• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    藏南曲卓木地区酸性火山岩地球化学、Hf-Sr-Nd同位素特征及其成因

    董随亮 张志 张林奎 李光明 卿成实 梁维 付健刚 曹华文 李海平 许昌辉 李智鹏

    董随亮, 张志, 张林奎, 李光明, 卿成实, 梁维, 付健刚, 曹华文, 李海平, 许昌辉, 李智鹏, 2018. 藏南曲卓木地区酸性火山岩地球化学、Hf-Sr-Nd同位素特征及其成因. 地球科学, 43(8): 2701-2714. doi: 10.3799/dqkx.2018.165
    引用本文: 董随亮, 张志, 张林奎, 李光明, 卿成实, 梁维, 付健刚, 曹华文, 李海平, 许昌辉, 李智鹏, 2018. 藏南曲卓木地区酸性火山岩地球化学、Hf-Sr-Nd同位素特征及其成因. 地球科学, 43(8): 2701-2714. doi: 10.3799/dqkx.2018.165
    Dong Suiliang, Zhang Zhi, Zhang Linkui, Li Guangming, Qing Chengshi, Liang Wei, Fu Jiangang, Cao Huawen, Li Haiping, Xu Changhui, Li Zhipeng, 2018. Geochemistry, Hf-Sr-Nd Isotopes and Petrogenesis of Acidic Volcanic Rocks in Quzhuomu Region of Southern Tibet. Earth Science, 43(8): 2701-2714. doi: 10.3799/dqkx.2018.165
    Citation: Dong Suiliang, Zhang Zhi, Zhang Linkui, Li Guangming, Qing Chengshi, Liang Wei, Fu Jiangang, Cao Huawen, Li Haiping, Xu Changhui, Li Zhipeng, 2018. Geochemistry, Hf-Sr-Nd Isotopes and Petrogenesis of Acidic Volcanic Rocks in Quzhuomu Region of Southern Tibet. Earth Science, 43(8): 2701-2714. doi: 10.3799/dqkx.2018.165

    藏南曲卓木地区酸性火山岩地球化学、Hf-Sr-Nd同位素特征及其成因

    doi: 10.3799/dqkx.2018.165
    基金项目: 

    中国地质调查局项目 DD20160015

    国家自然科学基金项目 41702080

    国家重点研发计划项目 2016YFC0600308

    详细信息
      作者简介:

      董随亮(1983-), 男, 高级工程师, 主要从事青藏高原地质研究工作

      通讯作者:

      张志

    • 中图分类号: P597

    Geochemistry, Hf-Sr-Nd Isotopes and Petrogenesis of Acidic Volcanic Rocks in Quzhuomu Region of Southern Tibet

    • 摘要: 目前关于白垩纪酸性岩石的相关研究报道极少.近年来在曲卓木地区发现了较为广泛的酸性(英安岩)-基性(辉绿岩-玄武岩)火山岩浆活动,双峰式火山岩浆活动特征明显.对其进行了年代学、地球化学及Hf-Sr-Nd同位素研究.结果表明,英安岩成岩年龄为142.0±2.5 Ma,具有高的LREE及Nb、Zr、Hf、Y等高场强元素含量以及Ga/Al比值,显示A型花岗岩特征.锆石的εHft)值为-13.1~-2.4,平均值为-7.1.岩石具有高的初始Sr同位素值((87Sr/86Sr)i值为0.722 024~0.722 698)以及低的初始Nd同位素值(εNdt)为-12.2~-11.8).综合研究表明,曲卓木地区酸性火山岩是伸展背景下大陆地壳深熔作用的产物,其与区域上桑秀组酸性火山岩、Laguila酸性侵入岩、桑日则地区流纹岩具有相似的地球化学特征与相当的成岩年龄,可能同属于Comei-Bunbury大火成岩省的一部分,均是Kerguelen地幔柱早期岩浆活动产物,而Kerguelen地幔柱活动可能提前至140 Ma左右.

