Petrogenesis and Geodynamics Processes of Early Paleozoic Niubiziliang High-Mg Diorites in West Segment of North Qaidam, Qinghai
-
摘要: 牛鼻子梁地区首次发现的高镁闪长岩对于探讨柴北缘地区岩石圈地幔演化历史具有重要意义.为确定该类岩石成因及地球动力学过程,对其开展矿物学、岩石主-微量元素分析、锆石U-Pb定年和Hf同位素分析工作.岩石地球化学特征显示,岩石均为钙碱性岩石,具有富Mg(Mg#=62~72)、Cr、Ni、LREE(LREE/HREE=2.84~4.61)值、低FeOT/MgO(0.70~1.12)比值特征,属于高镁闪长岩;所有样品均表现出富集大离子亲石元素(Rb、Ba、Th、U、K)和LREE,而相对亏损高场强元素Nb、Ta、Ti、P和HREE,与典型的"赞岐岩"地球化学特征一致;锆石U-Pb同位素年代学研究表明岩石形成时代为388 Ma,为中泥盆世岩浆作用的产物.锆石Hf同位素特征显示岩石εHf(t)均为正值(4.4~11.6),表明岩浆起源于亏损地幔.结合区域构造演化过程认为,牛鼻子梁高镁闪长岩是由早古生代(540~520 Ma)消减带流体交代地幔楔后的富集地幔经历晚古生代(400~388 Ma)岩石圈伸展作用部分熔融的产物.Abstract: The high-Mg diorites, newly discovered in Niubiziliang area, are important for discussing the evolution history of lithospheric mantle in North Qaidam, Qinghai Province. To determine the petrogenesis and geodynamic processes of these rocks, the major and trace element analysis, zircon U-Pb dating and Hf isotopic analysis have been carried out in this paper. The petrogeochemistry shows that the rocks are calc-alkaline rocks, and enriched in Mg (Mg#=62-72), Cr, Ni and LREE (LREE/HREE=2.84-4.61) elements, with low FeOT/MgO (0.70-1.12) ratios.They belong to high-magnesium diorite. All the rocks are enriched in large iron lithiphile elements (Rb, Ba, Th, U, K and LREE) and depleted in high strength field elements (Nb, Ta, Ti, P and HREE).Additionally, the diorite rocks have the same characteristics of geochemistry as typical sanukitoids. The mean U-Pb age of the zircons in these high-Mg diorites is 388 Ma, suggesting that the rocks were formed in Middle Triassic. The zircon Hf isotopes show that all the εHf(t)(4.4-11.6) are positive, indicating the magma was originated from the depleted mantle.Combined with the regional tectonic evolution process, it is suggested that the mantle source of the Niubiziliang high-Mg diorite was formed by the reaction of the slab-derived fluids with the overlying mantle peridotite in Early Paleozoic (540-520 Ma). In Late Paleozoic (400-388 Ma), partial melting of the enriched mantle might generate the studied high-Mg diorites due to lithospheric extension.
-
Key words:
- high-Mg diorite /
- petrogenesis /
- lithospheric mantle /
- Niubiziliang area /
- north Qaidam orogenic belt /
- geochemistry
-
图 4 柴北缘牛鼻子梁闪长岩体岩石系列判别图解
a.SiO2-(Na2O+K2O)图解(碱性和亚碱性分类引自Irvine and Baragar(1971));b.SiO2-K2O图解(Peccerillo and Taylor, 1976);c.SiO2-MgO图解(Defant and Drumond, 1990);d.SiO2-Mg#图解(Rapp et al., 1999; Wang et al., 2005)
Fig. 4. Discrimination diagrams of rock series of Niubiziliang diorites in the north Qaidam orogenic belt
图 5 牛鼻子梁高镁闪长岩球粒陨石标准化稀土配分曲线(a)和原始地幔标准化微量元素蛛网图(b)
元素标准化数据引自Sun and McDonough(1989)
Fig. 5. Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element patterns (b) for the Niubiziliang high-Mg diorites
表 1 牛鼻子梁闪长岩体主量元素(%)、微量元素和稀土元素(10-6)化学成分
Table 1. Compostions of major (%), trace and rare earth elements (10-6) of the Niubiziliang diorites
样品 暗色闪长岩 辉长闪长岩 NB14-17 NB14-18 NB14-19 NB14-20 NB1401-2 NB1401-34 NB1403-14 SiO2 52.11 53.25 53.28 54.72 53.05 55.06 51.99 TiO2 0.82 0.79 1.59 0.83 0.82 1.35 0.88 Al2O3 14.39 17.14 17.30 17.31 15.77 15.24 18.51 Fe2O3 1.63 2.02 1.37 1.61 1.44 1.98 1.04 FeO 7.36 6.50 6.36 5.72 6.00 5.80 4.97 MnO 0.14 0.20 0.14 0.13 0.12 0.14 0.11 MgO 12.45 8.02 6.81 7.11 10.37 8.67 8.39 CaO 7.47 8.47 9.56 8.88 8.01 5.61 10.22 Na2O 2.72 2.67 2.87 2.90 3.14 4.86 3.34 K2O 0.70 0.66 0.61 0.63 1.12 1.15 0.34 P2O5 0.12 0.10 0.08 0.10 0.09 0.09 0.11 Total 99.91 99.81 99.97 99.94 99.90 99.95 99.92 Mg# 72 63 62 64 72 67 72 FeOT 8.82 8.32 7.60 7.16 7.29 7.58 5.91 σ 1.28 1.08 1.18 1.07 1.80 2.99 1.50 A.R. 1.37 1.30 1.30 1.31 1.44 1.81 1.29 K2O/Na2O 0.26 0.25 0.21 0.22 0.36 0.24 0.10 Na2O/K2O 3.88 4.05 4.70 4.58 2.81 4.23 9.88 Na2O+K2O 3.42 3.32 3.48 3.54 4.25 6.00 