 3
      16 0.67 2 373 3 529 0.047 67 0.001 2 0.140 70 0.003 6 0.021 11 0.000 3 83 51 134 3 135 2
      17 0.27 840 3 122 0.048 97 0.001 2 0.160 62 0.004 1 0.023 39 0.000 3 147 51 151 4 149 2
      18 0.37 944 2 579 0.046 72 0.001 3 0.149 38 0.004 2 0.022 85 0.000 3 35 52 141 4 146 2
      19 0.41 1 396 3 383 0.048 59 0.001 2 0.155 47 0.003 9 0.022 86 0.000 3 128 52 147 3 146 3
      20 1.02 6 490 6 360 0.052 85 0.001 3 0.150 53 0.003 6 0.020 41 0.000 3 323 44 142 3 130 2
      下载: 导出CSV

      表  2  海宴花岗岩及其镁铁质暗色微粒包体主量元素(%)和微量元素(10-6)分析结果

      Table  2.   Major (%) and trace elements (10-6) of the Haiyan granites and MMEs

      样品 花岗岩 镁铁质暗色包体
      TK17-1 TK17-2 TK19-1 TK18-1 TK18-2 TK17-3 TK17-4 TK17-5 TK18-3
      SiO2 73.16 72.91 73.63 66.63 67.46 68.64 68.47 66.47 66.50
      Al2O3 12.91 12.81 13.10 14.88 14.46 14.41 14.52 12.36 14.93
      Fe2O3 0.91 0.49 0.08 2.28 1.15 0.63 1.11 2.12 1.24
      FeO 2.07 3.11 2.64 2.64 3.79 3.37 2.96 5.84 3.81
      CaO 1.02 1.11 1.41 2.81 2.53 1.47 1.52 1.54 2.36
      MgO 0.34 0.34 0.22 1.03 1.06 0.50 0.52 1.24 0.89
      K2O 4.81 4.66 4.83 4.53 3.95 5.16 4.89 3.94 5.03
      Na2O 3.45 3.50 3.08 3.04 3.04 4.06 4.09 3.08 2.80
      TiO2 0.23 0.22 0.20 0.58 0.62 0.33 0.34 0.88 0.64
      P2O5 0.08 0.08 0.05 0.23 0.23 0.11 0.11 0.22 0.20
      MnO 0.09 0.07 0.05 0.11 0.10 0.11 0.11 0.22 0.09
      灼失 0.55 0.19 0.24 0.72 0.99 0.65 0.82 1.22 0.84
      Li 38.4 50.7 23.3 35.0 29.9 46.4 46.5 142 30.4
      Sc 1.47 1.58 2.39 7.28 5.97 2.13 2.49 2.71 6.99
      V 8.03 7.71 6.77 48.8 55.9 11.1 12.3 27.8 42.6
      Cr 21.40 5.94 8.28 5.81 6.40 19.2 21.2 9.25 35.2
      Co 2.48 2.54 2.67 6.78 6.96 4.09 4.30 6.02 7.04
      Ni 4.07 3.30 4.04 3.73 3.00 3.62 3.92 8.79 6.34
      Cu 9.28 6.54 7.74 6.14 9.65 10.0 11.2 15.6 10.5
      Zn 28.3 30.1 34.8 72.3 71.7 42.8 43.3 101 63.1
      Ga 16.4 15.9 20.8 18.8 19.4 20.7 20.7 19.5 25.2
      Rb 234 220 134 58.1 47.4 230 221 80.4 96.0
      Sr 104 104 105 326 284 138 150 83.2 262
      Y 29.8 28.4 20.2 23.5 29.9 24.9 26.8 44.4 47.9
      Zr 200 166 213 251 234 269 267 590 392
      Nb 44.0 42.5 9.81 15.2 17.1 42.6 45.8 108 23.0
