Alteration and Mineralization of the Yuhai Cu Deposit in Eastern Tianshan, Xinjiang and Applications of Short Wavelength Infra-Red (SWIR) in Exploration
-
摘要: 玉海铜矿位于东天山大南湖-头苏泉岛弧带的东段,是新疆有色地勘局704队近年来发现的一中型铜矿床,但人们对其蚀变和矿化分布特点、矿床成因类型依然知之甚少.基于详细的矿床地质、黑云母和绢云母Ar-Ar同位素定年及短波红外光谱(SWIR)研究,结果表明矿区蚀变主要有黑云母-磁铁矿化、绢英岩化及绿泥石化.其中,黑云母-磁铁矿化在矿区石英闪长岩中均有分布;绢英岩化出现在石英闪长岩中,呈带状分布;绿泥石化在石英闪长岩中均有分布,但在黑云母-磁铁矿化与绢英岩化接触部位,绿泥石化最强.黄铜矿化主要以黄铜矿-黄铁矿-磁铁矿、绿帘石-黄铜矿组合的形式出现,前者与黑云母-磁铁矿化关系密切,后者与绢英岩化关系密切.黑云母及绢云母40Ar/39Ar定年得到的年龄为324~314 Ma,与矿区出露的花岗岩年龄(325.4±2.5 Ma)在误差范围内相似,但地质条件表明矿区黑云母及绢云母Ar-Ar体系均可能被后期岩浆作用重置,结合前人研究成果,玉海铜矿化可能形成于360~350 Ma.此外,矿区绿泥石Fe-OH特征峰位值(Pos2250)的高值(>2 253 nm)主要分布在绢英岩化带及其附近,且与矿体位置相近,可作为玉海矿区找矿勘查的标志.
-
关键词:
- 东天山 /
- 玉海铜矿 /
- 40Ar/39Ar定年 /
- 短波红外光谱 /
- 年代学
Abstract: The Yuhai Cu deposit, recently discovered by the No.704 Geological Party of Xinjiang Geological Exploration Bureau for Nonferrous Metals, is located in the eastern part of the Dananhu-Tousuquan island arc belt, eastern Tianshan. The alteration and mineralization features, and metallogenesis of the Yuhai deposit are still controversial. Detailed studies on ore geology, biotite and sericite Ar-Ar isotopic dating, and short wavelength infra-red (SWIR) indicate that biotite-magnetite, phyllic and chlorite alteration are well developed at Yuhai. The biotite-magnetite alteration extensively occurs in the quartz diorite, the phyllic alteration zone mainly occurs in the quartz diorite, and the chlorite alteration mainly occurs in the transitional zone of biotite-magnetite and phyllic alterations belts. Chalcopyrite mineralization occurs as chalcopyrite-pyrite-magnetite and epidote-chalcopyrite assemblages, and the former is closely related to the biotite-magnetite alteration, while the latter is associated with the phyllic alteration. The results of biotite and sericite 40Ar/39Ar dating are ca. 324-314 Ma, consistent with the age of Yuhai granite (325.4±2.5 Ma) in errors. Integrating with local geology, biotite and sericite Ar-Ar systems were likely reset after their formation. Combined with previous studies, the biotite-magnetite and phyllic alterations were likely formed at 360-350 Ma, related with the emplacement of the Yuhaixi gneissic granite (or other coeval intrusions). Short wavelength infra-red (SWIR) research at Yuhai reveals that high values (>2 253 nm) of chlorite Fe-OH absorption peak (Pos2250) mainly occur in the phyllic alteration zone and its adjacent areas, pointing to the Cu bodies, which can be used as a potential exploration tool in deposit-scale. -
图 1 中亚造山带(a)和新疆北部(b)构造简图,以及东天山地质特征及重要矿床分布(c)
图a据Şengör et al.(1993)修改;图b据Chen et al.(2012)修改;图c据王京彬等(2006)、Deng et al.(2017)修改
Fig. 1. Tectonic sketch of the Central Asian orogenic belt (a) and northern Xinjiang (b), and geological map of the eastern Tianshan belt and major mineral deposit distribution (c)
图 2 玉海矿集区(a)和玉海Cu矿区地质简图(b)
图a据Wang et al.(2016)修改;图b据新疆有色地勘局704队,2015,新疆哈密市玉海西铜(钼)矿预查,哈密
Fig. 2. Geologic sketch of the Yuhai mineral camp (a), simplified geologic map of the Yuhai Cu deposit (b)
图 3 玉海铜矿A-A’勘探线剖面
Fig. 3. Geological section of the A-A' exploration line across the Yuhai Cu deposit
图 4 玉海铜矿手标本及镜下照片