3.67 FeOT/MgO 0.71 1.04 1.12 1.01 0.70 0.87 0.70 A/NK 2.75 3.36 3.22 3.17 2.48 1.65 3.16 A/CNK 0.77 0.84 0.76 0.80 0.75 0.78 0.76 Cu 201.0 54.6 41.4 33.4 36.1 60.5 31.4 Pb 11.30 18.00 7.19 6.34 10.20 7.32 10.60 Zn 78.1 86.3 63.8 66.6 65.8 66.8 52.5 Cr 728.0 262.0 127.0 67.3 577.0 307.0 499.0 Ni 1 190.0 111.0 43.4 48.2 185.0 142.0 159.0 Co 105.0 52.8 37.3 33.3 37.3 43.6 36.7 Rb 26.9 24.0 20.8 20.0 56.2 52.4 10.7 Cs 1.64 1.74 2.08 1.72 13.40 1.90 1.10 Sr 217 245 274 259 274 412 336 Ba 126 134 136 129 298 402 91 V 159 171 254 194 140 179 140 Sc 29.9 31.0 36.9 32.5 30.4 23.9 16.4 Nb 3.37 3.85 3.28 3.22 4.38 7.97 3.49 Ta 0.30 0.34 0.26 0.27 0.35 0.62 0.29 Zr 105.0 79.5 78.7 84.2 63.0 114.0 66.6 Hf 2.80 2.40 2.23 2.43 1.83 3.24 1.84 Ga 14.7 17.4 16.5 16.9 14.0 15.3 16.5 U 1.26 0.88 0.60 0.47 0.52 0.88 0.24 Th 2.62 2.95 1.50 2.02 1.44 3.07 0.76 La 8.79 8.48 6.64 8.27 5.76 11.20 5.12 Ce 20.40 20.50 16.20 19.20 14.00 24.40 12.40 Pr 2.75 2.69 2.25 2.60 1.95 3.05 1.83 Nd 11.60 11.60 10.00 11.00 8.69 12.40 8.54 Sm 3.21 3.04 2.60 3.15 2.36 3.06 2.60 Eu 1.01 1.06 1.03 1.05 0.91 0.95 1.02 Gd 3.54 3.38 3.24 3.42 2.33 3.26 3.02 Tb 0.58 0.56 0.55 0.55 0.47 0.53 0.55 Dy 3.68 3.46 3.52 3.45 2.95 3.23 3.12 Ho 0.78 0.72 0.72 0.72 0.61 0.70 0.63 Er 2.11 2.07 2.07 2.06 1.63 1.89 1.74 Tm 0.31 0.30 0.31 0.31 0.24 0.28 0.25 Yb 1.98 1.98 1.96 1.98 1.43 1.77 1.56 Lu 0.29 0.28 0.29 0.30 0.20 0.28 0.23 Y 18.40 17.20 17.20 17.80 14.10 16.20 14.40 ΣREE 61.03 60.12 51.38 58.06 43.53 67.00 42.61 LREE 47.76 47.37 38.72 45.27 33.67 55.06 31.51 HREE 13.27 12.75 12.66 12.79 9.86 11.94 11.10 LREE/HREE 3.60 3.72 3.06 3.54 3.41 4.61 2.84 (La/Yb)N 3.18 3.07 2.43 3.00 2.89 4.54 2.35 δEu 0.91 1.01 1.08 0.97 1.17 0.91 1.11 Sr/Y 11.79 14.24 15.93 14.55 19.43 25.43 23.33 Th/U 2.08 3.35 2.50 4.30 2.77 3.49 3.17 Th/La 0.30 0.35 0.23 0.24 0.25 0.27 0.15 Nb/Ta 11 11 13 12 13 13 12 Zr/Hf 38 33 35 35 34 35 36 注:(1)Mg#= (MgO/40)/[(MgO/40)+(FeO+0.099 8Fe2O3)/72](%); (2)组合指数σ=(Na2O+K2O)2/(SiO2-43)(%); (3)A.R.=(Al2O3+CaO+Na2O+K2O)/(Al2O3+CaO-Na2O-K2O); (4)A/NK=[Al2O3/(Na2O+K2O)](mol); (5)A/CNK=[Al2O3/(CaO+Na2O+K2O)](mol);(6)δEu=EuN/(SmN×GdN)1/2. 表 2 牛鼻子梁暗色闪长岩锆石Hf同位素分析结果
Table 2. Zircon Hf isotope analytical data of meiadiorites in Niubiziliang intrusion
样号 T(Ma) 176Yb/177Hf 2σ 176Lu/177Hf 2σ 176Hf/177Hf 2σ NB14-16-1 388 0.039 833 0.001 540 0.001 658 0.000 061 0.282 752 0.000 021 NB14-16-2 388 0.053 587 0.002 485 0.002 133 0.000 093 0.282 741 0.000 023 NB14-16-3 388 0.089 712 0.000455 0.003 592 0.000 021 0.282 752 0.000 020 NB14-16-4 388 0.094 256 0.000 883 0.003 864 0.000 034 0.282 684 0.000 025 NB14-16-5 388 0.071 979 0.001 037 0.002 639 0.000 039 0.282 765 0.000 022 NB14-16-6 388 0.098 233 0.000 266 0.003 459 0.000 010 0.282 775 0.000 022 NB14-16-7 388 0.032 476 0.000 276 0.001 209 0.000 007 0.282 802 0.000 023 NB14-16-8 388 0.033 704 0.000665 0.001 190 0.0000 23 0.282 793 0.000 027 NB14-16-9 388 0.111 124 0.005 473 0.004 385 0.000 209 0.282 891 0.000 023 NB14-16-10 388 0.070 161 0.000 157 0.002 604 0.000 009 0.282 765 0.000 021 NB14-16-11 388 0.045 195 0.000 792 0.001 923 0.000 032 0.282 756 0.000 022 NB14-16-12 388 0.088 623 0.000 589 0.003 421 0.000 027 0.282 747 0.000 023 NB14-16-13 388 0.061 798 0.002 234 0.001 919 0.000 062 0.282 732 0.000 028 NB14-16-14 388 0.053 858 0.001 368 0.002 333 0.000 056 0.282 782 0.000 023 NB14-16-15 388 0.043 087 0.000 794 0.001 823 0.000 032 0.282 736 0.000 019 NB14-16-16 388 0.137 847 0.000 169 0.005 763 0.000 007 0.282 769 0.000 025 NB14-16-17 388 0.045 137 0.000 474 0.001 913 0.000 019 0.282 700 0.000 021 NB14-16-18 388 0.081 289 0.001 168 0.003 344 0.000 044 0.282 768 0.000 023 NB14-16-19 388 0.119 048 0.000 616 0.004 691 0.000 020 0.282 793 0.000 024 NB14-16-20 388 0.076 640 0.000 119 0.003 255 0.000 008 0.282 