      Mo 1.04 0.80 2.93 0.91 0.65 1.95 2.02 3.26 1.28
      Sb 0.23 0.11 0.43 0.17 0.31 0.38 0.65 0.24 0.11
      Cs 7.30 10.5 3.05 4.25 4.39 9.04 9.69 12.3 6.35
      Ba 248 261 524 559 485 490 465 162 822
      La 49.4 53.0 59.0 53.5 52.8 77.9 61.3 117 88.3
      Ce 91.4 98.0 115 101 99.6 136 110 226 110
      Pr 8.70 9.20 11.6 10.1 10.5 11.9 10.3 20.8 17.8
      Nd 29.3 30.1 40.5 37.0 38.9 37.4 33.6 67.5 66.2
      Sm 5.10 5.15 6.78 6.54 7.32 5.53 5.36 10.4 11.9
      Eu 0.64 0.63 1.11 1.52 1.59 0.91 0.92 0.48 2.36
      Gd 4.80 4.84 5.91 6.00 6.56 5.34 5.14 9.64 10.5
      Tb 0.80 0.75 0.83 0.89 1.02 0.74 0.76 1.34 1.65
      Dy 4.95 4.66 4.45 4.90 5.84 4.29 4.54 7.66 9.53
      Ho 1.08 1.00 0.85 0.96 1.18 0.91 0.97 1.62 1.88
      Er 3.33 3.19 2.30 2.62 3.21 2.76 3.00 4.92 5.01
      Tm 0.62 0.60 0.34 0.40 0.50 0.51 0.55 0.86 0.76
      Yb 4.58 4.50 2.12 2.53 3.29 3.75 3.98 6.14 4.94
      Lu 0.66 0.67 0.28 0.35 0.45 0.56 0.59 0.93 0.66
      Hf 6.13 5.04 5.73 6.31 6.04 7.37 7.17 15.50 9.76
      Ta 5.87 6.27 0.88 0.99 1.20 4.79 5.64 8.36 1.50
      W 2.93 6.86 2.43 0.97 1.87 3.07 9.47 22.3 1.73
      Pb 15.8 46.1 64.6 17.7 49.6 39.7 49.8 11.6 23.0
      Th 19.0 24.0 13.5 13.6 11.6 23.9 23.6 158 13.5
      U 8.57 10.1 1.99 2.42 3.04 8.59 9.53 36.4 2.42
      下载: 导出CSV

      表  3  海宴花岗岩及其镁铁质暗色微粒包体Sr-Nd同位素分析结果

      Table  3.   Sr-Nd isotopic compositions of the Haiyan granites and MMEs

      样品号 岩性 Sm(10-6) Nd(10-6) 147Sm/144Nd 143Nd/144Nd 2σ T(Ma) εNd(t) TDM2(Ga) Rb(10-6) Sr(10-6) 87Rb/86Sr 87Sr/86Sr 2σ T(Ma) (87Sr/86Sr)i
      TK17-1 花岗岩 5.1 29.3 0.105 7 0.512 448 0.000 006 144 -2.03 1.11 339 114 8.398 0.723 770 0.000 010 144 0.706 6
      TK18-1 花岗岩 6.5 37.8 0.105 0 0.512 266 0.000 006 144 -5.57 1.40 198 336 1.658 0.712 660 0.0000 08 144 0.709 3
      TK19-1 花岗岩 6.8 41.3 0.099 2 0.512 187 0.000 008 144 -7.01 1.52 177 109 4.562 0.721 540 0.000 010 144 0.712 2
      TK17-5 包体 9.9 64.9 0.092 8 0.512 426 0.000 008 144 -2.23 1.12 347 83.8 11.673 0.732 410 0.000 008 144 0.708 5
      TK18-3 包体 11.9 66.5 0.108 6 0.512 197 0.000 008 144 -6.99 1.51 235 287 2.312 0.715 790 0.000 006 144 0.711 1
      注:TDM2值采用Depaolo et al.(1991)两阶段模式年龄.