       

    • 图  1  北喜马拉雅构造简图(a)、曲卓木地区地质图(b)及曲卓木地区AA′剖面图(c)

      Fig.  1.  Geological map of the North Himalayan (a) and Quzhuomu region (b), and AA′ section of Quzhuomu region (c)

      图  2  曲卓木地区英安岩照片

      a.英安岩露头;b.英安岩与杂砂岩界线;c, d.英安岩镜下显微照片(+).Dc.英安岩;Sd.杂砂岩;Pl.斜长石;Q.石英

      Fig.  2.  Photographs of dacite in Quzhuomu region

      图  3  曲卓木地区英安岩锆石CL图像及谐和年龄图解

      Fig.  3.  Cathodoluminescence (CL) images and concordia diagram of zircons from dacite samples in Quzhuomu region

      图  4  曲卓木地区英安岩Zr/TiO2-Nb/Y分类命名图解(a)与Y-Nb构造环境判别图解(b)

      Fig.  4.  Zr/TiO2-Nb/Y classification diagram (a) and Y-Nb tectonic discrimination diagram (b) of dacite samples in Quzhuomu region

      图  5  曲卓木地区英安岩微量元素蛛网图(a)及稀土元素配分模式(b)

      桑秀组英安岩数据据Zhu et al.(2007);桑日则流纹岩数据据林彬等(2014);Laguila酸性岩数据据Liu et al.(2015)

      Fig.  5.  The trace element (a) and chondrite-normalized REE pattern (b) of dacite samples in Quzhuomu region

      图  6  曲卓木地区英安岩Ga/Al-Zr(a)以及Ga/Al-Nb图解(b)

      Fig.  6.  Ga/Al-Zr (a) and Ga/Al-Nb (b) diagrams of zircons from dacite samples in Quzhuomu region

      图  7  曲卓木地区英安岩(87Sr/86Sr)i vs. εNd(t)图解(a)与锆石Hf同位素图解(b)

      Laguila酸性岩数据据Liu et al.(2015); 桑秀组英安岩数据据Zhu et al.(2007); 高喜马拉雅结晶岩系数据据Ding et al.(2003)

      Fig.  7.  (87Sr/86Sr)i vs. εNd(t) diagram (a) and Hf isotope diagram of zircons (b) of dacite samples in Quzhuomu region

      表  1  曲卓木地区英安岩锆石U-Pb定年结果

      Table  1.   U-Pb dating results of zircons from dacite samples in Quzhuomu region

      样品 元素含量(10-6) Th/U 同位素比值 年龄(Ma)
      Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ
      PM01-14-H101 72.43 69.22 1.05 0.046 87 0.008 43 0.134 58 0.024 15 0.022 13 0.000 77 42.7 390.7 128.2 21.6 141.1 4.9
      PM01-14-H102 99.91 122.44 0.82 0.055 62 0.005 54 0.164 98 0.016 97 0.022 33 0.000 53 438.9 228.7 155.1 14.8 142.4 3.3
      PM01-14-H103 126.50 103.86 1.22 0.042 80 0.006 65 0.133 29 0.021 22 0.022 02 0.000 82 / / 127.0 19.0 140.4 5.2
      PM01-14-H104 56.36 125.67 0.45 0.053 82 0.006 43 0.154 61 0.018 63 0.022 37 0.000 60 364.9 267.6 146.0 16.4 142.6 3.8
      PM01-14-H105 61.54 106.74 0.58 0.053 26 0.009 20 0.165 66 0.028 37 0.022 42 0.000 57 338.9 361.1 155.6 24.7 142.9 3.6
      PM01-14-H106 70.50 90.42 0.78 0.054 54 0.013 53 0.159 30 0.040 04 0.022 56 0.001 53 394.5 477.7 150.1 35.1 143.8 9.7
      PM01-14-H107 103.56 151.70 0.68 0.054 44 0.008 37 0.161 58 0.024 55 0.021 78 0.000 67 390.8 150.9 152.1 21.5 138.9 4.2
      PM01-14-H108 55.49 86.82 0.64 0.049 89 0.008 88 0.155 58 0.025 52 0.022 21 0.000 93 190.8 375.9 146.8 22.4 141.6 5.9
      PM01-14-H109 80.43 90.18 0.89 0.056 31 0.010 09 0.163 66 0.030 58 0.022 12 0.000 98 464.9 405.5 153.9 26.7 141.0 6.2
      PM01-14-H110 45.40 73.11 0.62 0.053 49 0.012 67 0.152 48 0.033 86 0.022 44 0.001 00 350.1 462.9 144.1 29.8 143.0 6.3
      PM01-14-H111 83.03 111.01 0.75 0.053 12 0.007 48 0.154 84 0.021 47 0.022 09 0.000 87 344.5 288.9 146.2 18.9 140.8 5.5
      PM01-14-H112 79.66 99.55 0.80 0.052 79 0.007 94 0.152 22 0.022 48 0.021 54 0.000 88 320.4 311.1 143.9 19.8 137.4 5.5
      PM01-14-H113 116.09 123.76 0.94 0.047 94 0.006 15 0.141 93 0.015 85 0.022 77 0.000 50 94.5 281.4 134.8 14.1 145.2 3.1
      PM01-14-H114 100.40 124.29 0.81 0.105 00 0.002 15 4.667 39 0.117 87 0.322 78 0.004 60 1 714.5 37.7 1 761.4 21.2 1 803.3 22.4
      PM01-14-H115 46.06 67.16 0.69 0.201 92 0.005 93 12.526 36 0.570 07 0.449 59 0.015 59 2 841.7 52.8 2 644.7 42.8 2 393.4 69.3
      PM01-14-H116 106.41 161.73 0.66 0.187 52 0.003 43 13.420 00 0.293 11 0.519 96 0.006 46 2 720.7 30.2 2 709.7 20.7 2 699.0 27.4
      下载: 导出CSV

