• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    再谈古生物学向地球生物学的发展:服务领域的拓展与创新

    谢树成 殷鸿福 刘邓 邱轩

    谢树成, 殷鸿福, 刘邓, 邱轩, 2018. 再谈古生物学向地球生物学的发展:服务领域的拓展与创新. 地球科学, 43(11): 3823-3836. doi: 10.3799/dqkx.2018.169
    引用本文: 谢树成, 殷鸿福, 刘邓, 邱轩, 2018. 再谈古生物学向地球生物学的发展:服务领域的拓展与创新. 地球科学, 43(11): 3823-3836. doi: 10.3799/dqkx.2018.169
    Xie Shucheng, Yin Hongfu, Liu Deng, Qiu Xuan, 2018. On Development from Paleontology to Geobiology: Overview of Innovation and Expansion of Application Fields. Earth Science, 43(11): 3823-3836. doi: 10.3799/dqkx.2018.169
    Citation: Xie Shucheng, Yin Hongfu, Liu Deng, Qiu Xuan, 2018. On Development from Paleontology to Geobiology: Overview of Innovation and Expansion of Application Fields. Earth Science, 43(11): 3823-3836. doi: 10.3799/dqkx.2018.169

    再谈古生物学向地球生物学的发展:服务领域的拓展与创新

    doi: 10.3799/dqkx.2018.169
    基金项目: 

    国家自然科学基金项目 41330103

    国家重点研发计划项目 2016YFA0601100

    详细信息
      作者简介:

      谢树成(1967-), 男, 教授, 博士, 主要从事地球生物学研究和地质学相关教学工作

    • 中图分类号: P52

    On Development from Paleontology to Geobiology: Overview of Innovation and Expansion of Application Fields

    • 摘要: 地球科学前沿研究为社会服务是一个永恒的主题,这在当前全球化背景下尤其迫切.古生物学作为一个受人瞩目的精品学科,在向地球生物学发展过程中,其服务领域正不断地拓展和创新.系统地总结了当前地球生物学在全球变化和油气资源两大领域的应用与拓展,以及在关键带和深地两大领域的创新性发展.在全球变化领域,藻类、古菌、细菌等地质微生物的脂类不仅能够用于估算古温度,还可以记录干旱等极端古气候事件,从而实现古温度与古降水信号的分离.地球生物学已经从探索生物对环境的响应深入到生物对环境的作用.地球生物学也在评价烃源岩、储层等常规油气资源领域得到广泛的应用,但当前其更重要的应用表现在页岩气等非常规油气资源领域,包括地质微生物形成页岩中的纳米孔隙,形成易于压裂的长石、石英等矿物.在关键带研究领域,地球生物学可以解剖碳循环与水循环之间的内在联系.聚焦于地质微生物功能群的关键带地质微生物调查,不仅可以查明污染物的分布和污染程度,还可以为环境修复提供技术方法.而在深地研究领域,为拓展对地下空间的利用,需要充分利用地下工程对地下微生物开展调查和研究,以查明地下环境中有害或者有益的微生物功能群分布及其地质作用.

       

    • 图  1  微生物通过调整细胞膜脂类分子的甲基、五元环和不饱和键的数量来响应外界环境变化(如升温)的示意

      Fig.  1.  Schematic diagram of microbial response to the outside environmental condition (i.e., rising temperature) via methylation, cyclization and unsaturated bond changes of cell membrane lipids

      图  2  微生物作用前后黏土矿物的形貌差异所揭示的孔隙变化

      a.对照组;b.异化铁还原菌反应组;c.硫酸盐还原菌反应组;d.产甲烷菌反应组

      Fig.  2.  SEM images showing the variations of the morphology and the pores of clay minerals impacted by different microbes

      图  3  厌氧微生物与含铁黏土矿物反应后生成的无定形SiO2(a)、长石(b)和滑石(c)的扫描电镜照片和X-射线能谱图

      X-射线能谱图里的Au和Pt信号来源于样品表面喷涂的导电层

      Fig.  3.  SEM images and the X-ray energy dispersive spectroscopy of amorphous silica (a), feldspar (b) and talc (c) formed from clay minerals induced by anoxic microbes