722 0.000 025 NB14-16-21 388 0.063 720 0.000 431 0.002 595 0.000 019 0.282 822 0.000 018 NB14-16-22 388 0.048 129 0.000 609 0.001 931 0.000 016 0.282 764 0.000 023 样号 (176Hf/177Hf)i εHf(0) εHf(t) tDM1(Ma) tDM2(Ma) fLu/Hf NB14-16-1 0.282 740 -0.7 7.4 721 1 128 -0.95 NB14-16-2 0.282 726 -1.1 6.9 747 1 175 -0.94 NB14-16-3 0.282 726 -0.7 6.9 761 1 174 -0.89 NB14-16-4 0.282 656 -3.1 4.4 871 1 396 -0.88 NB14-16-5 0.282 746 -0.2 7.6 722 1 110 -0.92 NB14-16-6 0.282 750 0.1 7.7 724 1 098 -0.90 NB14-16-7 0.282 793 1.0 9.3 643 960 -0.96 NB14-16-8 0.282 784 0.7 9.0 654 987 -0.96 NB14-16-9 0.282 859 4.2 11.6 563 748 -0.87 NB14-16-10 0.282 746 -0.2 7.6 721 1 109 -0.92 NB14-16-11 0.282 742 -0.6 7.5 721 1 123 -0.94 NB14-16-12 0.282 722 -0.9 6.8 765 1 186 -0.90 NB14-16-13 0.282 718 -1.4 6.6 756 1 199 -0.94 NB14-16-14 0.282 766 0.4 8.3 691 1 048 -0.93 NB14-16-15 0.282 723 -1.3 6.8 748 1 183 -0.95 NB14-16-16 0.282 727 -0.1 6.9 785 1 172 -0.83 NB14-16-17 0.282 686 -2.5 5.5 802 1 301 -0.94 NB14-16-18 0.282 743 -0.2 7.5 733 1 118 -0.90 NB14-16-19 0.282 759 0.7 8.1 722 1 069 -0.86 NB14-16-20 0.282 698 -1.8 5.9 800 1 263 -0.90 NB14-16-21 0.282 803 1.8 9.6 637 928 -0.92 NB14-16-22 0.282 750 -0.3 7.8 709 1 096 -0.94 -
[1] Chen, D.L., Sun, Y., Liu, L., 2007.The Metamorphic Ages of the Country Rock of the Yukahe Eclogites in the North Qaidam and Its Geological Significance.Earth Science Frontiers, 14(1):108-116 (in Chinese with English abstract). doi: 10.1016/S1872-5791(07)60005-0 [2] Chen, D.L., Sun, Y., Liu, L., 2008.Zircon U-Pb Dating of Paragneiss Interbed in the UHP Eclogite from Yematan Area, the North Qaidam UHP Terrane, NW China.Acta Petrologica Sinica, 24(5):1059-1067 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_ysxb98200805012.aspx [3] Dai, L.Q., Zhao, Z.F., Zheng, Y.F., et al., 2017.Geochemical Distinction between Carbonate and Silicate Metasomatism in Generating the Mantle Sources of Alkali Basalts.Journal of Petrology, 58(5):863-884. https://doi.org/10.1093/petrology/egx038 [4] Defant, M.J., Drummond, M.S., 1990.Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere.Nature, 347(6294):662-665. https://doi.org/10.1038/347662a0 [5] Deng, J.F., Liu, C., Feng, Y.F., et al., 2010.High Magnesian Andesitic/Dioritic Rocks(HMA) and Magnesian Andesitic/Dioritic Rocks(MA):Two Igneous Rock Types Related to Oceanic Subduction.Geology in China, 37(4):1112-1118 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/zgdizhi201004025 [6] Elhlou, S., Belousova, E., Griffin, W.L., et al., 2006.Trace Element and Isotopic Composition of GJ-Red Zircon Standard by Laser Ablation.Geochimica et Cosmochimica Acta, 70(18):A158. https://doi.org/10.1016/j.gca.2006.06.1383 [7] Gao, S., Rudnick, R.L., Yuan, H.L., et al., 2004.Recycling Lower Continental Crust in the North China Craton.Nature, 432(7019):892-897. https://doi.org/10.1038/nature03162 [8] Hao, G.J., Lu, S.N., Wang, H.C., et al., 2004.The Pre-Devonian Tectonic Framework in the Northern Margin of Qaidam Basin and Geological Evolution of Olongbuluck Palaeo-Block.Earth Science Frontiers, 11(3):115-122 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200403016.htm [9] Hou, K.J., Li, Y.H., Tian, Y.R., 2009.In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS.Mineral Deposits, 28(4):481-492 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2009GeCAS..73R.552H [10] Hou, K.J., Li, Y.H., Zou, T.R., et al., 2007.Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications.Acta Petrologica Sinica, 23(10):2595-2604 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200710026.htm [11] Huyu, T., Tatsumi, Y., Nakai, S., et al., 2006.Contribution of Slab Melting and Slab Dehydration to Magmatism in the Japanese Arc.Geochimica et Cosmochimica Acta, 70:229-229. http://www.sciencedirect.com/science/article/pii/S001670370600771X [12] Irvine, T.N., Baragar, W.R.A., 1971.A Guide to the Chemical Classification of the Common Volcanic Rocks.Canadian Journal of Earth Sciences, 8(5):523-548. https://doi.org/10.1139/e71-055 [13] Kamei, A., 2004.High-Mg Diorites Derived from Sanukitic HMA Magmas, Kyushu Island, Southwest Japan Arc:Evidence from Clinopyroxene and Whole Rock Compositions.Lithos, 75(3-4):359-371. https://doi.org/10.1016/j.lithos.2004.03.006 [14] Kawabata, H., Shuto, K., 2005.Magma Mixing Recorded in Intermediate Rocks Associated with High-Mg Andesites from the Setouchi Volcanic Belt, Japan:Implications for Archean TTG Formation.Journal of Volcanology and Geothermal Research, 140(4):241-271. https://doi.org/10.1016/j.jvolgeores.2004.08.013 [15] Kelemen, P.B., 1995.Genesis of High Mg# Andesites and the Continental Crust.Contributions to Mineralogy and Petrology, 120(1):1-19. https://doi.org/10.1007/s004100050054 [16] Kelemen, P.B., Hanghoj, K., Greene, A.R., 2003.One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust.Treatise on Geochemistry, 749-805. https://doi.org/10.1016/B978-0-08-095975-7.00323-5 [17] Liu, Y., Gao, S., Hu, Z., et al., 2009.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082 [18] Mattinson, C.G., Menold, C.A., Zhang, J.X., et al., 2007.High-and Ultrahigh-Pressure Metamorphism in the North Qaidam and South Altyn Terranes, Western China.International Geology Review, 49(11):969-995. https://doi.org/10.2747/0020-6814.49.11.969 [19] Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey.Contributions to Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/bf00384745 [20] Qian, B., Zhang, Z.W., Liu, H.W., et al., 2017a.Analysis on the Prospecting Potentiality and Cu-Ni Metallogenic Conditions of the Paleozoic Mafic-Ultramafic in the Northwestern Margin of Qaidam Basin.Northwestern Geology, 50(1):35-49 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-XBDI201701006.htm [21] Qian, B., Zhang, Z.W., Wang, Y.L., et al., 2017b.Zircon U-Pb Geochronology, Geochemistry and Metallogensis of the Hudesheng Mafic-Ultramafic Intrusion in the Eastern Section of Northern Qaidam Basin.Geology and Exploration, 53(5):838-854 (in Chinese with English abstract). https://doi.org/10.13712/j.cnki.dzykt.2017.05.002 [22] Qian, B., Zhang, Z.W., Zhang, Z.B., et al., 2015.Zircon U-Pb Geochronology of Niubiziliang Mafic-Ultramafic Intrusion on the Northwest Margin of Qaidam Basin, Qinghai.Geology in China, 42(3):482-493 (in Chinese with English abstract). http://www.cqvip.com/QK/90050X/201503/665418876.html [23] Rapp, R.P., Shimizu, N., Norman, M.D., et al., 1999.Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge:Experimental Constraints at 3.8 GPa.Chemical Geology, 160(4):335-356. doi: 10.1016/S0009-2541(99)00106-0 [24] Shimoda, G., Tatsumi, Y., Nohda, S., et al., 1998.Setouchi High-Mg Andesites Revisited:Geochemical Evidence for Melting of Subducting Sediments.Earth and Planetary Science Letters, 160(3-4):479-492. https://doi.org/10.1016/s0012-821x(98)00105-8 [25] Sláma, J., Košler, J., Condon, D.J., et al., 2008.Plešovice Zircon-A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis.Chemical Geology, 249(1-2):1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005 [26] Smithies, R.H., 2000.The Archaean High-Mg Diorite Suite:Links to Tonalite-Trondhjemite-Granodiorite Magmatism and Implications for Early Archaean Crustal Growth.Journal of Petrology, 41(12):1653-1671. https://doi.org/10.1093/petrology/41.12.1653 [27] Song, S.G., Niu, Y.L., Su, L., et al., 2014.Continental Orogenesis from Ocean Subduction, Continent Collision/Subduction, to Orogen Collapse, and Orogen Recycling:The Example of the North Qaidam UHPM Belt, NW China.Earth-Science Reviews, 