      表  2  曲卓木地区英安岩主量元素(%)、微量元素(10-6)和稀土元素(10-6)分析结果

      Table  2.   Major element (%), trace elements (10-6) and rare earth elements (10-6) analysis results from dacite samples in Quzhuomu region

      样品编号 PM01-14-H1 PM01-14-H2 PM01-14-H3 PM01-14-H4 PM01-14-H5
      SiO2 54.50 53.73 66.34 60.01 54.60
      TiO2 0.78 0.84 0.74 0.77 0.80
      Al2O3 13.15 13.69 10.22 11.96 12.95
      Fe2O3 18.49 18.51 11.90 15.45 18.98
      MnO 0.07 0.07 0.05 0.06 0.07
      MgO 2.72 2.82 1.82 2.36 2.81
      CaO 2.26 2.34 2.10 2.04 2.15
      Na2O 1.31 1.21 1.19 1.09 1.26
      K2O 0.23 0.42 0.50 0.41 0.19
      P2O5 0.20 0.23 0.29 0.24 0.22
      LOI 6.27 6.06 4.81 5.57 5.94
      Total 99.98 99.92 99.95 99.96 99.96
      Mg# 22.90 23.54 23.61 23.58 23.01
      Sc 11.80 13.50 10.70 12.60 12.80
      V 53.50 53.50 44.30 51.40 53.40
      Cr 19.10 20.90 17.90 19.80 20.00
      Co 8.08 9.19 7.26 8.53 9.04
      Ni 9.95 13.00 11.70 11.60 11.60
      Ga 22.00 23.80 17.30 22.00 24.40
      Rb 9.80 19.10 22.70 20.40 9.31
      Sr 69.40 76.20 70.00 75.80 76.10
      Y 44.00 48.90 48.40 47.90 46.80
      Zr 219.00 241.00 214.00 242.00 212.00
      Nb 23.40 25.50 23.00 25.40 26.30
      Cs 0.89 1.39 0.86 1.11 0.97
      Ba 110.00 127.00 211.00 233.00 94.30
      Hf 6.79 7.83 7.09 7.61 6.64
      Ta 1.70 1.95 1.73 1.95 1.93
      Pb 17.60 22.80 16.50 18.20 20.40
      Th 26.90 32.40 27.50 30.60 31.60
      U 3.79 4.30 3.76 4.21 4.06
      锆石饱和温度T(℃) 859 868 856 869 856
      La 69.10 73.70 59.90 64.20 75.30
      Ce 140.00 154.00 125.00 134.00 155.00
      Pr 15.50 17.10 14.30 15.10 17.50
      Nd 59.80 67.30 58.40 60.00 68.30
      Sm 10.40 12.10 11.40 11.30 12.40
      Eu 1.85 1.96 1.91 1.92 2.01
      Gd 9.35 10.60 10.40 10.10 10.50
      Tb 1.50 1.73 1.76 1.73 1.75
      Dy 8.05 9.31 9.55 9.27 8.93
      Ho 1.58 1.79 1.76 1.77 1.73
      Er 4.62 5.16 4.85 5.04 5.03
      Tm 0.79 0.89 0.78 0.86 0.84
      Yb 4.80 5.67 4.81 5.40 5.17
      Lu 0.69 0.80 0.67 0.74 0.70
      Y 44.00 48.90 48.40 47.90 46.80
      ΣREE 328.03 362.11 305.49 321.43 365.16
      LREE 296.65 326.16 270.91 286.52 330.51
      HREE 31.38 35.95 34.58 34.91 34.65
      LREE/HREE 9.45 9.07 7.83 8.21 9.54
      (La/Yb)N 10.33 9.32 8.93 8.53 10.45
      δEu 0.57 0.53 0.54 0.55 0.54
      δCe 1.05 1.06 1.05 1.06 1.05
      下载: 导出CSV