      图  4  深地气体维持的与碳循环有关的地下微生物系统

      修改自Pedersen(1997)

      Fig.  4.  The subsurface microbial communities involved in deep carbon cycle and supported by the deep geological gases

    • [1] Azarbad, H., Niklińska, M., Laskowski, R., et al., 2015.Microbial Community Composition and Functions are Resilient to Metal Pollution along Two Forest Soil Gradients.FEMS Microbiology Ecology, 91(1):1-11. https://doi.org/10.1093/femsec/fiu003
      [2] Belin, B.J., Busset, N., Giraud, E., et al., 2018.Hopanoid Lipids:From Membranes to Plant-Bacteria Interactions.Nature Reviews Microbiology, 16(5):304-315. https://doi.org/10.1038/nrmicro.2017.173
      [3] Benton, M.J., Xie, S.C., 2014.Defining the Discipline of Geobiology.National Science Review, 1(4):483-485. https://doi.org/10.1093/nsr/nwu052
      [4] Bottjer, D.J., 2014.Geobiology Comes of Age.National Science Review, 2(1):6-6. https://doi.org/10.1093/nsr/nwu053
      [5] Brassell, S.C., Eglinton, G., Marlowe, I.T., et al., 1986.Molecular Stratigraphy:A New Tool for Climatic Assessment.Nature, 320(6058):129-133. https://doi.org/10.1038/320129a0
      [6] Chen, M.J., Chen, F.Z., Xing, P., et al., 2010.Microbial Eukaryotic Community in Response to Microcystis spp.Bloom, as Assessed by an Enclosure Experiment in Lake Taihu, China.FEMS Microbiology Ecology, 74(1):19-31. https://doi.org/10.1111/j.1574-6941.2010.00923.x
      [7] Dang, X.Y., Xue, J.T., Yang, H., et al., 2016a.Environmental Impacts on the Distribution of Microbial Tetraether Lipids in Chinese Lakes with Contrasting pH:Implications for Lacustrine Paleoenvironmental Reconstructions.Science China Earth Sciences, 59(5):939-950. https://doi.org/10.1007/s11430-015-5234-z
      [8] Dang, X.Y., Yang, H., Naafs, B.D.A., et al., 2016b.Evidence of Moisture Control on the Methylation of Branched Glycerol Dialkyl Glycerol Tetraethers in Semi-Arid and Arid Soils.Geochimica et Cosmochimica Acta, 189:24-36. https://doi.org/10.1016/j.gca.2016.06.004
      [9] de Bar, M.W., Dorhout, D.J.C., Hopmans, E.C., et al., 2016.Constraints on the Application of Long Chain Diol Proxies in the Iberian Atlantic Margin.Organic Geochemistry, 101:184-195. https://doi.org/10.1016/j.orggeochem.2016.09.005
      [10] Falkowski, P.G., Fenchel, T., Delong, E.F., 2008.The Microbial Engines That Drive Earth's Biogeochemical Cycles.Science, 320(5879):1034-1039. https://doi.org/10.1126/science.1153213
      [11] Fawcett, P.J., Werne, J.P., Anderson, R.S., et al., 2011.Extended Megadroughts in the Southwestern United States during Pleistocene Interglacials.Nature, 470(7335):518-521. https://doi.org/10.1038/nature09839
      [12] Franks, P.J., Royer, D.L., Beerling, D.J., et al., 2014.New Constraints on Atmospheric CO2 Concentration for the Phanerozoic.Geophysical Research Letters, 41(13):4685-4694. https://doi.org/10.1002/2014gl060457
      [13] Glombitza, C., Adhikari, R.R., Riedinger, N., et al., 2016.Microbial Sulfate Reduction Potential in Coal-Bearing Sediments down to~2.5 km Below the Seafloor off Shimokita Peninsula, Japan.Frontiers in Microbiology, 7:1576. http://europepmc.org/articles/PMC5051215/