129:59-84. https://doi.org/10.1016/j.earscirev.2013.11.010 [28] Song, S.G., Niu, Y.L., Zhang, L.F., et al., 2009.Time Constraints on Orogenesis from Oceanic Subduction to Continental Subduction, Collision, and Exhumation:An Example from North Qilian and North Qaidam HP-UHP Belts.Acta Petrologica Sinica, 25(9):2067-2077 (in Chinese with English abstract). [29] Song, S.G., Zhang, L.F., Niu, Y.L., et al., 2005.Evolution from Oceanic Subduction to Continental Collision:A Case Study from the Northern Tibetan Plateau Based on Geochemical and Geochronological Data.Journal of Petrology, 47(3):435-455. https://doi.org/10.1093/petrology/egi080 [30] Stern, R.A., Hanson, G.N., 1991.Archean High-Mg Granodiorite:A Derivative of Light Rare Earth Element-Enriched Monzodiorite of Mantle Origin.Journal of Petrology, 32(1):201-238. https://doi.org/10.1093/petrology/32.1.201 [31] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [32] Sun, Y.G., Zhang, G.W., Guo, A.L., et al., 2004.Qinling-Kunlun Triple Junction and Isotope Chronological Evidence of Its Tectonic Process.Geology in China, 31(4):372-378 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200404005 [33] Tatsumi, Y., 2001.Geochemical Modeling of Partial Melting of Subducting Sediments and Subsequent Melt-Mantle Interaction:Generation of High-Mg Andesites in the Setouchi Volcanic Belt, Southwest Japan.Geology, 29(4):323.https://doi.org/10.1130/0091-7613(2001)029<0323:gmopmo>2.0.co;2 doi: 10.1130/0091-7613(2001)029<0323:gmopmo>2.0.co;2 [34] Tatsumi, Y., 2003.The Petrology and Geochemistry of High-Magnesium Andesites at the Western Tip of the Setouchi Volcanic Belt, SW Japan.Journal of Petrology, 44(9):1561-1578. https://doi.org/10.1093/petrology/egg049 [35] Tatsumi, Y., 2006.High-Mg Andesites in the Setouchi Volcanic Belt, Southwestern Japan:Analogy to Archean Magmatism and Continental Crust Formation? Annual Review of Earth and Planetary Sciences, 34(1):467-499. https://doi.org/10.1146/annurev.earth.34.031405.125014 [36] Tatsumi, Y., 2008.Making Continental Crust:The Sanukitoid Connection.Science Bulletin, 53(11):1620-1633. https://doi.org/10.1007/s11434-008-0185-9 [37] Tatsumi, Y., Ishizaka, K., 1982.Origin of High-Magnesian Andesites in the Setouchi Volcanic Belt, Southwest Japan, I.Petrographical and Chemical Characteristics.Earth and Planetary Science Letters, 60(2):293-304. https://doi.org/10.1016/0012-821x(82)90008-5 [38] Tatsumi, Y., Ishikawa, N., Anno, K., et al., 2001.Tectonic Setting of High-Mg Andesite Magmatism in the SW Japan Arc:K-Ar Chronology of the Setouchi Volcanic Belt.Geophysical Journal International, 144(3):625-631. https://doi.org/10.1046/j.1365-246x.2001.01358.x [39] Wang, H.C., 2006.Early Paleozoic Collisional Orogeny and Magmatism on Northern Margin of the Qaidam Basin (Dissertation).China University of Geosciences, Beijng, 1-149 (in Chinese with English abstract). [40] Wang, H.C., Lu, S.N., Yuan, G.B., et al., 2003.Tectonic Setting and Age of the "Tanjianshan Group" on the Northern Margin of the Qaidam Basin.Geological Bulletin of China, 22(7):487-493 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200307004.htm [41] Wang, Q., Xu, J.F., Jian, P., et al., 2005.Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China:Implications for the Genesis of Porphyry Copper Mineralization.Journal of Petrology, 47(1):119-144. https://doi.org/10.1093/petrology/egi070 [42] Wilson, M., 1989.Igneous Petrogenesis.Unwim Hyman, London. [43] Wood, B.J., Turner, S.P., 2009.Origin of Primitive High-Mg Andesite:Constraints from Natural Examples and Experiments.Earth and Planetary Science Letters, 283(1-4):59-66. https://doi.org/10.1016/j.epsl.2009.03.032 [44] Woodhead, J.D., Hergt, J.M., Davidson, J.P., et al., 2001.Hafnium Isotope Evidence