      表  3  曲卓木地区英安岩Nd-Sr同位素分析结果

      Table  3.   Nd-Sr isotope analysis results from dacite samples in Quzhuomu region

      样品编号 147Sm/144Nd 143Nd/144Nd 2σ 143Nd/144Nd (t) εNd(0) εNd(t) tDM2(Ma) 87Rb/86Sr 87Sr/86Sr 2σ (87Sr/86Sr)i
      PM01-14-H1 0.104 690 0.511 934 0.000 005 0.511 837 -13.7 -12.1 1 915 0.408 254 0.723 522 0.000 019 0.722 698
      PM01-14-H2 0.108 228 0.511 951 0.000 005 0.511 850 -13.4 -11.8 1 893 0.724 673 0.723 922 0.000 016 0.722 459
      PM01-14-H3 0.117 507 0.511 938 0.000 008 0.511 829 -13.7 -12.2 1 927 0.937 544 0.723 916 0.000 014 0.722 024
      下载: 导出CSV

      表  4  曲卓木地区英安岩锆石Hf同位素分析结果

      Table  4.   Hf isotope analysis results of zircons from dacite samples in Quzhuomu region

      样品号 t(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf ±2σ Hfi εHf(t) tDM(Ga) tDMC(Ga)
      PM01-14-H112 137.4 0.046 31 0.001 10 0.282 42 0.000 03 0.28 -9.7 1.18 1.80
      PM01-14-H107 138.9 0.076 77 0.001 79 0.282 59 0.000 03 0.28 -3.4 0.95 1.41
      PM01-14-H103 140.4 0.038 07 0.000 89 0.282 44 0.000 03 0.28 -8.7 1.14 1.75
      PM01-14-H111 140.8 0.060 26 0.001 40 0.282 53 0.000 03 0.28 -5.5 1.03 1.54
      PM01-14-H109 141.0 0.047 11 0.001 10 0.282 48 0.000 03 0.28 -7.4 1.10 1.66
      PM01-14-H101 141.1 0.044 58 0.001 04 0.282 51 0.000 03 0.28 -6.2 1.05 1.59
      PM01-14-H102 141.1 0.068 69 0.001 63 0.282 62 0.000 03 0.28 -2.4 0.91 1.35
      PM01-14-H108 141.6 0.029 42 0.000 71 0.282 48 0.000 03 0.28 -7.2 1.08 1.65
      PM01-14-H104 142.6 0.041 13 0.000 93 0.282 44 0.000 02 0.28 -8.6 1.14 1.74
      PM01-14-H105 142.9 0.047 46 0.001 12 0.282 48 0.000 03 0.28 -7.4 1.10 1.66
      PM01-14-H110 143.0 0.037 48 0.000 91 0.282 41 0.000 02 0.28 -9.8 1.19 1.81
      PM01-14-H106 143.8 0.031 74 0.000 75 0.282 32 0.000 03 0.28 -13.1 1.31 2.02
      PM01-14-H113 145.2 0.075 59 0.001 75 0.282 59 0.000 03 0.28 -3.5 0.96 1.42
      下载: 导出CSV
    • [1] Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses that do not Report 204Pb.Chemical Geology, 192(1-2):59-79. https://doi.org/10.1016/s0009-2541(02)00195-x
      [2] Bacon, C.R., Druitt, T.H., 1988.Compositional Evolution of the Zoned Calc-Alkaline Magma Chamber of Mount Mazama, Crater Lake, Oregon.Contributions to Mineralogy and Petrology, 98(2):224-256. https://doi.org/10.1007/bf00402114
      [3] Bullen, T.D., Clynne, M.A., 1990.Trace Element and Isotopic Constraints on Magmatic Evolution at Lassen Volcanic Center.Journal of Geophysical Research, 95(B12):19671-19691. https://doi.org/10.1029/jb095ib12p19671
      [4] Chen, F., Hegner, E., Todt, W., 2000.Zircon Ages and Nd Isotopic and Chemical Compositions of Orthogneisses from the Black Forest, Germany:Evidence for a Cambrian Magmatic Arc.International Journal of Earth Sciences, 88(4):791-802. https://doi.org/10.1007/s005310050306
      [5] Collins, W.J., Beams, S.D., White, A.J.R., et al., 1982.Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia.Contributions to Mineralogy and Petrology, 80(2):189-200. https://doi.org/10.1007/bf00374895