      下载: 导出CSV
    • [1] Anderson, J.L., Bender, E.E., 1989.Nature and Origin of Proterozoic A-Type Granitic Magmatism in the Southwestern United States of America.Lithos, 23(1-2):19-52.https://doi.org/10.1016/0024-4937 (89) 90021-2 doi: 10.1016/0024-4937(89)90021-2
      [2] Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses that do not Report 204Pb.Chemical Geology, 192(1-2):59-79. https://doi.org/10.1016/s0009-2541(02)00195-x
      [3] Anderson, J.L., Morrison, J., 2005.Ilmenite, Magnetite, and Peraluminous Mesoproterozoic Anorogenic Granites of Laurentia and Baltica.Lithos, 80(1-4):45-60. https://doi.org/10.1016/j.lithos.2004.05.008
      [4] Bonin, B., 2007.A-Type Granites and Related Rocks:Evolution of a Concept, Problems and Prospects.Lithos, 97:1-29. https://doi.org/10.1016/j.lithos.2006.12.007
      [5] Breiter, K., 2012.Nearly Contemporaneous Evolution of the A-and S-Type Fractionated Granites in the Krušné hory/Erzgebirge Mts., Central Europe.Lithos, 151:105-121. https://doi.org/10.1016/j.lithos.2011.09.022
      [6] Clemens, J.D., Wall, V.J., 1981.Crystallization and Origin of Some Peraluminous (S-Type) Granitic Magmas.Canadian Mineralogist, 19:111-131. http://cn.bing.com/academic/profile?id=9bab997149e91927c9762dfca8fea8a3&encoded=0&v=paper_preview&mkt=zh-cn
      [7] Clemens, J.D., Holloway, J.R., White, A.J.R., 1986.Origin of an A-Type Granite:Experimental Constraints.American Mineralogist, 71:317-324. http://cn.bing.com/academic/profile?id=1e6758f069364b6229a74ff79e138ee4&encoded=0&v=paper_preview&mkt=zh-cn
      [8] Clemens, J.D., Finger, F., 2012.Formation of High δ18O Fayalite-Bearing A-Type Granite by High-Temperature Melting of Granulitic Metasedimentary Rocks, Southern China:Comment.Geology, 40(10):e277. https://doi.org/10.1130/g33175c.1
      [9] Collins, W.J., Beams, S.D., White, A.J.R., et al., 1982.Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia.Contributions to Mineralogy and Petrology, 80:189-200. https://doi.org/10.1007/BF00374895
      [10] Cui, J.J., Zhang, Y.Q., Dong, S.W., et al., 2013.Late Mesozoic Orogenesis along the Coast of Southeast China and Its Geological Significance.Geology in China, 40(1):86-105 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=6b7540f922fbbbe1bbd3bba6a72c29da&encoded=0&v=paper_preview&mkt=zh-cn
      [11] Dall'Agnol, R., de'Oliveira, D.C., 2007.Oxidized, Magnetite-Series, Rapakivi-Type Granites of Carajás, Brazil:Implications for Classification and Petrogenesis of A-Type Granites.Lithos, 93(3-4):215-233. https://doi.org/10.1016/j.Lithos.2006.03.065
      [12] Dall'Agnol, R., Frost, C.D., Rämö, O.T., 2012.IGCP Project 510 "A-Type Granites and Related Rocks through Time":Project Vita, Results, and Contribution to Granite Research.Lithos, 151:1-16. https://doi.org/10.1016/j.Lithos.2012.08.003
      [13] DePaolo, D.J., Linn, A.M., Schubert, G., 1991.The Continental Crustal Age Distribution:Methods of Determining Mantle Separation Ages from Sm-Nd Isotopic Data and Application to the Southwestern United States.Journal of Geophysical Research, 96(B2):2071-2088. https://doi.org/10.1029/90jb02219