a.黑云母-磁铁矿化蚀变;b.绢英岩化蚀变;c.石英闪长岩中绿泥石交代次生黑云母;d.钾长石化;e.磁铁矿-黄铜矿-黄铁矿化与黑云母-磁铁矿化密切相关;f.细脉状绿帘石-黄铜矿化与绢英岩化密切相关;g.绢英岩化的绢云母-黄铜矿-绿帘石组合交代次生黑云母;h.辉钼矿与黄铜矿-绿帘石-绢云母组合密切相关.Mag.磁铁矿;Bt.黑云母;Qtz.石英;Kfs.钾长石;Ccp.黄铜矿;Py.黄铁矿;Ep.绿帘石;Ser.绢云母;Mo.辉钼矿;Chl.绿泥石
Fig. 4. Representative hand specimen photographs and microphotographs of the Yuhai Cu deposit
表 1 玉海铜矿床中绢云母40Ar-39Ar年龄分析结果
Table 1. 40Ar/39Ar stepwise heating data of sericite in Yuhai Cu deposit
序号 温度间隔(℃) (40Ar/39Ar)m (36Ar/39Ar)m (37Ar/39Ar)m (38Ar/39Ar)m 39Ar(10-14 mol) 40Ar*/39Ar(1σ) 39Ar(%) 年龄(Ma) 1 62 17.831 9 0.000 3 0.015 4 0.011 5 2.23 2.089 1 47.64 318.7±4.1 2 62 17.133 6 0.000 5 0.018 0 0.011 4 1.09 4.253 4 23.30 306.0±8.2 3 62 19.812 9 0.001 4 -0.030 7 0.011 4 0.20 22.537 4 4.34 345.5±33.3 4 62 17.391 0 0.005 6 -0.011 9 0.011 8 0.08 55.776 5 1.62 285.1±86.5 5 62 17.383 8 0.002 7 0.074 2 0.012 9 0.09 51.088 7 1.87 299.6±83.1 6 62 17.660 1 0.000 6 0.098 6 0.012 1 0.36 12.804 9 7.73 314.2±16.9 7 63 16.912 7 -0.001 0 0.031 7 0.011 8 0.18 26.117 9 3.89 309.7±38.1 8 63 17.088 1 0.002 3 0.036 2 0.016 3 0.13 34.771 3 2.76 296.7±51.3 9 65 17.687 0 -0.000 6 -0.132 9 0.012 0 0.16 29.787 0 3.39 320.5±38.7 10 68 18.197 1 0.004 7 0.060 8 0.008 5 0.16 26.711 4 3.46 303.0±48.0 注:表中下标m者代表样品中测定的同位素比值;40Ar*代表放射性成因40Ar. 表 2 玉海铜矿床中黑云母40Ar-39Ar年龄分析结果
Table 2. 40Ar/39Ar stepwise heating data of biotite in Yuhai Cu deposit
序号 温度间隔(℃) (40Ar/39Ar)m (36Ar/39Ar)m (37Ar/39Ar)m (38Ar/39Ar)m 39Ar(10-14 mol) 40Ar*/39Ar(1σ) 39Ar(%) 年龄(Ma) 1 61 16.218 6 0.002 5 0.041 2 0.012 5 1.11 8.485 5 11.23 279.2±8.0 2 61 17.719 0 0.001 3 0.013 9 0.012 7 4.03 2.407 1 40.63 310.2±3.1 3 61 17.856 0 0.000 3 0.004 7 0.012 4 1.93 5.096 8 19.51 317.3±5.2 4 61 18.140 1 0.000 4 0.004 2 0.012 1 1.13 8.719 1 11.39 321.6±8.0 5 62 18.191 5 -0.000 1 0.008 9 0.013 0 0.98 10.101 2 9.92 324.9±8.2 6 62 18.127 9 -0.002 1 0.017 5 0.013 1 0.18 55.574 0 1.86 333.3±44.7 7 62 17.768 0 0.000 6 0.033 5 0.012 2 0.43 22.769 4 4.35 314.3±19.4 8 64 19.097 9 -0.006 0 0.135 2 0.018 4 0.11 99.371 5 1.10 367.9±67.8 注:表中下标m者代表样品中测定的同位素比值;40Ar*代表放射性成因40Ar. 表 3 玉海铜矿床Zk101、Zk102号钻孔蚀变矿物(绿泥石)短波红外光谱测试结果
Table 3. SWIR results of the alteration minerals (chlorite) in the drill holes of Zk101 and Zk102, Yuhai Cu deposit
钻孔编号 样品编号 样品深度(m) 识别矿物1 识别矿物2 识别矿物3 Pos2250(nm) Dep2250 Pos2350(nm) Dep2350 数据点个数 Zk101 YH15-1 -44.5 白云母 2 242.4 0.10 2 341.7 0.13 2 Zk101 YH15-2 -49.0 白云母 2 242.5 0.09 2 342.6 0.11 2 Zk101 YH15-3 -55.4 铁绿泥石 白云母 2 252.7 0.15 2 340.8 0.26 2 Zk101 YH15-4 -57.7 铁镁绿泥石 伊利石 2 255.2 0.18 2 323.1 0.18 1 Zk101 YH15-5 -60.0 铁镁绿泥石 绿帘石 2 255.2 0.15 2 338.6 0.27 2 Zk101 YH15-6 -64.0 铁镁绿泥石 伊利石 2 250.5 0.09 2 340.4 0.16 2 Zk101 YH15-7 -65.6 铁镁绿泥石 2 254.6 0.08 2 340.9 0.10 2 Zk101 YH15-8 -73.8 铁镁绿泥石 伊利石 镁铝皮石 2 242.0 0.11 2 345.6 0.12 2 Zk101 YH15-9 -85.8 铁镁绿泥石 伊利石 蒙脱石 2 248.0 0.10 2 340.8 0.11 2 Zk101 YH15-10 -100.0 白云母 伊利石 铁镁绿泥石 2 250.8 0.07 2 343.9 0.09 4 Zk101 YH15-12 -109.0 伊利石 铁镁绿泥石 2 247.2 0.09 2 343.7 0.11 2 Zk101 YH15-13 -113.0 铁镁绿泥石 伊利石 2 248.5 0.08 2 339.0 0.08 2 Zk101 YH15-14 -115.4 铁镁绿泥石 伊利石 2 248.7 0.06 2 340.9 0.08 2 Zk101 YH15-15 -119.8 铁镁绿泥石 伊利石 2 253.1 0.14 2 341.9 0.19 2 Zk101 YH15-16 -122.6 铁镁绿泥石 伊利石 2 248.1 0.11 2 340.0 0.11 2 Zk101 YH15-17 -127.0 白云母 2 242.5 0.11 2 344.0 0.13 2 Zk101 YH15-18 -128.0 铁镁绿泥石 伊利石 2 246.2 0.12 2 343.5 0.13 2 Zk101 YH15-19 -133.5 铁镁绿泥石 绿帘石 2 255.2 0.18 2 337.4 0.30 2 Zk101 YH15-20 -137.8 铁镁绿泥石 白云母 2 249.5 0.15 2 340.9 0.17 2 Zk101 YH15-21 -148.0 铁镁绿泥石 镁绿泥石 白云母 2 247.0 0.10 2 342.8 0.11 2 Zk101 YH15-22 -156.0 铁镁绿泥石 伊利石 白云母 2 250.7 0.14 2 341.5 0.17 2 Zk101 YH15-23 -171.0 绿帘石 2 255.8 0.13 2 340.1 0.20 2 Zk101 YH15-24 -182.6 蒙脱石 2 246.6 0.01 2 345.5 0.09 2 Zk101 YH15-26 -184.0 铁镁绿泥石 伊利石 2 248.7 0.10 2 340.5 0.12 2 Zk101 YH15-27 -187.0 铁镁绿泥石 白云母 2 251.6 0.14 2 341.2 0.18 2 Zk101 YH15-28 -188.8 铁镁绿泥石 白云母 绿帘石 2 253.0 0.18 2 338.9 0.27 4 Zk101 YH15-29 -194.3 伊利石 铁镁绿泥石 2 248.5 0.07 2 339.3 0.08 2 Zk101 YH15-30 -200.6 铁镁绿泥石 白云母 2 245.1 0.17 2 345.0 0.17 2 Zk101 YH15-31 -206.0 铁镁绿泥石 白云母 2 249.4 0.14 2 341.5 0.14 2 Zk101 YH15-32 -216.5 铁镁绿泥石 蒙脱石 2 250.8 0.09 2 338.1 0.10 2 Zk101 YH15-33 -221.3 铁镁绿泥石 蒙脱石 2 249.6 0.06 2 337.1 0.06 2 Zk101 YH15-34 -228.5 铁镁绿泥石 蒙脱石 镁铝皮石 2 250.7 0.07 2 334.6 0.08 2 Zk101 YH15-35 -238.5 铁镁绿泥石 伊利石 2 250.9 0.06 2 338.0 0.08 3 Zk101 YH15-36 -247.0 阳起石 铁镁绿泥石 伊利石 2 253.2 0.06 2 318.0 0.12 2 Zk101 YH15-37 -256.3 铁镁绿泥石 伊利石 2 252.0 0.16 2 336.4 0.17 2 Zk101 YH15-38 -260.0 铁镁绿泥石 白云母 2 251.8 0.10 2 341.0 0.12 2 Zk101 YH15-39 -264.5 铁镁绿泥石 伊利石 2 252.9 0.12 2 341.3 0.15 2 Zk101 YH15-40 -276.8 铁镁绿泥石 白云母 2 251.8 0.09 2 344.1 0.10 2 Zk101 YH15-41 -298.0 铁镁绿泥石 白云母 绿帘石 2 251.9 0.10 2 336.3 0.14 3 Zk101 YH15-42 -304.0 铁镁绿泥石 白云母 2 252.3 0.12 2 338.2 0.14 2 Zk101 YH15-43 -324.5 铁镁绿泥石 白云母 2 249.8 0.06 2 335.5 0.06 3 Zk101 YH15-44 -331.5 铁镁绿泥石 绿帘石 2 254.6 0.09 2 337.8 0.16 1 Zk101 YH15-45 -333.5 铁镁绿泥石 2 255.3 0.16 2 340.0 0.27 2 Zk101 YH15-46 -333.5 铁镁绿泥石 伊利石 2 251.0 0.08 2 340.4 0.11 2 Zk101 YH15-47 -360.0 铁镁绿泥石 绿帘石 2 255.0 0.19 2 339.7 0.31 2 Zk101 YH15-48 -374.0 铁镁绿泥石 绿帘石 2 255.1 0.14 2 339.1 0.23 3 Zk101 YH15-49 -388.5 铁镁绿泥石 绿帘石 白云母 2 252.0 0.20 2 341.6 0.32 2 Zk101 YH15-50 -418.8 铁镁绿泥石 绿帘石 伊利石 2 254.2 0.17 2 341.5 0.30 5 Zk101 YH15-51 -425.0 铁镁绿泥石 伊利石 2 250.9 0.09 2 336.2 0.15 2 Zk101 YH15-52 -435.0 铁镁绿泥石 伊利石 2 250.7 0.09 2 343.1 0.12 2 Zk101 YH15-53 -442.0 铁镁绿泥石 伊利石 绿帘石 2 252.4 0.13 2 340.3 0.21 4 Zk101 YH15-54 -467.5 铁镁绿泥石 蒙脱石 2 250.8 0.05 2 339.9 0.06 2 Zk101 YH15-55 -478.0 铁镁绿泥石 伊利石 蒙脱石 2 249.4 0.15 2 341.9 0.22 2 Zk101 YH15-57 -511.5 铁镁绿泥石 多硅白云母 绿帘石 2 247.3 0.23 2 342.8 0.31 6 Zk101 YH15-58 -518.5 铁镁绿泥石 多硅白云母 绿帘石 2 250.3 0.13 2 342.7 0.21 2 Zk101 YH15-59 -540.0 铁镁绿泥石 白云母 2 252.4 0.23 2 341.3 0.27 4 Zk101 YH15-60 -564.2 镁铝皮石 绿帘石 2 251.7 0.02 2 341.1 0.08 2 Zk101 YH15-61 -569.5 铁镁绿泥石 伊利石 2 252.6 0.09 2 339.5 0.14 2 Zk101 YH15-62 -574.5 铁镁绿泥石 伊利石 2 252.2 0.11 2 340.7 0.15 3 Zk101 YH15-63 -589.0 铁镁绿泥石 伊利石 2 251.0 0.13 2 342.4 0.16 2 Zk101 YH15-64 -594.0 铁镁绿泥石 伊利石 2 251.3 0.07 2 335.8 0.08 2 Zk101 YH15-65 -606.0 铁镁绿泥石 伊利石 绿帘石 2 252.0 0.15 2 341.4 0.25 2 Zk101 YH15-67 -610.0 绿帘石 2 254.3 0.25 2 339.7 0.49 2 Zk101 YH15-68 -619.5 绿帘石 铁镁绿泥石 2 253.1 0.10 2 342.4 0.13 1 Zk101 YH15-69 -624.0 绿帘石 镁铝皮石 2 253.6 0.08 2 341.9 0.15 4 Zk101 YH15-70 -627.0 铁镁绿泥石 白云母 2 252.0 0.14 2 339.5 0.18 2 Zk101 YH15-71 -648.5 铁镁绿泥石 白云母 绿帘石 2 253.5 0.11 2 342.0 0.18 2 Zk101 YH15-72 -683.5 绿帘石 伊利石 2 253.2 0.29 2 343.0 0.46 4 Zk101 YH15-73 -799.0 铁镁绿泥石 伊利石 绿帘石 2 252.0 0.16 2 339.5 0.25 4 Zk102 S102-1 -63.6 伊利石 铁镁绿泥石 2 245.2 0.06 2 339.0 0.07 2 Zk102 S102-2 -73.0 伊利石 铁镁绿泥石 2 250.0 0.10 2 333.9 0.11 2 Zk102 S102-3 -105.2 伊利石 铁镁绿泥石 2 251.0 0.08 2 327.2 0.09 2 Zk102 S102-4 -106.6 铁镁绿泥石 伊利石 2 250.1 