      [6] Coffin, M.F., Pringle, M.S., Duncan, R.A., et al., 2002.Kerguelen Hotspot Magma Output since 130 Ma.Journal of Petrology, 43(7):1121-1137. https://doi.org/10.1093/petrology/43.7.1121
      [7] Creaser, R.A., Price, R.C., Wormald, R.J., 1991.A-Type Granites Revisited:Assessment of a Residual-Source Model.Geology, 19(2):163-166.https://doi.org/10.1130/0091-7613(1991)019<0163:atgrao>2.3.co;2 doi: 10.1130/0091-7613(1991)019<0163:atgrao>2.3.co;2
      [8] Ding, L., Kapp, P., Zhong, D.L., et al., 2003.Cenozoic Volcanism in Tibet:Evidence for a Transition from Oceanic to Continental Subduction.Journal of Petrology, 44(10):1833-1865. https://doi.org/10.1093/petrology/egg061
      [9] Gao, S., Liu, X.M., Yuan, H.L., et al., 2002.Determination of Forty-Two Major and Trace Elements in USGS and NIST SRM Glasses by LA-ICPMS.Geostandards and Geoanalytical Research, 26(2):181-196. https://doi.org/10.1111/j.1751-908x.2002.tb00886.x
      [10] Grove, T.L., Donnelly-Nolan, J.M., 1986.The Evolution of Young Silicic Lavas at Medicine Lake Volcano, California:Implications for the Origin of Compositional Gaps in Calc-Alkaline Series Lavas.Contributions to Mineralogy and Petrology, 92(3):281-302. https://doi.org/10.1007/bf00572157
      [11] Guffanti, M., Clynne, M.A., Muffler, L.J.P., 1996.Thermal and Mass Implications of Magmatic Evolution in the Lassen Volcanic Region, California, and Minimum Constraints on Basalt Influx to the Lower Crust.Journal of Geophysical Research:Solid Earth, 101(B2):3003-3013. https://doi.org/10.1029/95jb03463
      [12] Hou, K.J., Li, Y.H., Tian, Y.R., 2009.In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS.Mineral Deposits, 28(4):481-492 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200904010
      [13] Ingle, S., Weis, D., Scoates, J.S., et al., 2002.Relationship between the Early Kerguelen Plume and Continental Flood Basalts of the Paleo-Eastern Gondwanan Margins.Earth and Planetary Science Letters, 197(1-2):35-50. https://doi.org/10.1016/s0012-821x(02)00473-9
      [14] Jiang, S.H., Nie, F.J., Hu, P., et al., 2007.Geochemical Characteristics of the Mafic Dyke Swarms in South Tibet.Acta Geologica Sinica, 81(1):60-71 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200701008
      [15] Jiang, S.H., Nie, F.J., Hu, P., et al., 2010.An Important Spreading Event of the Neo-Tethys Ocean during the Late Jurassic and Early Cretaceous:Evidence from Zircon U-Pb SHRIMP Dating on Diabase in Nagarzê, Southern Tibet.Acta Geologica Sinica(English Edition), 80(4):522-527. https://doi.org/10.1111/j.1755-6724.2006.tb00272.x
      [16] Johnson, B.D., Powell, C.M., Veevers, J.J., 1976.Spreading History of the Eastern Indian Ocean and Greater India's Northward Flight from Antarctica and Australia.Geological Society of America Bulletin, 87(11):1560-1566.https://doi.org/10.1130/0016-7606(1976)87<1560:shotei>2.0.co;2 doi: 10.1130/0016-7606(1976)87<1560:shotei>2.0.co;2
      [17] Larson, R.L., 1977.Early Cretaceous Breakup of Gondwanaland off Western Australia.Geology, 5(1):57-60.https://doi.org/10.1130/0091-7613(1977)5<57:ecbogo>2.0.co;2 doi: 10.1130/0091-7613(1977)5<57:ecbogo>2.0.co;2