      [14] Eby, G.N., 1990.The A-Type Granitoids:A Review of Their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis.Lithos, 26:115-134. https://doi.org/10.1016/0024-4937(90)90043-z
      [15] Eby, G.N., 1992.Chemical Subdivision of the A-Type Granitoids:Petrogenetic and Tectonic Implications.Geology, 20:641-644. https://doi.org/10.1130/0091-7613(1992)020
      [16] Fan, C.F., Chen, P.R., 2000.Geochemical Characteristics and Tectonic Implication of Beitou a Type Grantic Intrusive in South Jiangxi Province.Geochimica, 29(4):358-366 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=ce87c1e8d8893450ae34b2c66bec61dc&encoded=0&v=paper_preview&mkt=zh-cn
      [17] Frost, C.D., Frost, B.R., 1997.Reduced Rapakivi-Type Granites:The Tholeiite Connection.Geology, 25:647-650. https://doi.org/10.1130/0091-7613(1997)025
      [18] Frost, C.D., Frost, B.R., Chamberlain, K.R., et al., 1999.Petrogenesis of the 1.43Ga Sherman Batholith, SE Wyoming:A Reduced Rapakivi-Type Anorogenic Granite.Journal of Petrology, 40:1771-1802. https://doi.org/10.1093/petroj/40.12.1771
      [19] Frost, C.D., Frost, B.R., 2011.On Ferroan (A-Type) Granitoids:Their Compositional Variability and Modes of Origin.Journal of Petrology, 52:39-53. https://doi.org/10.1093/petrology/egq070
      [20] Fu, J.M., Ma, C.Q., Xie, C.F., et al., 2004.Geochemistry and Tectonic Setting of Xishan Aluminous A-Type Granitic Volcanic-Intrusive Complex, Southern Hunan.Journal of Earth Sciences and Environment, 26(4):15-23 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=782f062d44afed408ce90d464ae82928&encoded=0&v=paper_preview&mkt=zh-cn
      [21] Hawkesworth, C.J., Turner, S.P., Mcdermott, F., et al., 1997.U-Th Isotopes in Arc Magmas:Implications for Element Transfer from Subducted Crust.Science, 276:551-555. https://doi.org/10.1126/science.276.5312.551
      [22] Hébert, R., Guilmette, C., Dostal, J., et al., 2014.Miocene Post-Collisional Shoshonites and Their Srustal Xenoliths, Yarlung Zangbo Suture Zone Southern Tibet:Geodynamic Implications.Gondwana Research, 25(3):1263-1271. https://doi.org/10.1016/j.gr.2013.05.013
      [23] Huang, H.Q., Li, X.H., Li, W.X., et al., 2011.Formation of High δ18O Fayalite-Bearing A-Type Granite by High-Temperature Melting of Granulitic Metasedimentary Rocks, Southern China.Geology, 39:903-906. https://doi.org/10.1130/G32080.1
      [24] Huang, H.Q., Li, X.H., Li, W.X., et al., 2012.Formation of High δ18O Fayalite-Bearing A-Type Granite by High-Temperature Melting of Granulitic Metasedimentary Rocks, Southern China:Reply.Geology, 40:e278. https://doi.org/10.1130/G33526Y.1
      [25] Jia, X.H., Wang, X.D., Yang, W.Q., et al., 2014.The Early Jurassic A-Type Granites in Northern Guangxi, China:Petrogenesis and Implications.Earth Science, 39(1):21-36 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2014.003
      [26] Li, W.X., Zhou, X.M., 2001.Subduction of the Paleo-Pacific Plate and Origin of Late Mesozoic Igneous Rocks in Southeastern China.Geotectonica et Metallogenia, 25(1):55-63 (in Chinese with English abstract).
      [27] Li, X.H., Hu, R.Z., Rao, B., 1997.Geochronology and Geochemistry of Cretaceous Mafic Dikes from Northern Guangdong, SE China.Geochimica, 26(2):14-31 (in Chinese with English abstract).