      [14] Havens, K.E.2008.Cyanobacterial Harmful Algal Blooms:State of the Science and Research Needs, Springer, New York, 733-747.
      [15] Hou, J., Huang, Y., Oswald, W.W., et al., 2007.Centennial-Scale Compound-Specific Hydrogen Isotope Record of Pleistocene-Holocene Climate Transition from Southern New England.Geophysical Research Letters, 34(19):255-268. https://doi.org/10.1029/2007GL030303
      [16] Huang, X.Y., Meyers, P.A., Xue, J.T., et al., 2015.Environmental Factors Affecting the Low Temperature Isomerization of Homohopanes in Acidic Peat Deposits, Central China.Geochimica et Cosmochimica Acta, 154:212-228. https://doi.org/10.1016/j.gca.2015.01.031
      [17] Huang, X.Y., Meyers, P.A., Xue, J.T., et al., 2016.Paleoclimate Significance of n-Alkane Molecular Distributions and δ2H Values in Surface Peats across the Monsoon Region of China.Palaeogeography, Palaeoclimatology, Palaeoecology, 461:77-86. https://doi.org/10.13039/501100001809
      [18] Jacobsen, C.S., Hjelmsø, M.H., 2014.Agricultural Soils, Pesticides and Microbial Diversity.Current Opinion in Biotechnology, 27(5):15-20. https://doi.org/10.1016/j.copbio.2013.09.003
      [19] Jiang, H., Lü, H.Y., Zhi, C.Y., et al., 2002.Diatom Analysis in Quantitative Reconstruction of Quaternary Paleogeography and Paleoclimate.Quaternary Sciences, 22(2):113-122 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200202002.htm
      [20] Kallmeyer, J., Pockalny, R., Adhikari, R.R., et al., 2012.Global Distribution of Microbial Abundance and Biomass in Subseafloor Sediment.Proceedings of the National Academy of Sciences of the United States of America, 109(40):16213-16216. https://doi.org/10.1073/pnas.1203849109
      [21] Knoll, A.H., Canfield, D.E., Konhauser, K.O., 2012.Fundamentals of Geobiology.Wiley-Blackwell, Chichester. doi: 10.1002/9781118280874.ch6
      [22] Kumar, N., Kumar, V., Panwar, R., et al., 2017.Efficacy of Indigenous Probiotic Lactobacillus Strains to Reduce Cadmium Bioaccessibility-An in Vitro Digestion Model.Environmental Science and Pollution Research, 24(2):1241-1250. https://doi.org/10.1007/s11356-016-7779-6
      [23] Li, F.J., Wu, N.Q., Dong Y.J., et al., 2016.Quantitative Distribution and Calculation of Ecological Amplitude of Land Snail Metodontia in the Chinese Loess Plateau and Adjacent Regions.Quaternary Sciences, 36(3):564-574 (in Chinese with English abstract). http://www.dsjyj.com.cn/EN/Y2016/V36/I3/564
      [24] Liu, D., Dong, H., Bishop, M.E., et al., 2012.Microbial Reduction of Structural Iron in Interstratified Illite-Smectite Minerals by a Sulfate-Reducing Bacterium.Geobiology, 10(2):150-162. https://doi.org/10.1111/j.1472-4669.2011.00307.x
      [25] Liu, D., Dong, H.L., Wang, H.M., et al., 2015.Low-Temperature Feldspar and Illite Formation through Bioreduction of Fe (Ⅲ)-Bearing Smectite by an Alkaliphilic Bacterium.Chemical Geology, 406:25-33. https://doi.org/10.1016/j.chemgeo.2015.04.019
      [26] Liu, Y., Zhang, X.J., Song, H.M., et al., 2017.Tree-Ring-Width-Based PDSI Reconstruction for Central Inner Mongolia, China over the Past 333 Years.Climate Dynamics, 48(3-4):867-879. https://doi.org/10.1007/s00382-016-3115-6