for 'Conservative' Element Mobility during Subduction Zone Processes.Earth and Planetary Science Letters, 192(3):331-346. https://doi.org/10.1016/s0012-821x(01)00453-8 [45] Wu, C.L., Gao, Y.H., Wu, S.P., et al., 2007.Zircon SHRIMP U-Pb Dating of Granites from the Da Qaidam Area in the North Margin of Qaidam Basin, NW China.Acta Petrologica Sinica, 23(8):1861-1875 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200708007.htm [46] Wu, C.L., Yang, J.S., Xu, Z.Q., et al., 2004.Granitic Magmatism on the Early Paleozoic UHP Belt of Northern Qaidam, NW China.Acta Geologica Sinica, 78(5):658-674 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200405009.htm [47] Xia, L.Q., Li, X.M., Yu, J.Y., et al., 2016.Mid-Late Neoproterozoic to Early Paleozoic Volcanism and Tectonic Evolution of the Qilian Mountain.Geology in China, 43(4):1087-1138 (in Chinese with English abstract). https://doi.org/10.12029/gc20160401 [48] Xin, H.T., Hao, G.J., Wang, H.C., et al., 2002.New Idea on Presinian Strata in the Northern Margin of Qaidam Massif.Progress in Precambrian Research, 25(2):113-119 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/qhwjyjjz200202008 [49] Xiong, Q., Zheng, J.P., Griffin, W.L., et al., 2011.Zircons in the Shenglikou Ultrahigh-Pressure Garnet Peridotite Massif and Its Country Rocks from the North Qaidam Terrane (Western China):Meso-Neoproterozoic Crust-Mantle Coupling and Early Paleozoic Convergent Plate-Margin Processes.Precambrian Research, 187(1-2):33-57. https://doi.org/10.1016/j.precamres.2011.02.003 [50] Xu, W.L., Yang, C.H., Yang, D.B., et al., 2006.Mesozoic High-Mg Diorites in Eastern North China Craton:Constraints on the Mechanism of Lithospheric Thinning.Earth Science Frontiers, 13(2):120-129 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dxqy200602014.htm [51] Xu, W.L., Yang, D.B., Gao, S., et al., 2010.Geochemistry of Peridotite Xenoliths in Early Cretaceous High-Mg# Diorites from the Central Orogenic Block of the North China Craton:The Nature of Mesozoic Lithospheric Mantle and Constraints on Lithospheric Thinning.Chemical Geology, 270(1-4):257-273. https://doi.org/10.1016/j.chemgeo.2009.12.006 [52] Xu, W.L., Yang, D.B., Pei, F.P., et al., 2009.Petrogenesis of Fushan High-Mg# Diorites from the Southern Taihang Mts.in the Central North China Craton:Resulting from Interaction of Peridotite-Melt Derived from Partial Melting of Delaminated Lower Continental Crust.Acta Petrologica Sinica, 25(8):1947-1961 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200908019 [53] Xu, Z.Q., Xu, H.F., Zhang, J.X., et al., 1994.The Zhoulangnanshan Caledonian Subductive Complex in the Northern Qilian Mountains and Its Dynamics.Acta Geologica Sinica, 68(1):1-15 (in Chinese with English abstract). [54] Xu, Z.Q., Yang, J.S., Wu, C.L., et al., 2006.Timing and Mechanism of Formation and Exhumation of the Northern Qaidam Ultrahigh-Pressure Metamorphic Belt.Journal of Asian Earth Sciences, 28(2-3):160-173. https://doi.org/10.1016/j.jseaes.2005.09.016 [55] Yang, J.S., Xu, Z.Q., Song, S.G., et al., 2000.Discovery of Eclogite in Dulan, Qinghai Province and Its Significance for Studying the HP-UHP Metamorphic Belt along the Central Orogenic Belt of China.Acta Geologica Sinica, 74(2):156-168 (in Chinese with English abstract). [56] Yang, J.S., Xu, Z.Q., Song, S.G., et al., 2010.Subduction of Continental Crust in the Early Palaeozoic North Qaidam Ultrahigh-Pressure Metamorphic Belt, NW China:Evidence from the Discovery of Coesite in the Belt.Acta Geologica Sinica (English Edition), 76(1):63-68. https://doi.org/10.1111/j.1755-6724.2002.tb00071.x [57] Yin, J.Y., Yuan, C., Sun, M., et al., 2012.Age, Geochemical Features and Possible Petrogenesis Mechanism of Early Permian Magnesian Diorite in