      [28] Li, X.H., Li, W.X., Li, Z.X., 2007.On the Genetic Classification and Tectonic Implications of the Early Yanshanian Granitoids in the Nanling Range, South China.Chinese Science Bulletin, 62(9):981-991 (in Chinese). http://cn.bing.com/academic/profile?id=5666c99c1980b30a38ef35c10069ecfd&encoded=0&v=paper_preview&mkt=zh-cn
      [29] Li, X.H., McCulloch, M.T., 1996.Nd Isotopic Evolution of Sediments from the Southern Margin of the Yangtze Block and Its Tectonic Significance.Acta Petrologica Sinica, 12(3):359-369 (in Chinese with English abstract). https://www.researchgate.net/publication/289319110_Nd_isotopic_evolution_of_sediments_from_the_southern_margin_of_the_Yangtze_block_and_its_tectonic_significance
      [30] Li, Z.X., Li, X.H., 2007.Formation of the 1300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China:A Flat-Slab Subduction Model.Geology, 35(2):179-182. https://doi.org/10.1130/g23193a.1
      [31] Litvinovsky, B.A., Steele, I.M., Wickham, S.M., 2000.Silicic Magma Formation in Overthickened Crust:Melting of Charnockite and Leucogranite at 15, 20 and 25 kbar.Journal of Petrology, 41(5):717-737. https://doi.org/10.1093/petrology/41.5.717
      [32] Litvinovsky, B.A., Jahn, B.M., Zanvilevich, A.N., et al., 2002.Petrogenesis of Syenite-Granite Suites from the Bryansky Complex (Transbaikalia, Russia):Implications for the Origin of A-Type Granitoid Magmas.Chemical Geology, 189:105-133. https://doi.org/10.1016/S0009-2541(02)00142-0
      [33] Liu, C.S., Chen, X.M., Wang, R.C., 2003.Origin of Nankunshan Aluminous A-type Granite, Longkou County, Guangdong Province.Acta Petrologica et Mineralogica, 22(1):1-10 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=24c1151bcb589cc5ee4d9561b2809d17&encoded=0&v=paper_preview&mkt=zh-cn
      [34] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      [35] Loiselle, M.C., Wones, D., 1979.Characteristics and Origin of Anorogenic Granites.Geological Society of America, Abstracts with Programs, 11:468. http://cn.bing.com/academic/profile?id=7320ebb8516e6b0fa9f2fae891accefc&encoded=0&v=paper_preview&mkt=zh-cn
      [36] Ludwig, K.R., 2001.ISOPLOT/Ex(rev.2.49):A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Centre.Spec Pub, 1:1-56. http://www.oalib.com/references/7340365
      [37] Meen, J, K., 1990.Elevation of Potassium Content of Basaltic Magma by Fractional Crystallization:The Effect of Pressure.Contributions to Mineralogy and Petrology, 104(3):309-331. https://doi.org/10.1007/bf00321487
      [38] Middlemost, E.A.K., 1994.Naming Materials in the Magma/igneous Rock System.Earth-Science Reviews, 37(3-4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      [39] Müller, D., Groves, D.I., 1995.Potassic Igneous Rocks and Associated Gold-Copper Mineralization.Springer Berlin Heidelberg, 56(1):249-225. http://cn.bing.com/academic/profile?id=922d9372ffd164778199965712a30fbe&encoded=0&v=paper_preview&mkt=zh-cn
      [40] Nelson, D.R., 1992.Isotopic Characteristics of Potassic Rocks:Evidence for the Involvement of Subducted Sediments in Magma Genesis.Lithos, 28(3-6):403-420. https://doi.org/10.1016/0024-4937(92)90016-r
      [41] Othman, D.B., White, W.M., Patchett, J., 1989.The Geochemistry of Marine Sediments, Island Arc Magma Genesis, and Crust-Mantle Recycling.Earth and Planetary Science Letters, 94(1-2):1-21. https://doi.org/10.1016/0012-821x(89)90079-4
      [42] Pearce, J., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. In: Thorpe, R. S., ed., Andesites: Orogenic Andesites and Related Rocks. John Wiley, New York, 525-548.
      [43] Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey.Contributions of Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/bf00384745
      [44] Qiu, J.S., Wang, D.Z., Satoshi, K.et al., 2000.Geochemistry and Petrogenesis of Aluminous A-Type Granites in the Coastal Area of Fujian Province.Geochemica, 29(4):313-321 (in Chinese with English abstract).