      [27] Luo, P., Peng, P.A., Lü, H.Y., et al., 2012.Latitudinal Variations of CPI Values of Long-Chain n-Alkanes in Surface Soils:Evidence for CPI as a Proxy of Aridity.Science China Earth Sciences, 55(7):1134-1146. https://doi.org/10.1007/s11430-012-4401-8
      [28] Magnabosco, C., Ryan, K., Lau, M.C.Y., et al., 2016.A Metagenomic Window into Carbon Metabolism at 3 km Depth in Precambrian Continental Crust.The ISME Journal, 10(3):730-741. https://doi.org/10.1038/ismej.2015.150
      [29] Markel, E.R., Booth, R.K., Qin, Y.M., 2010.Testate Amoebae and δ13C of Sphagnum as Surface-Moisture Proxies in Alaskan Peatlands.The Holocene, 20(3):463-475. https://doi.org/10.1177/0959683609354303
      [30] McAleer, E.B., Coxon, C.E., Richards, K.G., et al., 2017.Groundwater Nitrate Reduction versus Dissolved Gas Production:A Tale of Two Catchments.Science of the Total Environment, 586:372-389. https://doi.org/10.1016/j.scitotenv.2016.11.083
      [31] McMahon, S., Parnell, J., 2014.Weighing the Deep Continental Biosphere.FEMS Microbiology Ecology, 87(1):113-120. https://doi.org/10.1111/1574-6941.12196
      [32] Momper, L., Jungbluth, S.P., Lee, M.D., et al., 2017.Energy and Carbon Metabolisms in a Deep Terrestrial Subsurface Fluid Microbial Community.The ISME Journal, 11(10):2319-2333. https://doi.org/10.1038/ismej.2017.94
      [33] Monachese, M., Burton, J.P., Reid, G.2012.Bioremediation and Tolerance of Humans to Heavy Metals through Microbial Processes:A Potential Role for Probiotics? Applied and Environmental Microbiology, 78 (18):6397-404. https://doi.org/10.1128/AEM.01665-12
      [34] Ni, J., 2017.An Introduction to Bioclimatic Factors in Global Change Research.Quaternary Sciences, 37(3):431-441 (in Chinese with English abstract).
      [35] Patterson, R.T., Lamoureux, E.D.R., Macumber, A.L., et al., 2013.Arcellacea (Testate Lobose Amoebae) as pH Indicators in a Pyrite Mine-Acidified Lake, Northeastern Ontario, Canada.Microbial Ecology, 65(3):541-554. https://doi.org/10.1007/s00248-012-0108-9
      [36] Pedersen, K., 1997.Microbial Life in Deep Granitic Rock.FEMS Microbiology Reviews, 20(3-4):399-414. https://doi.org/10.1016/s0168-6445(97)00022-3
      [37] Powers, L.A., Werne, J.P., Johnson, T.C., et al., 2004.Crenarchaeotal Membrane Lipids in Lake Sediments:A New Paleotemperature Proxy for Continental Paleoclimate Reconstruction? Geology, 32(7):613-616. https://doi.org/10.1130/g20434.1
      [38] Prahl, F.G., Wakeham, S.G., 1987.Calibration of Unsaturation Patterns in Long-Chain Ketone Compositions for Palaeotemperature Assessment.Nature, 330(6146):367-369. https://doi.org/10.1038/330367a0
      [39] Qin, Y.M., Wang, H.L., Zhang, Q.F., et al., 2013.Response of Testate Amoebae Community to Water Chemistry in Peatlands near the Middle Reach of Yangtze River.Quaternary Sciences, 33(1):26-33 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DSJJ201301005.htm
      [40] Qiu, X., Wang, H.M., Yao, Y.C., et al., 2017.High Salinity Facilitates Dolomite Precipitation Mediated by Haloferax Volcanii DS52.Earth and Planetary Science Letters, 472:197-205. https://doi.org/10.1016/j.epsl.2017.05.018