      [18] Lin, B., Tang, J.X., Zheng, W.B., et al., 2014.Petrochemical Features, Zircon U-Pb Dating and Hf Isotopic Composition of the Rhyolite in Zhaxikang Deposit, Southern Xizang(Tibet).Geological Review, 60(1):178-189 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201401017
      [19] Liu, Z., Zhou, Q., Lai, Y., et al., 2015.Petrogenesis of the Early Cretaceous Laguila Bimodal Intrusive Rocks from the Tethyan Himalaya:Implications for the Break-Up of Eastern Gondwana.Lithos, 236-237:190-202. https://doi.org/10.13039/501100001809
      [20] Qiu, B.B., Zhu, D.C., Zhao, Z.D., et al., 2010.The Westward Extension of Comei Fragmented LargeIgneous Province in Southern Tibet and Its Implications.Acta Petrologica Sinica, 26(7):2207-2216 (in Chinese with English abstract). http://www.oalib.com/paper/1475301
      [21] Ren, C., Ma, F.Z., Zhu, Z.H., et al., 2015.U-Pb SHRIMP Zircon Ages of the Mafic-Ultramafic Rocks from Chigu Co of South Tibet and Their Geological Significance.Geology in China, 42(4):881-890 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201504007
      [22] Roberts, M.P., Clemens, J.D., 1993.Origin of High-Potassium, Calc-Alkaline, Ⅰ-Type Granitoids.Geology, 21(9):825-828.https://doi.org/10.1130/0091-7613(1993)021<0825:oohpta>2.3.co;2 doi: 10.1130/0091-7613(1993)021<0825:oohpta>2.3.co;2
      [23] Song, B., Zhang, Y.H., Wan, Y.S., et al., 2002.Mount Making and Procedure of the SHRIMP Dating.Geological Review, 48(S1):26-30 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000005931
      [24] Spring, L., Bussy, F., Vannay, J.C., et al., 1993.Early Permian Granitic Dykes of Alkaline Affinity in the Indian High Himalaya of Upper Lahul and SE Zanskar:Geochemical Characterization and Geotectonic Implications.Geological Society, London, Special Publications, 74(1):251-264. https://doi.org/10.1144/gsl.sp.1993.074.01.18
      [25] Tepper, J.H., Nelson, B.K., Bergantz, G.W., et al., 1993.Petrology of the Chilliwack Batholith, North Cascades, Washington:Generation of Calc-Alkaline Granitoids by Melting of Mafic Lower Crust with Variable Water Fugacity.Contributions to Mineralogy and Petrology, 113(3):333-351. https://doi.org/10.1007/bf00286926
      [26] Tong, J.S., Liu, J., Zhong, H.M., et al., 2007.Zircon U-Pb Dating and Geochemistry of Mafic Dike Swarms in the Lhozag Area, southern Tibet, China, and Their Tectonic Implications.Geological Bulletin of China, 26(12):1654-1664 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200712019
      [27] Turner, S.P., Foden, J.D., Morrison, R.S., 1992.Derivation of Some A-Type Magmas by Fractionation of Basaltic Magma:An Example from the Padthaway Ridge, South Australia.Lithos, 28(2):151-179. https://doi.org/10.1016/0024-4937(92)90029-x
      [28] Veevers, J.J., McElhinny, M.W., 1976.The Separation of Australia from Other Continents.Earth-Science Reviews, 12(2-3):139-143. https://doi.org/10.1016/0012-8252(76)90003-9
      [29] Whalen, J.B., Currie, K.L., Chappell, B.W., 1987.A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis.Contributions to Mineralogy and Petrology, 95(4):407-419. https://doi.org/10.1007/bf00402202