      [45] Qu, X.M., Hou, Z.Q., Li, Y.G., 2004.Melt Components Derived from a Subducted Slab in late Orogenic Ore-Bearing Porphyries in the Gangdese Copper Belt, Southern Tibetan (Xizang) Plateau.Lithos, 74(3-4):131-148. https://doi.org/10.1016/s0024-4937(04)00027-1
      [46] Saunders, A.D., Norry, M.J., Tarney, J., 1991.Fluid Influence on the Trace Element Compositions of Subduction Zone Magmas.Transactions of the Royal Society of London A, 335:377-392. https://doi.org/10.1098/rsta.1991.0053
      [47] Sun, S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society of London Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [48] Sun, T., Zhou, X.M., 2002.Mesozoic Extension in Southeast China:Petrologic Symbols.Journal of Nanjing University (Natural Sciences), 38(6):737-746 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NJDZ200206001.htm
      [49] Sun, Y., Ma, C.Q., Liu, Y.Y., et al., 2011.Geochronological and Geochemical Constraints on the Petrogenesis of Late Triassic Aluminous A-Type Granites in Southeast China.Journal of Asian Earth Sciences, 42(6):1117-1131. https://doi.org/10.1016/j.jseaes.2011.06.007
      [50] Turner, S., Arnaud, N., Liu, J., 1996.Post-Collision, Shoshonitic Volcanism on the Tibetan Plateau:Implications for Convective Thinning of the Lithosphere and the Source of Ocean Island Basalts.Journal of Petrology, 37(1):45-71. https://doi.org/10.1093/petrology/37.1.45
      [51] Wang, Q., Zhao, Z.H., Jian, P., et al., 2005.Geochronology of Cretaceous A-Type Granitoids or Alkaline Intrusive Rocks in the Hinterland, South China:Constraints for Late-Mesozoic Tectonic Evolution.Acta Petrological Sinica, 21(3):795-808 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=05f3f25abdab57a9c4b0f5f625763a0c&encoded=0&v=paper_preview&mkt=zh-cn
      [52] Wang, Q., Li, X.H., Jia, X.H., et al., 2012.Late Early Cretaceous Adakitic Granitoids and Associated Magnesian and Potassium-Rich Mafic Enclaves and Dikes in the Tunchang-Fengmu Area, Hainan Province (South China):Partial Melting of Lower Crust and Mantle, and Magma Hybridization.Chemical Geology, 328:222-243. https://doi.org/10.1016/j.chemgeo.2012.04.029
      [53] Whalen, J.B., Currie, K.L., Chappell, B.W., 1987.A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis.Contributions to Mineralogy and Petrology, 95(4):407-419. https://doi.org/10.1007/bf00402202
      [54] Wu, F.Y., Sun, D.Y., Li, X.H., et al., 2002.A-Type Granites in Northeastern China:Age and Geochemical Constraints on Their Petrogenesis.Chemical Geology, 187:143-173. https://doi.org/10.1016/S0009-2541(02)00018-9
      [55] Xiao, E., Qiu, J.S., Xu, X.S., et al., 2007.Geochronology and Geochemistry of the Yaokeng Alkaline Granitic Pluton in Zhejiang Province:Petrogenetic and Tectonic Implications.Acta Petrologica Sinica, 23(6):1431-1440 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/hk/Detail/Periodical?id=Periodical_ysxb98200706019
      [56] Xie, L., Wang, R.C., Chen, X.M., et al., 2005.Th-Rich Zircon from Peralkaline A-Type Granite:Mineralogical Features and Petrological Implications.Chinese Science Bulletin, 50(10):1016-1023 (in Chinese). doi: 10.1360/982004-321
      [57] Xu, X.B., Zhang, Y.Q., Jia, D., et al., 2009.Early Mesozoic Geotectonic Processes in South China.Geology in China, 36(3):573-593 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=2b7c1285d86b3a6e53db7387793d3dce&encoded=0&v=paper_preview&mkt=zh-cn
      [58] Yan, P.Y., Zhou, M.F., Song, H.L., et al., 2003.Origin and Tectonic Significance of a Mesozoic Multi-Layer Over-Thrust System within the Yangtze Block (South China).Tectonophysics, 361(3-4):239-254. https://doi.org/10.1016/s0040-1951(02)00646-7
      [59] Yang, J.H., Wu, F.Y., Chung, S.L., et al., 2006.A Hybrid Origin for the Qianshan A-Type Granite, Northeast China:Geochemical and Sr-Nd-Hf Isotopic Evidence.Lithos, 89:89-106. https://doi.org/10.1016/j.lithos.2005.10.002
      [60] Yang, J.H., Sun, J.F., Zhang, M., et al., 2012.Petrogenesis of Silica-Saturated and Silica-Undersaturated Syenites in the Northern North China Craton Related to Post-Collisional and Intraplate Extension.Chemical Geology, 328:149-167. https://doi.org/10.1016/j.chemgeo.2011.09.011
      [61] Yuan, H.L., Wu, F.Y., Gao, S., et al., 2003.Determination of U-Pb Age and Rare Earth Element Concentrations of Zircon from Cenozoic Intrusions in Northeastern China by Laser Ablation ICP-MS.Chinese Science Bulletin, 48(14):1511-1520 (in Chinese). http://cn.bing.com/academic/profile?id=b68087dafa4abda4aee36590b7584f27&encoded=0&v=paper_preview&mkt=zh-cn
      [62] Zhang, M., Chen, P.R., Huang, G.L., 2006, Single-Zircon La-ICP-MS Ages of the Longyuanba Pluton in the Eastern Nanling Region and Geological Implication.Acta Geologica Sinica, 80(7):984-994 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=231f96649eacc90d1cc17abfce80fafe&encoded=0&v=paper_preview&mkt=zh-cn
      [63] Zhang, Q., 2012.Could Granitic Magmas Experience Fractionation and Evolution?Acta Petrologica et Mineralogica, 31(2):252-260 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=a8473d2dfdf3843825cc4e0fb4fb7fbb&encoded=0&v=paper_preview&mkt=zh-cn
      [64] Zhang, Y.Q., Xu, X.B., Jia, D., et al., 2009.Deformation Record of the Change from Indosinian Collision-Related Tectonic System to Yanshanian Subduction-Related Tectonic System in South China during the Early Mesozoic.Earth Science Frontiers, 16(1):234-247 (in Chinese with English abstract).