      [41] Raghoebarsing, A.A., Smolders, A.J.P., Schmid, M.C., et al., 2005.Methanotrophic Symbionts Provide Carbon for Photosynthesis in Peat Bogs.Nature, 436(7054):1153-1156. https://doi.org/10.1038/nature03802
      [42] Rampen, S.W., Willmott, V., Kim, J.H., et al., 2012.Long Chain 1, 13- and 1, 15-Diols as a Potential Proxy for Palaeotemperature Reconstruction.Geochimica et Cosmochimica Acta, 84:204-216. https://doi.org/10.1016/j.gca.2012.01.024
      [43] Reitner, J., Thiel, V., 2011.Encyclopedia of Geobiology.Springer, Berlin.
      [44] Rodriguez-Blanco, J.D., Shaw, S., Benning, L.G., 2015.A Route for the Direct Crystallization of Dolomite.American Mineralogist, 100(5-6):1172-1181. https://doi.org/10.2138/am-2015-4963
      [45] Sachse, D., Billault, I., Bowen, G.J., et al., 2012.Molecular Paleohydrology:Interpreting the Hydrogen-Isotopic Composition of Lipid Biomarkers from Photosynthesizing Organisms.Annual Review of Earth and Planetary Sciences, 40(1):221-249. https://doi.org/10.1146/annurev-earth-042711-105535
      [46] Schefuβ, E., Schouten, S., Schneider, R.R., 2005.Climatic Controls on Central African Hydrology during the Past 20, 000 Years.Nature, 437(7061):1003-1006. https://doi.org/10.1038/nature03945
      [47] Schouten, S., Hopmans, E.C., Schefuβ, E., et al., 2002.Distributional Variations in Marine Crenarchaeotal Membrane Lipids:A New Tool for Reconstructing Ancient Sea Water Temperatures? Earth and Planetary Science Letters, 204(1-2):265-274. https://doi.org/10.1016/s0012-821x(02)00979-2
      [48] Silantyeva, M., Solomonova, M., Speranskaja, N., et al., 2018.Phytoliths of Temperate Forest-Steppe:A Case Study from the Altay, Russia.Review of Palaeobotany and Palynology, 250:1-15. https://doi.org/10.1016/j.revpalbo.2017.12.002
      [49] Steinthorsdottir, M., Porter, A.S., Holohan, A., et al., 2016.Fossil Plant Stomata Indicate Decreasing Atmospheric CO2 Prior to the Eocene-Oligocene Boundary.Climate of the Past, 12(2):439-454. https://doi.org/10.5194/cp-12-439-2016
      [50] Sun, Q., Chu, G.Q., Liu, G.X., et al., 2007.Calibration of Alkenone Unsaturation Index with Growth Temperature for a Lacustrine Species, Chrysotila Lamellosa (Haptophyceae).Organic Geochemistry, 38(8):1226-1234. https://doi.org/10.1016/j.orggeochem.2007.04.007
      [51] Sun, X.J., Song, C.Q., Chen, X.D., 1999."China Quaternary Pollen Database"(CPD) and "Biome 6 000" Project.Advance in Earth Sciences, 14(4):407-411 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ904.016.htm
      [52] Tang, C.Y., Yang, H., Pancost, R.D., et al., 2017.Tropical and High Latitude Forcing of Enhanced Megadroughts in Northern China during the Last Four Terminations.Earth and Planetary Science Letters, 479:98-107. https://doi.org/10.1016/j.epsl.2017.09.012
      [53] Tierney, J.E., Russell, J.M., Huang, Y., et al., 2008.Northern Hemisphere Controls on Tropical Southeast African Climate during the Past 60, 000 Years.Science, 322(5899):252-255. https://doi.org/10.1126/science.1160485
      [54] Wang, C.F., Bendle, J., Yang, Y., et al., 2016.Impacts of pH and Temperature on Soil Bacterial 3-Hydroxy Fatty Acids:Development of Novel Terrestrial Proxies.Organic Geochemistry, 94:21-31. https://doi.org/10.1016/j.orggeochem.2016.01.010