0.16 2 335.7 0.17 2 Zk102 S102-5 -139.0 铁镁绿泥石 伊利石 2 250.2 0.13 2 334.3 0.15 2 Zk102 S102-7 -185.0 铁镁绿泥石 2 250.2 0.10 2 336.5 0.09 2 Zk102 S102-8 -196.7 铁镁绿泥石 伊利石 2 250.2 0.19 2 337.6 0.24 2 Zk102 S102-9 -209.0 铁镁绿泥石 伊利石 2 247.9 0.08 2 340.6 0.09 2 Zk102 S102-10 -225.0 铁镁绿泥石 蒙脱石 2 249.7 0.07 2 326.6 0.07 2 Zk102 S102-12 -237.8 镁绿泥石 白云母 2 251.5 0.14 2 323.3 0.16 3 Zk102 S102-13 -251.0 镁绿泥石 蒙脱石 2 248.8 0.10 2 331.5 0.11 4 Zk102 S102-14 -266.0 铁镁绿泥石 绿帘石 2 255.2 0.14 2 339.5 0.24 4 Zk102 S102-15 -339.5 铁镁绿泥石 2 252.8 0.06 2 323.3 0.10 2 Zk102 S102-16 -344.0 铁镁绿泥石 伊利石 2 252.8 0.17 2 341.2 0.28 4 Zk102 S102-17 -360.0 伊利石 2 246.8 0.02 2 334.9 0.01 2 Zk102 S102-18 -369.0 镁绿泥石 伊利石 2 254.6 0.04 2 330.6 0.06 2 Zk102 S102-19 -386.5 铁镁绿泥石 伊利石 2 253.7 0.10 2 330.5 0.18 2 Zk102 S102-20 -405.5 铁镁绿泥石 伊利石 2 252.5 0.05 2 332.1 0.08 2 Zk102 S102-21 -428.0 铁镁绿泥石 伊利石 2 251.8 0.06 2 330.9 0.09 2 Zk102 S102-22 -440.0 铁镁绿泥石 白云母 2 253.2 0.10 2 339.5 0.14 2 Zk102 S102-23 -451.0 铁镁绿泥石 白云母 2 251.9 0.09 2 341.0 0.14 2 Zk102 S102-24 -458.0 绿帘石 伊利石 2 253.2 0.18 2 341.0 0.34 2 Zk102 S102-25 -474.8 铁镁绿泥石 白云母 2 252.0 0.11 2 332.6 0.15 4 Zk102 S102-26 -487.5 镁绿泥石 伊利石 2 250.0 0.07 2 321.3 0.08 2 Zk102 S102-27 -493.5 铁镁绿泥石 白云母 2 253.2 0.09 2 338.2 0.13 2 Zk102 S102-28 -513.5 铁镁绿泥石 白云母 2 250.2 0.08 2 336.9 0.10 2 Zk102 S102-29 -526.6 铁镁绿泥石 白云母 镁铝皮石 2 251.2 0.06 2 328.0 0.10 2 Zk102 S102-30 -530.0 铁镁绿泥石 白云母 绿帘石 2 253.2 0.07 2 336.9 0.14 4 Zk102 S102-31 -557.7 铁镁绿泥石 多硅白云母 2 250.9 0.17 2 340.8 0.24 4 Zk102 S102-32 -587.0 铁镁绿泥石 伊利石 2 251.7 0.07 2 335.3 0.10 2 Zk102 S102-33 -623.0 铁镁绿泥石 伊利石 2 252.0 0.11 2 338.7 0.14 2 Zk102 S102-34 -643.0 镁绿泥石 伊利石 2 250.4 0.06 2 323.4 0.06 2 Zk102 S102-35 -661.0 铁镁绿泥石 伊利石 2 250.8 0.10 2 342.3 0.16 2 Zk102 S102-36 -678.0 铁镁绿泥石 伊利石 2 252.8 0.06 2 332.4 0.08 2 Zk102 S102-37 -711.0 铁镁绿泥石 白云母 2 252.6 0.12 2 341.0 0.15 2 Zk102 S102-38 -728.0 铁镁绿泥石 伊利石 2 253.6 0.08 2 336.5 0.14 2 Zk102 S102-39 -734.7 镁绿泥石 伊利石 2 251.9 0.06 2 319.7 0.07 4 Zk102 S102-40 -749.5 铁镁绿泥石 伊利石 蒙脱石 2 251.0 0.07 2 333.5 0.09 3 Zk102 S102-41 -772.0 铁镁绿泥石 蒙脱石 2 252.0 0.07 2 340.2 0.11 2 Zk102 S102-42 -795.0 镁绿泥石 伊利石 白云母 2 250.1 0.11 2 342.3 0.15 4 Zk102 S102-43 -804.0 铁镁绿泥石 伊利石 2 250.6 0.12 2 341.1 0.16 2 Zk102 S102-44 -880.0 铁镁绿泥石 伊利石 白云母 2 252.9 0.09 2 333.3 0.16 6 表 4 玉海-三岔口矿集区中各矿床(点)地质特征
Table 4. Geological features of deposits (mineral occurrences) in Yuhai-Sanchakou ore field
矿床(点)名称 矿化类型 矿化组合 矿石构造 赋矿围岩 主要蚀变 参考文献 玉海西 Mo 绿帘石-辉钼矿-黄铜矿 细脉浸染状 片麻状花岗岩 绿泥石化、绿帘石化 待发表 玉海 Cu 黑云母-磁铁矿-黄铜矿-黄铁矿、绿帘石-黄铜矿-绢云母 浸染状、细脉浸染状 石英闪长岩 黑云母-磁铁矿化、绢云母化 Wang et al., 2018 三岔口西 Cu 黑云母-磁铁矿-黄铜矿-黄铁矿、绿帘石-黄铜矿-绢云母 浸染状、细脉浸染状 石英闪长岩 黑云母-磁铁矿化 待发表 三岔口 Cu、Mo 黑云母-磁铁矿-黄铜矿-黄铁矿、黄铜矿-绿帘石-黄铁矿 浸染状、细脉浸染状、脉状 石英闪长岩 黑云母-磁铁矿化、绿帘石化和沸石化 待发表 -
[1] Chang, Z.S., Hedenquist, J.W., White, N.C., et al., 2011.Exploration Tools for Linked Porphyry and Epithermal Deposits:Example from the Mankayan Intrusion-Centered Cu-Au District, Luzon, Philippines.Economic Geology, 106(8):1365-1398. https://doi.org/10.2113/econgeo.106.8.1365 [2] Chen, H.Y., Han, J.S., 2015.Study of Magnetite:Problems and Future.Bulletin of Mineralogy, Petrology and Geochemistry, 34(4):724-730 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_bb712845c278d921dbf69c35e3412ddb [3] Chen, Y.J., Pirajno, F., Wu, G., et al., 2012.Epithermal