      [65] Zhou, X.M., Sun, T., Shen, W.Z., et al., 2006.Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China:A Response Totectonic Evolution.Episodes, 29 (1):26-33. https://www.researchgate.net/profile/Yaoling_Niu/publication/38440799_Petrogenesis_of_Mesozoic_granitoids_and_volcanic_rocks_in_South_China_A_Response_to_Tectonic_Evolution/links/0c9605323868e3bd92000000/Petrogenesis-of-Mesozoic-granitoids-and-volcanic-rocks-in-South-China-A-Response-to-Tectonic-Evolution.pdf
      [66] Zhou, X.M., Chen, P.R., Xu, X.S., et al., 2007.Petrogenesis of Late-Mesozoic Granites in the Nanling Rangs and Lithospheric Dynamics Evolution.Science Press, Beijing (in Chinese).
      [67] Zhu, B., Ling, H.F., Shen, W.Z., et al., 2008.Geochemical Characteristics of Late Cretaceous Diabase Porphyrite Dikes in the Xiazhuang Uranium Orefield, Northern Guangdong Province and its Tectonic Significance.Geological Review, 54(1):26-36 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=022982edf3638d397514c1884516ca14&encoded=0&v=paper_preview&mkt=zh-cn
      [68] Zhu, J.C., Zhang, P.H., Xie, C.F., et al., 2006.The Huashan-Guposhan A-Type Granitoid Belt in the Western Part of the Nanling Mountains:Petrology, Geochemistry and Genetic Interpretations.Acta Geologica Sinica, 80(4):529-542 (in Chinese with English abstract).
      [69] 崔建军, 张岳桥, 董树文, 等, 2013.华南陆缘晚中生代造山及其地质意义.中国地质, 40(1):86-105. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201310003.htm
      [70] 范春方, 陈培荣, 2000.赣南陂头A型花岗岩的地质地球化学特征及其形成的构造环境.地球化学, 29(4):358-366. https://www.wenkuxiazai.com/doc/8c7e04682af90242a895e5b3-2.html
      [71] 付建明, 马昌前, 谢才富, 等, 2004.湘南西山铝质A型花岗质火山-侵入杂岩的地球化学及其形成环境.地球科学与环境学报, 26(4):15-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb200404004
      [72] 贾小辉, 王晓地, 杨文强, 2014.桂北圆石山早侏罗世A型花岗岩的岩石成因及意义.地球科学, 39(1):21-36. https://doi.org/10.3799/dqkx.2014.003
      [73] 李武显, 周新民, 2001.古太平洋岩石圈消减与中国东南部晚中生代火成岩成因——岩石圈消减与玄武岩底侵相结合模式的补充证据.大地构造与成矿学, 25(1):55-63. http://www.cnki.com.cn/Article/CJFDTotal-HSDZ201502004.htm
      [74] 李献华, 胡瑞忠, 饶冰, 1997.粤北白垩纪基性岩脉的年代学和地球化学.地球化学, 26(2):14-31. http://www.cqvip.com/QK/92960X/1997002/2486261.html
      [75] 李献华, 李武显, 李正祥, 2007.再论南岭燕山早期花岗岩的成因类型与构造意义.科学通报, 62(9):981-991. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200709001
      [76] 李献华, McCulloch, M.T., 1996.扬子南缘沉积岩的Nd同位素演化及其大地构造意义.岩石学报, 12(3):359-369. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB603.000.htm