Hatu, Xinjiang.Acta Petrologica Sinica, 28(7):2171-2182 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201207018 [58] Yogodzinski, G.M., Kay, R.W., Volynets, O.N., et al., 1995.Magnesian Andesite in the Western Aleutian Komandorsky Region:Implications for Slab Melting and Processes in the Mantle Wedge.Geological Society of America Bulletin, 107(5):505-519.https://doi.org/10.1130/0016-7606(1995)107<0505:maitwa>2.3.co;2 doi: 10.1130/0016-7606(1995)107<0505:maitwa>2.3.co;2 [59] Yogodzinski, G.M., Lees, J.M., Churikova, T.G., et al., 2001.Geochemical Evidence for the Melting of Subducting Oceanic Lithosphere at Plate Edges.Nature, 409(6819):500-504. https://doi.org/10.1038/35054039 [60] Yuan, C., Sun, M., Xiao, W.J., et al., 2008.Garnet-Bearing Tonalitic Porphyry from East Kunlun, Northeast Tibetan Plateau:Implications for Adakite and Magmas from the MASH Zone.International Journal of Earth Sciences, 98(6):1489-1510. https://doi.org/10.1007/s00531-008-0335-y [61] Zha, X.F., Gu, P.Y., Dong, Z.C., et al., 2016.Geological Record of Tectono-Thermal Event at Early Paleozoic and Its Tectonic Setting in West Segment of the North Qaidam.Earth Science, 41(4):586-604 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.048 [62] Zhang, C., van Roermund, H., Zhang, L.F., et al., 2012.A Polyphase Metamorphic Evolution for the Xitieshan Paragneiss of the North Qaidam UHP Metamorphic Belt, Western China:In-Situ EMP Monazite and U-Pb Zircon SHRIMP Dating.Lithos, 136-139:27-45. https://doi.org/10.1016/j.lithos.2011.07.024 [63] Zhang, C., Zhang, L.F., Roermund, H.V., et al., 2011.Petrology and SHRIMP U-Pb Dating of Xitieshan Eclogite, North Qaidam UHP Metamorphic Belt, NW China.Journal of Asian Earth Sciences, 42(4):752-767. https://doi.org/10.1016/j.jseaes.2011.04.002 [64] Zhang, C., Zhang, L.F., Zhang, G.B., et al., 2009.Petrology and Calculation of Retrograde PT Path of Eciogites from Xitieshan, North Qaidam, China.Acta Petrologica Sinica, 25(9):2247-2259 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200909017.htm [65] Zhang, G.B., Song, S.G., Zhang, L.F., et al., 2005.Ophiolite-Type Mantle Peridotite from Shaliuhe, North Qaidam UHPM Belt, NW China and Its Tectonic Implications.Acta Petrologica Sinica, 21(4):1049-1058 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98200504003 [66] Zhang, G.B., Zhang, L.F., Song, S.G., 2012.An Overview of the Tectonic Evolution of North Qaidam UHPM Belt:From Oceanic Subduction to Continental Collision.Geological Journal of China Universities, 18(1):28-40 (in Chinese with English abstract). [67] Zhang, J., Mattinson, C.G., Meng, F., et al., 2008.Polyphase Tectonothermal History Recorded in Granulitized Gneisses from the North Qaidam HP/UHP Metamorphic Terrane, Western China:Evidence from Zircon U-Pb Geochronology.Geological Society of America Bulletin, 120(5-6):732-749. https://doi.org/10.1130/b26093.1 [68] Zhang, J.X., Yang, J.S., Mattinson, C.G., et al., 2005.Two Contrasting Eclogite Cooling Histories, North Qaidam HP/UHP Terrane, Western China:Petrological and Isotopic Constraints.Lithos, 84(1-2):51-76. https://doi.org/10.1016/j.lithos.2005.02.002 [69] Zhang, J.X., Yang, J.S., Meng, F.C., et al., 2006.U-Pb Isotopic Studies of Eclogites and Their Host Gneisses in the Xitieshan Area of the North Qaidam Mountains, Western China:New Evidence for an Early Paleozoic HP-UHP Metamorphic Belt.Journal of Asian Earth Sciences, 28(2-3):143-150. https://doi.org/10.1016/j.jseaes.2005.09.017 [70] Zhang, Q., Qian, Q., Zhai, M.G., et al., 2005.Geochemistry, Petrogenesis and Geodynamic Implications of Sanukite.Acta Petrologica et Mineralogica, 24(2):117-125 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200502004.htm [71] Zhang, Q., Wang, Y., Qian, Q., et al., 2004.Sanukite of Late Archaean and Early Earth Evolution.Acta Petrologica Sinica, 20(6):1355-1362 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200406004.htm [72] 陈丹玲, 孙勇, 刘良, 2007.