      [55] Wang, Y.J., Lü, H.Y., Heng, P., et al., 1991.Study of Plant Opaline Silicas and Its Preliminary Application to Quaternary Geology in China.Marine Geology & Quaternary Geology, 11(3):113-124 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ199103015.htm
      [56] Weijers, J.W.H., Steinmann, P., Hopmans, E.C., et al., 2011.Bacterial Tetraether Membrane Lipids in Peat and Coal:Testing the MBT-CBT Temperature Proxy for Climate Reconstruction.Organic Geochemistry, 42(5):477-486. https://doi.org/10.1016/j.orggeochem.2011.03.013
      [57] Xie, S.C., Evershed, R.P., Huang, X.Y., et al., 2013.Concordant Monsoon-Driven Postglacial Hydrological Changes in Peat and Stalagmite Records and Their Impacts on Prehistoric Cultures in Central China.Geology, 41(8):827-830. https://doi.org/10.1130/g34318.1
      [58] Xie, S.C., Gong, Y.M., Tong, J.N., et al., 2006.Development from Paleontology to Geobiology.Chinese Science Bulletin, 51(19):2327-2336 (in Chinese). doi: 10.1007/s11434-006-2111-3
      [59] Xie, S.C., Yan, J.X., Shi, X.Y., et al., 2016a.Geobiology of hydrocarbon source rocks.Science Press, Beijing, 392 (in Chinese).
      [60] Xie, S.C., Liu, D., Qiu, X., et al., 2016b.Microbial Roles Equivalent to Geological Agents of High Temperature and Pressure in Deep Earth.Science China Earth Sciences, 46(8):1087-1094 (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=JDXG201611002&dbname=CJFD&dbcode=CJFQ
      [61] Xie, S.C., Nott, C.J., Avsejs, L.A., et al., 2000.Palaeoclimate Records in Compound-Specific δD Values of a Lipid Biomarker in Ombrotrophic Peat.Organic Geochemistry, 31:1503-1507. https://doi.org/10.1016/S0146-6380(00)00116-9
      [62] Xie, S.C., Pancost, R.D., Chen, L., et al., 2012.Microbial Lipid Records of Highly Alkaline Deposits and Enhanced Aridity Associated with Significant Uplift of the Tibetan Plateau in the Late Miocene.Geology, 40(4):291-294. https://doi.org/10.1130/g32570.1
      [63] Xie, S.C., Yang, H., Dang, X.Y., et al., 2018.Some Issues in Microbial Responses to Environmental Change and the Application of Molecular Proxies.Geological Review, 64(1):183-189 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzlp201801015
      [64] Xie, S.C., Yin, H.F., 2014.Progress and Perspective on Frontiers of Geobiology.Science China Earth Sciences, 57(5):855-868. https://doi.org/10.1007/s11430-013-4731-1
      [65] Yang, H., Ding, W.H., Zhang, C.L., et al., 2011.Occurrence of Tetraether Lipids in Stalagmites:Implications for Sources and GDGT-Based Proxies.Organic Geochemistry, 42(1):108-115. https://doi.org/10.1016/j.orggeochem.2010.11.006
      [66] Ye, R.Z., Jin, Q.S., Bohannan, B., et al., 2012.pH Controls over Anaerobic Carbon Mineralization, the Efficiency of Methane Production, and Methanogenic Pathways in Peatlands across an Ombrotrophic-Minerotrophic Gradient.Soil Biology and Biochemistry, 54(6):36-47. https://doi.org/10.1016/j.soilbio.2012.05.015
      [67] Yin, H.F., Yu, J.X., Luo, G.M., et al., 2018.Biotic Influence on the Formation of Icehouse Climates in Geologic History.Earth Science, 43(11):3809-3822 (in Chinese with English abstract).