      [30] Wu, F.Y., Yang, Y.H., Xie, L.W., et al., 2006.Hf Isotope Composition of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology.Chemical Geology, 234:105-126. doi: 10.1016/j.chemgeo.2006.05.003
      [31] Wu, Y.B., Zheng, Y.F., 2004.Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age.Chinese Science Bulletin, 49(16):1589-1602 (in Chinese). http://cn.bing.com/academic/profile?id=615cb8c204d789c7e63503208ec2377c&encoded=0&v=paper_preview&mkt=zh-cn
      [32] Xia, Y., Zhu, D.C., Zhao, Z.D., et al., 2012.Whole-Rock Geochemistry and Zircon Hf Isotope of the OIB-Type Mafic Rocks from the Comei Large Igneous Province in Southeastern Tibet.Acta Petrologica Sinica, 28(5):1588-1602 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201205021
      [33] Zhai, Q.G., Li, C., Wang, J., et al., 2009.SHRIMP U-Pb Dating and Hf Isotopic Analyses of Zircons from the Mafic Dyke Swarms in Central Qiangtang Area, Northern Tibet.Chinese Science Bulletin, 54(13):2279-2285. https://doi.org/10.1007/s11434-009-0203-6
      [34] Zhang, Z., Song, J.L., Tang, J.X., et al., 2017.Petrogenesis, Diagenesis and Mineralization Ages of Galale Cu-Au Deposit, Tibet:Zircon U-Pb Age, Hf Isotopic Composition and Molybdenite Re-Os Dating.Earth Science, 42(6):862-880 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.523
      [35] Zhong, H.M., Tong, J.S., Xia, J., et al., 2005.Characteristics and Tectonic Setting of Volcanic Rocks ofthe Sangxiu Formation in the Southern Part of Yamzho Yumco, Southern Tibet.Geological Bulletin of China, 24(1):72-79 (in Chinese with English abstract). https://www.researchgate.net/publication/313703094_Characteristics_and_tectonic_setting_of_volcanic_rocks_of_the_sangxiu_formation_in_the_southern_part_of_yamzho_lumro
      [36] Zhu, D.C., Chung, S.L., Mo, X.X., et al., 2009.The 132 Ma Comei-Bunbury Large Igneous Province:Remnants Identified in Present-Day Southeastern Tibet and Southwestern Australia.Geology, 37(7):583-586. https://doi.org/10.1130/g30001a.1
      [37] Zhu, D.C., Mo, X.X., Zhao, Z.D., et al., 2009.Permian and Early Cretaceous Tectonomagmatism in Southern Tibet and Tethyan Evolution:New Perspective.Earth Science Frontiers, 16(2):1-20 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200902002.htm
      [38] Zhu, D.C., Mo, X.X., Pan, G.T., et al., 2008.Petrogenesis of the Earliest Early Cretaceous Mafic Rocks from the Cona Area of the Eastern Tethyan Himalaya in South Tibet:Interaction between the Incubating Kerguelen Plume and the Eastern Greater India Lithosphere?Lithos, 100(1-4):147-173. https://doi.org/10.1016/j.lithos.2007.06.024
      [39] Zhu, D.C., Pan, G.T., Mo, X.X., et al., 2005a.Geochemistry and Petrogenesis of the Sangxiu Formation Basalts in the Central Segment of Tethyan Himalaya.Geochimica, 34(1):7-19 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200501002
      [40] Zhu, D.C., Pan, G.T., Mo, X.X., et al., 2005b.SHRIMP U-Pb Zircon Dating for the Dacite of the Sangxiu Formation in the Central Segment of Tethyan Himalaya and Its Implications.Chinese Science Bulletin, 50(4):375-379 (in Chinese).