柴北缘鱼卡河榴辉岩围岩的变质时代及其地质意义.地学前缘, 14(1):108-116. doi: 10.3321/j.issn:1005-2321.2007.01.010 [73] 陈丹玲, 孙勇, 刘良, 2008.柴北缘野马滩超高压榴辉岩中副片麻岩夹层的锆石U-Pb定年及其地质意义.岩石学报, 24(5):1059-1067. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200805012 [74] 邓晋福, 刘翠, 冯艳芳, 等, 2010.高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA):与洋俯冲作用相关的两类典型的火成岩类.中国地质, 37(4):1112-1118. doi: 10.3969/j.issn.1000-3657.2010.04.025 [75] 郝国杰, 陆松年, 王惠初, 等, 2004.柴达木盆地北缘前泥盆纪构造格架及欧龙布鲁克古陆块地质演化.地学前缘, 11(3):115-122. doi: 10.3321/j.issn:1005-2321.2004.03.013 [76] 侯可军, 李延河, 田有荣, 2009.LA-MC-ICP-MS锆石微区原位U-Pb定年技术.矿床地质, 28(4):481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010 [77] 侯可军, 李延河, 邹天人, 等, 2007.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报, 23(10):2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025 [78] 钱兵, 张照伟, 刘会文, 等, 2017a.柴达木西北缘古生代镁铁-超镁铁质岩体Cu-Ni成矿条件与找矿潜力分析.西北地质, 50(1):35-49. http://d.old.wanfangdata.com.cn/Periodical/xbdz201701005 [79] 钱兵, 张照伟, 王亚磊, 等, 2017b.柴达木北缘东段呼德生镁铁-超镁铁质岩体锆石U-Pb年代学、地球化学及成岩成矿分析.地质与勘探, 53(5):838-854. http://d.old.wanfangdata.com.cn/Periodical/dzykt201705002 [80] 钱兵, 张照伟, 张志炳, 等, 2015.柴达木盆地西北缘牛鼻子梁镁铁-超镁铁质岩体年代学及其地质意义.中国地质, 42(3):482-493. doi: 10.3969/j.issn.1000-3657.2015.03.007 [81] 宋述光, 牛耀龄, 张立飞, 等, 2009.大陆造山运动:从大洋俯冲到大陆俯冲、碰撞、折返的时限——以北祁连山、柴北缘为例.岩石学报, 25(9):2067-2077. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200909003 [82] 孙延贵, 张国伟, 郭安林, 等, 2004.秦-昆三向联结构造及其构造过程的同位素年代学证据.中国地质, 31(4):372-378. doi: 10.3969/j.issn.1000-3657.2004.04.005 [83] 王惠初, 2006.柴达木盆地北缘早古生代碰撞造山及岩浆作用(博士学位论文).北京:中国地质大学, 1-149. [84] 王惠初, 陆松年, 袁桂邦, 等, 2003.柴达木盆地北缘滩间山群的构造属性及形成时代.地质通报, 22(7):487-493. doi: 10.3969/j.issn.1671-2552.2003.07.005 [85] 吴才来, 郜源红, 吴锁平, 等, 2007.柴达木盆地北缘大柴旦地区古生代花岗岩锆石SHRIMP定年.岩石学报, 23(8):1861-1875. doi: 10.3969/j.issn.1000-0569.2007.08.008 [86] 吴才来, 杨经绥, 许志琴, 等, 2004.柴达木盆地北缘古生代超高压带中花岗质岩浆作用.地质学报, 78(5):658-674. doi: 10.3321/j.issn:0001-5717.2004.05.010 [87] 夏林圻, 李向民, 余吉远, 等, 2016.祁连山新元古代中-晚期至早古生代火山作用与构造演化.中国地质, 43(4):1087-1138. http://www.cqvip.com/QK/90050X/201604/669848882.html [88] 辛后田, 郝国杰, 王惠初, 等, 2002.柴北缘前震旦纪地层系统的新认识.前寒武纪研究进展, 25(2):113-119. doi: 10.3969/j.issn.1672-4135.2002.02.008 [89] 许文良, 杨承海, 杨德彬, 等, 2006.华北克拉通东部中生代高Mg闪长岩——对岩石圈减薄机制的制约.地学前缘, 13(2):120-129. doi: 10.3321/j.issn:1005-2321.2006.02.010 [90] 许文良, 杨德彬, 裴福萍, 等, 2009.太行山南段符山高镁闪长岩的成因——拆沉陆壳物质熔融的熔体与地幔橄榄岩反应的结果.岩石学报, 25(8):1947-1961. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200908021.htm [91] 许志琴, 徐惠芬, 张建新, 等, 1994.北祁连走廊南山加里东俯冲杂岩增生地体及其动力学.地质学报, 68(1):1-15. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199401000.htm [92] 杨经绥, 许志琴, 宋述光, 等, 2000.青海都兰榴辉岩的发现及对中国中央造山带内高压-超高压变质带研究的意义.地质学报, 74(2):156-168. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200002007 [93] 尹继元, 袁超, 孙敏, 等, 2012.新疆哈图早二叠世富镁闪长岩的时代、地球化学特征和可能的成因机制.岩石学报, 28(7):2171-2182. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201207018 [94] 查显锋, 辜平阳, 董增产, 等, 2016.柴北缘西段早古生代构造-热事件及其构造环境.地球科学, 41(4):586-604. http://earth-science.net/WebPage/Article.aspx?id=3276 [95] 张聪, 张立飞, 张贵宾, 等, 2009.柴北缘锡铁山一带榴辉岩的岩石学特征及其退变PT轨迹.岩石学报, 25(9):2247-2259. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200909017 [96] 张贵宾, 宋述光, 张立飞, 等, 2005.柴北缘超高压变质带沙柳河蛇绿岩型地幔橄榄岩及其意义.岩石学报, 21(4):1049-1058. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200504003 [97] 张贵宾, 张立飞, 宋述光, 2012.柴北缘超高压变质带:从大洋到大陆的深俯冲过程.高校地质学报, 18(1):28-40. doi: 10.3969/j.issn.1006-7493.2012.01.003 [98] 张旗, 钱青, 翟明国, 等, 2005.Sanukite(赞岐岩)的地球化学特征、成因及其地球动力学意义.岩石矿物学杂志, 24(2):117-125. doi: 10.3969/j.issn.1000-6524.2005.02.005 [99] 张旗, 王焰, 钱青, 等, 2004.晚太古代Sanukite(赞岐岩)与地球早期演化.岩石学报, 20(6):1355-1362. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200406005