Deposits in North Xinjiang, NW China.International Journal of Earth Sciences, 101(4):889-917. https://doi.org/10.1007/s00531-011-0689-4 [4] Deng, X.H., Chen, Y.J., Santosh, M., et al., 2017.U-Pb Zircon, Re-Os Molybdenite Geochronology and Rb-Sr Geochemistry from the Xiaobaishitou W(-Mo) Deposit:Implications for Triassic Tectonic Setting in Eastern Tianshan, NW China.Ore Geology Reviews, 80:332-351. https://doi.org/10.1016/j.oregeorev.2016.05.013 [5] Hou, T., Zhang, Z.C., Santosh, M., et al., 2014.Geochronology and Geochemistry of Submarine Volcanic Rocks in the Yamansu Iron Deposit, Eastern Tianshan Mountains, NW China:Constraints on the Metallogenesis.Ore Geology Reviews, 56:487-502. https://doi.org/10.1016/j.oregeorev.2013.03.008 [6] Huang, J.H., Chen, H.Y., Han, J.S., et al., 2017.Alteration Zonation and Short Wavelength Infrared (SWIR) Characteristics of the Honghai VMS Cu-Zn Deposit, Eastern Tianshan, NW China.Ore Geology Reviews.https://doi.org/10.1016/j.oregeorev.2017.02.037 [7] Jones, S., Herrmann, W., Gemmell, J.B., 2005.Short Wavelength Infrared Spectral Characteristics of the HW Horizon:Implications for Exploration in the Myra Falls Volcanic-Hosted Massive Sulfide Camp, Vancouver Island, British Columbia, Canada.Economic Geology, 100(2):273-294. https://doi.org/10.2113/gsecongeo.100.2.273 [8] Jourdan, F., Renne, P.R., 2007.Age Calibration of the Fish Canyon Sanidine 40Ar/39Ar Dating Standard Using Primary K-Ar Standards.Geochimica et Cosmochimica Acta, 71(2):387-402. https://doi.org/10.1016/j.gca.2006.09.002 [9] Li, H.Q., Chen, F.W., Lu, Y.F., et al., 2004.Zircon SHRIMP U-Pb Age and Strontium Isotopes of Mineralized Granitoids in the Sanchakou Copper Polymetallic Depoist, East Tianshan Mountains.Acta Geoscientica Sinica, 25(2):191-195 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQXB200402017.htm [10] Liu, M., Wang, Z.L., Zhang, Z.H., et al., 2009.Fluid Inclusion Geochemistry of Tuwu Porphyry Copper Deposit, Eastern Tianshan in Xinjiang.Acta Petrologica Sinica, 25(6):1446-1455 (in Chinese with English abstract). [11] Ma, X.H., Chen, B., Wang, C., et al., 2015.Early Paleozoic Subduction of the Paleo-Asian Ocean:Zircon U-Pb Geochronological, Geochemical and Sr-Nd Isotopic Evidence from the Harlik Pluton, Xinjiang.Acta Petrologica Sinica, 31(1):89-104 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201501007.htm [12] Mao, J.W., Pirajno, F., Zhang, Z.H., et al., 2008.A Review of the Cu-Ni Sulphide Deposits in the Chinese Tianshan and Altay Orogens (Xinjiang Autonomous Region, NW China):Principal Characteristics and Ore-Forming Processes.Journal of Asian Earth Sciences, 32(2-4):184-203. https://doi.org/10.1016/j.jseaes.2007.10.006 [13] Qin, K.Z., Fang, T.H., Wang, S.L., et al., 2002.Plate Tectonics Division, Evolution and Metallogenic Settings in Eastern Tianshan Mountains, NW-China.Xinjiang Geology, 20(4):302-308 (in Chinese with English abstract). [14] Selby, D., Creaser, R.A., 2001.Re-Os Geochronology and Systematics in Molybdenite from the Endako Porphyry Molybdenum Deposit, British Columbia, Canada.Economic Geology, 96(1):197-204. https://doi.org/10.2113/gsecongeo.96.1.197 [15] Şengör, A.M.C., Natal'in, B.A., Burtman, V.S., 1993.Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia.Nature, 364(6435):299-307. https://doi.org/10.1038/364299a0 [16] Shen, P., Hattori, K., Pan, H.D., et al., 2015.Oxidation Condition and Metal Fertility of Granitic Magmas:Zircon Trace-Element Data from Porphyry Cu Deposits in the Central Asian Orogenic Belt.Economic Geology, 110(7):1861-1878. https://doi.org/10.2113/econgeo.110.7.1861 [17] Shen, P., Pan, H.D., Dong, L.H., 2014.Yandong Porphyry Cu Deposit, Xinjiang, China-Geology, Geochemistry and SIMS U-Pb Zircon Geochronology of Host Porphyries and Associated Alteration and Mineralization.Journal of Asian Earth Sciences, 80:197-217. https://doi.org/10.1016/j.jseaes.2013.11.006 [18] Shi, Y., Wang, Y.W., Wang, J.B., et al., 2017.Olivine Composition of Erhongwa Complex, East Tianshan, and Its Implications to CuNi-VTiFe Composite Mineralizaion.Earth Science, 42(3)325-338 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.025 [19] Sillitoe, R.H., 2010.Porphyry Copper Systems.Economic Geology, 105(1):3-41. https://doi.org/10.2113/gsecongeo.105.1.3 [20] Sun, W.D., Huang, R.F., Li, H., et al., 2015.Porphyry Deposits and Oxidized Magmas.Ore Geology Reviews, 65:97-131. https://doi.org/10.1016/j.oregeorev.2014.09.004 [21] Wang, C., Chen, B., Ma, X.H., et al., 2015.Petrogenesis of Early and Late Paleozoic Plutons in Sanchakou Area of East Tianshan and Their Implications for Evolution of Kangur Suture Zone.Journal of Earth Sciences and Environment, 37(5):52-70 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201505004 [22] Wang, J.B., Wang, Y.W., He, Z.J., et al., 2006.Ore Deposits as a Guide to the Tectonic Evolution in the East Tianshan Mountains, NW China.Geochimica, 33(3):461-469 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200603001.htm [23] Wang, Q., Zhao, Z.H., Jian, P., et al., 2004.SHRIMP Zircon Geochronology and Nd-Sr Isotopic Geochemistry of the Dexing Granodiorite Porphyries.Acta Petrologica Sinica, 20(2):315-324 (in Chinese with English abstract). doi: 10.1089-ten.tec.2008.0703/ [24] Wang, Y.F., Chen, H.Y., Han, J.S., et al., 2018.Paleozoic Tectonic Evolution of the Dananhu-Tousuquan Island Arc Belt, Eastern Tianshan:Constraints from the Magmatism of the Yuhai Porphyry Cu Deposit, Xinjiang, NW China.Journal of Asian Earth Sciences, 153:282-306. https://doi.org/10.1016/j.jseaes.2017.05.022 [25] Wang, Y.H., Zhang, F.F., 2016.Petrogenesis of Early Silurian Intrusions in the Sanchakou Area of Eastern Tianshan, Northwest China, and Tectonic Implications:Geochronological, Geochemical, and Hf Isotopic Evidence.International Geology Review, 58(10):1294-1310. https://doi.org/10.1080/00206814.2016.1152516 [26] Wang, Y.H., Zhang, F.F., Liu, J.J., 2016.The Genesis of the Ores and Intrusions at the Yuhai Cu-Mo Deposit in Eastern Tianshan, NW China:Constraints from Geology, Geochronology, Geochemistry, and Hf Isotope Systematics.Ore Geology Reviews, 77:312-331. https://doi.org/10.1016/j.oregeorev.2016.03.003 [27] Wu, F.Y., Sun, D.Y., Ge, W.C., et al., 2011.Geochronology of the Phanerozoic Granitoids in Northeastern China.Journal of Asian Earth Sciences, 41(1):1-30. https://doi.org/10.1016/j.jseaes.2010.11.014 [28] Wu, Y.S., Zhou, K.F., Li, N., et al., 2017.Zircon U-Pb Dating and Sr-Nd-Pb-Hf Isotopes of the