      [41] Zhu, D.C., Pan, G.T., Mo, X.X., et al., 2007.Petrogenesis of Volcanic Rocks in the Sangxiu Formation, Central Segment of Tethyan Himalaya:A Probable Example of Plume-Lithosphere Interaction.Journal of Asian Earth Sciences, 29(2-3):320-335. https://doi.org/10.1016/j.jseaes.2005.12.004
      [42] Zhu, D.C., Xia, Y., Qiu, B.B., et al., 2013.Why do We Need to Propose the Early Cretaceous Comei Large Igneous Province in Southeastern Tibet?Acta Petrologica Sinica, 29(11):3659-3670 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201311001
      [43] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2013.The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau.Gondwana Research, 23(4):1429-1454. https://doi.org/10.13039/501100001809
      [44] 侯可军, 李延河, 田有荣, 2009.LA-MC-ICP-MS锆石微区原位U-Pb定年技术.矿床地质, 28(4):481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010
      [45] 江思宏, 聂凤军, 胡朋, 等, 2007.藏南基性岩墙群的地球化学特征.地质学报, 81(1):60-71. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200701008
      [46] 林彬, 唐菊兴, 郑文宝, 等, 2014.藏南扎西康矿区流纹岩的岩石地球化学、锆石U-Pb测年和Hf同位素组成.地质论评, 60(1):178-189. http://d.old.wanfangdata.com.cn/Periodical/dzlp201401017
      [47] 裘碧波, 朱弟成, 赵志丹, 等, 2010.藏南措美残余大火成岩省的西延及意义.岩石学报, 26(7):2207-2216. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201007021
      [48] 任冲, 马飞宙, 朱振华, 等, 2015.藏南哲古基性岩SHRIMP锆石U-Pb年龄及地质意义.中国地质, 42(4):881-890. doi: 10.3969/j.issn.1000-3657.2015.04.007
      [49] 宋彪, 张玉海, 万渝生, 等, 2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评, 48(S1):26-30. http://d.old.wanfangdata.com.cn/Periodical/OA000005931
      [50] 童劲松, 刘俊, 钟华明, 等, 2007.藏南洛扎地区基性岩墙群锆石U-Pb定年、地球化学特征及构造意义.地质通报, 26(12):1654-1664. doi: 10.3969/j.issn.1671-2552.2007.12.019
      [51] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1602. doi: 10.3321/j.issn:0023-074X.2004.16.002
      [52] 夏瑛, 朱弟成, 赵志丹, 等, 2012.藏东南措美大火成岩省中OIB型镁铁质岩的全岩地球化学和锆石Hf同位素.岩石学报, 28(5):1588-1602. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201205021
      [53] 张志, 宋俊龙, 唐菊兴, 等, 2017.西藏嘎拉勒铜金矿床的成岩成矿时代与岩石成因:锆石U-Pb年龄、Hf同位素组成及辉钼矿Re-Os定年.地球科学, 42(6):862-880. https://doi.org/10.3799/dqkx.2017.523
      [54] 钟华明, 童劲松, 夏军, 等, 2005.藏南羊卓雍错南部桑秀组火山岩的特征及构造环境.地质通报, 24(1):72-79. doi: 10.3969/j.issn.1671-2552.2005.01.011
      [55] 朱弟成, 莫宣学, 赵志丹, 等, 2009.西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化:新观点.地学前缘, 16(2):1-20. doi: 10.3321/j.issn:1005-2321.2009.02.001
      [56] 朱弟成, 潘桂棠, 莫宣学, 等, 2005a.特提斯喜马拉雅带中段桑秀组玄武岩的地球化学和岩石成因.地球化学, 34(1):7-19. http://d.old.wanfangdata.com.cn/Periodical/dqhx200501002
      [57] 朱弟成, 潘桂棠, 莫宣学, 等, 2005b.特提斯喜马拉雅桑秀组英安岩锆石SHRIMP年龄及其意义.科学通报, 50(4):375-379. http://d.old.wanfangdata.com.cn/Periodical/kxtb200504013
      [58] 朱弟成, 夏瑛, 裘碧波, 等, 2013.为什么要提出西藏东南部早白垩世措美大火成岩省.岩石学报, 29(11):3659-3670. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201311001
    • 加载中
    图(7) / 表(4)
    计量
    • 文章访问数:  4532
    • HTML全文浏览量:  1466
    • PDF下载量:  16
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-03-15
    • 刊出日期:  2018-08-15

    目录

      /

      返回文章
      返回