      [68] Zhang, E.L., Chen, J.H., Cao, Y.M., et al., 2016.Subfossil Chironomid Archives and Its Application in Palaeolimnological and Global Change Study in China.Quaternary Sciences, 36(3):646-655 (in Chinese with English abstract). http://www.dsjyj.com.cn/EN/Y2016/V36/I3/646
      [69] Zhang, F., Xu, H., Shelobolina, E.S., et al., 2015.The Catalytic Effect of Bound Extracellular Polymeric Substances Excreted by Anaerobic Microorganisms on Ca-Mg Carbonate Precipitation:Implications for the "Dolomite Problem".American Mineralogist, 100(2-3):483-494. https://doi.org/10.2138/am-2015-4999
      [70] Zhao, Y., Liu, Y.L., Guo, Z.T., et al., 2017.Abrupt Vegetation Shifts Caused by Gradual Climate Changes in Central Asia during the Holocene.Science China Earth Sciences, 47(8):927-938 (in Chinese). doi: 10.1007/s11430-017-9047-7
      [71] Zheng Z., Huang K.Y., Wei J.H., et al., 2013.Modern Pollen Data in China and Adjacent Areas:Sptatial Distribution Features and Applications on Quantitative Paleoenvironment Reconstruction.Quaternary Sciences, 33(6):1037-1053 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ201306001.htm
      [72] 蒋辉, 吕厚远, 支崇远, 等, 2002.硅藻分析与第四纪定量古地理和古气候研究.第四纪研究, 22(2):113-122. doi: 10.3321/j.issn:1001-7410.2002.02.003
      [73] 李丰江, 吴乃琴, 董亚杰, 等, 2016.黄土高原及周边地区间齿螺(Metodontia)种类的数量分布及其温度和降水量最适范围的定量估算.第四纪研究, 36(3):564-574. http://d.old.wanfangdata.com.cn/Periodical/dsjyj201603006
      [74] 倪健, 2017.全球变化研究中的生物气候指标.第四纪研究, 37(3):431-441. http://d.old.wanfangdata.com.cn/Periodical/dsjyj201703001
      [75] 秦养民, 王翰林, 张千帆, 等, 2013.长江中游泥炭湿地有壳变形虫空间分布及其对水化学因子的响应.第四纪研究, 33(1):26-33. doi: 10.3969/j.issn.1001-7410.2013.01.03
      [76] 孙湘君, 宋长青, 陈旭东, 1999.中国第四纪孢粉数据库(CPD)和生物群区(Biome 6 000).地球科学进展, 14(4):407-411. doi: 10.3321/j.issn:1001-8166.1999.04.016
      [77] 王永吉, 吕厚远, 衡平, 等, 1991.植物硅酸体的研究及在我国第四纪地质学中的初步应用.海洋地质与第四纪地质, 11(3):113-124. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ199103015.htm
      [78] 谢树成, 龚一鸣, 童金南, 等, 2006.从古生物学到地球生物学的跨越.科学通报, 51(19):2327-2336. doi: 10.3321/j.issn:0023-074X.2006.19.018
      [79] 谢树成, 颜佳新, 史晓颖, 等, 2016a.烃源岩地球生物学.北京:科学出版社, 392.
      [80] 谢树成, 刘邓, 邱轩, 等, 2016b.微生物与地质温压的一些等效地质作用.中国科学:地球科学, 46(8):1087-1094. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201608007.htm
      [81] 谢树成, 杨欢, 党心悦, 等, 2018.地质微生物响应地质环境变化的若干问题——兼论环境代用指标的应用.地质论评, 64(1):183-189. http://www.cqvip.com/QK/91067X/201801/674307386.html
      [82] 殷鸿福, 喻建新, 罗根明, 等, 2018.地史时期生物对冰室气候形成的作用.地球科学, 43(11):3809-3822. http://earth-science.net/WebPage/Article.aspx?id=4017
      [83] 张恩楼, 陈建徽, 曹艳敏, 等, 2016.摇蚊亚化石记录及其在中国湖泊沉积与全球变化研究中的应用.第四纪研究, 36(3):646-655. http://d.old.wanfangdata.com.cn/Periodical/dsjyj201603014
      [84] 赵艳, 刘耀亮, 郭正堂, 等, 2017.全新世气候渐变导致中亚地区植被突变.中国科学:地球科学, 47(8):927-938. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201708005.htm
      [85] 郑卓, 黄康有, 魏金辉, 等, 2013.中国及其邻区现代孢粉数据:空间分布特征和定量古环境重建中的应用.第四纪研究, 33(6):1037-1053. doi: 10.3969/j.issn.1001-7410.2013.06.01
    • 加载中
    图(4)
    计量
    • 文章访问数:  3317
    • HTML全文浏览量:  1266
    • PDF下载量:  57
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-04-17
    • 刊出日期:  2018-11-15

    目录

      /

      返回文章
      返回