      [77] 刘昌实, 陈小明, 王汝成, 等, 2003.广东龙口南昆山铝质A型花岗岩的成因.岩石矿物学杂志, 22(1):1-10. https://www.wenkuxiazai.com/word/38508ed96f1aff00bed51e41-1.doc
      [78] 邱检生, 王德滋, Santoshi, K., 等, 2000.福建沿海铝质A型花岗岩的地球化学及岩石成因.地球化学, 29(4):313-321. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200004000.htm
      [79] 孙涛, 周新民, 2002.中国东南部晚中生代伸展应力体制的岩石学标志.南京大学学报(自然科学版), 38(6):737-746. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njdxxb200206002
      [80] 王强, 赵振华, 简平, 等, 2005.华南腹地白垩纪A型花岗岩类或碱性侵入岩年代学及其对华南晚中生代构造演化的制约.岩石学报, 21(3):795-808. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20050377&journal_id=ysxb
      [81] 肖娥, 邱检生, 徐夕生, 等, 2007.浙江瑶坑碱性花岗岩体的年代学、地球化学及其成因与构造指示意义.岩石学报, 23(6):1431-1440. https://www.wenkuxiazai.com/doc/20e1067b27284b73f24250cb-4.html
      [82] 谢磊, 王汝成, 陈小明, 等, 2005.碱性A型花岗岩中的富钍锆石:矿物学研究与岩石学意义.科学通报, 50(10):1016-1023. doi: 10.3321/j.issn:0023-074X.2005.10.013
      [83] 徐先兵, 张岳桥, 贾东, 等, 2009.华南早中生代大地构造过程.中国地质, 36(3):573-593. https://www.researchgate.net/profile/Xianbing_Xu2/publication/282543455_Early_Mesozoic_geotectonic_processes_in_South_China/links/56392ef808ae2da875c7a289/Early-Mesozoic-geotectonic-processes-in-South-China.pdf
      [84] 袁洪林, 吴福元, 高山, 等, 2003.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析.科学通报, 48(14):1511-1520. doi: 10.3321/j.issn:0023-074X.2003.14.008
      [85] 张敏, 陈培荣, 黄国龙, 等, 2006.南岭东段龙源坝复式岩体La-ICP-MS锆石U-Pb年龄及其地质意义.地质学报, 80(7):984-994. http://www.cnki.com.cn/Article/CJFDTotal-DQKX201401003.htm
      [86] 张旗, 2012.花岗质岩浆能够结晶分离和演化吗?岩石矿物学杂志, 31(2):252-260. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201301010034.htm
      [87] 张岳桥, 徐先兵, 贾东, 等, 2009.华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录.地学前缘, 16(1):234-247. https://www.wenkuxiazai.com/doc/038c95707fd5360cba1adb2b.html
      [88] 周新民, 陈培荣, 徐夕生, 等, 2007.南岭地区晚中生代花岗岩成因与岩石圈动力学演化.北京:科学出版社.
      [89] 朱捌, 凌洪飞, 沈渭洲, 等, 2008.粤北下庄矿田晚白垩世辉绿玢岩的地球化学特征及其构造意义.地质论评, 54(1):26-36. http://mall.cnki.net/magazine/Article/XDDZ201104011.htm
      [90] 朱金初, 张佩华, 谢才富, 等, 2006.南岭西段花山-姑婆山A型花岗质杂岩带:岩石学、地球化学和岩石成因.地质学报, 80(4):529-542. http://www.oalib.com/paper/4873688
    • 加载中
    图(8) / 表(3)
    计量
    • 文章访问数:  4790
    • HTML全文浏览量:  1600
    • PDF下载量:  30
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-11-23
    • 刊出日期:  2018-07-15

    目录

      /

      返回文章
      返回