Ore-Associated Porphyry at the Giant Donggebi Mo Deposit, Eastern Tianshan, NW China.Ore Geology Reviews, 81:794-807. https://doi.org/10.1016/j.oregeorev.2016.02.007 [29] Xiao, B., Chen, H.Y., Wang, Y.F., et al., 2015.Discovery of the Late Silurian Granodiorite and Its Tectonic Significance in the Tuwu-Yandong Porphyry Copper Deposits, Dananhu-Tousuquan Island Arc, Eastern Tianshan.Earth Science Frontiers, 22(6):251-266 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201506024.htm [30] Xiao, B., Chen, H.Y., Wang, Y.F., et al., 2017.Chlorite and Epidote Chemistry of the Yandong Cu Deposit, NW China: Metallogenic and Exploration Implications for Paleozoic Porphyry Cu Systems in the Eastern Tianshan.Ore Geology Reviews.https://doi.org/10.1016/j.oregeorev.2017.03.004 [31] Xiao, W.J., Windley, B.F., Allen, M.B., et al., 2013.Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage.Gondwana Research, 23(4):1316-1341. https://doi.org/10.1016/j.gr.2012.01.012 [32] Xu, C., Chen, H.Y., Noel, W., et al., 2017.Alteration and Mineralization of Xinan Cu-Mo Ore Deposit in Zijinshan Orefield, Fujian Province, and Application of Short Wavelength Infra-Red Technology (SWIR) to Exploration.Mineral Deposits, 36(5):1013-1038 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201705001.htm [33] Xu, L.L., Bi, X.W., Chen, Y.W., et al., 2012.Zircon Ce4+/Ce3+ Ratios of the Tongchang Intrusions in Jinping County, Yunnan Province:Implications for Mineralization.Acta Mineralogica Sinica, 32(1):74-82 (in Chinese with English abstract). doi: 10.5846/stxb [34] Yang, F.Q., Qin, J.H., Liu, F., et al., 2013.Ar-Ar Dating of the Ductile Shear Zones in the Yulekenhalasu Cu-(Mo) Ore Deposit.Geotectonica et Metallogenia, 37(1):1-10 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DGYK201301004.htm [35] Yang, K., Lian, C., Huntington, J.F., et al., 2005.Infrared Spectral Reflectance Characterization of the Hydrothermal Alteration at the Tuwu Cu-Au Deposit, Xinjiang, China.Mineralium Deposita, 40(3):324-336. https://doi.org/10.1007/s00126-005-0479-7 [36] Yang, Z.M., Hou, Z.Q., White, N.C., et al., 2009.Geology of the Post-Collisional Porphyry Copper-Molybdenum Deposit at Qulong, Tibet.Ore Geology Reviews, 36(1/2/3):133-159. https://doi.org/10.1016/j.oregeorev.2009.03.003 [37] Yang, Z.M., Hou, Z.Q., Yang, S.S., et al., 2012.Application of Short Wavelength Infrared (SWIR) Technique in Exploration of Poorly Eroded Porphyry Cu District:A Case Study of Niancun Ore District, Tibet.Mineral Deposits, 31(4):699-717 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ201204005.htm [38] Zhang, L.C., Qin, K.Z., Xiao, W.J., 2008.Multiple Mineralization Events in the Eastern Tianshan District, NW China:Isotopic Geochronology and Geological Significance.Journal of Asian Earth Sciences, 32(2-4):236-246. https://doi.org/10.1016/j.jseaes.2007.10.011 [39] Zhang, L.C., Qin, K.Z., Ying, J.F., et al., 2004.The Relationship between Ore-Forming Processes and Adakitic Rock in Tuwu-Yandong Porphyry Copper Metallogenic Belt, Eastern Tianshan Mountains.Acta Petrologica Sinica, 20(2):259-268 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200402007.htm [40] Zhang, S.T., Chen, H.Y., Zhang, X.B., et al., 2017.Application of Short Wavelength Infrared (SWIR) Technique to Exploration of Skarn Deposit:A Case Study of Tonglvshan Cu-Fe-Au Deposit, Edongnan (Southeast Hubei) Ore Concentration Area.Mineral Deposits, 36(6):1263-1288 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ201706002.htm [41] Zhang, Z.W., Zang, Y.S., Wang, Y.L., et al., 2016.Zircon SHRIMP U-Pb Age of the Yuhai Porphyry Copper Deposit in Eastern Tianshan Mountains of Xinjiang and Its Tectonic Implications.Acta Geoscientica Sinica, 37(1):59-68 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQXB201601006.htm [42] Zheng, Y.Y., Ci, Q., Wu, S., et al., 2017.The Discovery and Significance of Rongga Porphyry Mo Deposit in the Bangong-Nujiang Metallogenic Belt, Tibet.Earth Science, 42(9):1441-1453 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.109 [43] Zhu, Y.F., An, F., Feng, W.Y., et al., 2016.Geological Evolution and Huge Ore-Forming Belts in the Core Part of the Central Asian Metallogenic Region.Journal of Earth Science, 27(3):491-506. https://doi.org/10.1007/s12583-016-0673-7 [44] 陈华勇, 韩金生, 2015.磁铁矿单矿物研究现状、存在问题和研究方向.矿物岩石地球化学通报, 34(4):724-730. doi: 10.3969/j.issn.1007-2802.2015.04.006 [45] 李华芹, 陈富文, 路远发, 等, 2004.东天山三岔口铜矿区矿化岩体SHRIMP U-Pb年代学及锶同位素地球化学特征研究.地球学报, 25(2):191-195. doi: 10.3321/j.issn:1006-3021.2004.02.018 [46] 刘敏, 王志良, 张作衡, 等, 2009.新疆东天山土屋斑岩铜矿流体包裹体地球化学特征.岩石学报, 25(6):1446-1455. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200906015 [47] 马星华, 陈斌, 王超, 等, 2015.早古生代古亚洲洋俯冲作用:来自新疆哈尔里克侵入岩的锆石U-Pb年代学、岩石地球化学和Sr-Nd同位素证据.岩石学报, 31(1):89-104. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501007 [48] 秦克章, 方同辉, 王书来, 等, 2002.东天山板块构造分区、演化与成矿地质背景研究.新疆地质, 20(4):302-308. doi: 10.3969/j.issn.1000-8845.2002.04.002 [49] 石煜, 王玉往, 王京彬, 等, 2017.东天山二红洼岩体橄榄石成分对CuNi-VTiFe复合矿化的启示.地球科学, 42(3):325-338. http://earth-science.net/WebPage/Article.aspx?id=3546 [50] 王超, 陈斌, 马星华, 等, 2015.东天山三岔口地区早、晚古生代岩体成因及其对康古尔缝合带演化的意义.地球科学与环境学报, 37(5):52-70. doi: 10.3969/j.issn.1672-6561.2015.05.004 [51] 王京彬, 王玉往, 何志军, 2006.东天山大地构造演化的成矿示踪.中国地质, 33(3):461-469. doi: 10.3969/j.issn.1000-3657.2006.03.002 [52] 王强, 赵振华, 简平, 等, 2004.德兴花岗闪长斑岩SHRIMP锆石U-Pb年代学和Nd-Sr同位素地球化学.岩石学报, 20(2):315-324. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=YSXB200402011&dbname=CJFD&dbcode=CJFQ [53] 肖兵, 陈华勇, 王云峰, 等, 2015.东天山土屋-延东铜矿矿区晚志留世岩体的发现及构造意义.地学前缘, 22(6):251-266. http://d.old.wanfangdata.com.cn/Periodical/dxqy201506021 [54] 胥磊落, 毕献武, 陈佑纬, 等, 2012.云南金平铜厂斑岩铜钼矿区岩体锆石Ce4+/Ce3+比值及其对成矿的指示意义.矿物学报, 32(1):74-82. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=KWXB201201012&dbname=CJFD&dbcode=CJFQ [55] 许超, 陈华勇, , W., 等, 2017.福建紫金山矿田西南铜钼矿段蚀变矿化特征及SWIR勘查应用研究.矿床地质, 36(5):1013-1038. http://d.old.wanfangdata.com.cn/Periodical/kcdz201705001 [56] 杨富全, 秦纪华, 刘锋, 等, 2013.新疆准噶尔北缘玉勒肯哈腊苏铜(钼)矿区韧性剪切变形时代——来自白云母和黑云母Ar-Ar年龄的约束.大地构造与成矿学, 37(1):1-10. doi: 10.3969/j.issn.1001-1552.2013.01.001 [57] 杨志明, 侯增谦, 杨竹森, 等, 2012.短波红外光谱技术在浅剥蚀斑岩铜矿区勘查中的应用——以西藏念村矿区为例.矿床地质, 31(4):699-717. doi: 10.3969/j.issn.0258-7106.2012.04.004 [58] 张连昌, 秦克章, 英基丰, 等, 2004.东天山土屋-延东斑岩铜矿带埃达克岩及其与成矿作用的关系.岩石学报, 20(2):259-268. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200402008 [59] 张世涛, 陈华勇, 张小波, 等, 2017.短波红外光谱在矽卡岩矿床中的应用——以鄂东南铜绿山铜铁金矿为例.矿床地质, 36(6):1263-1288. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201706002 [60] 张照伟, 臧遇时, 王亚磊, 等, 2016.新疆东天山玉海斑岩铜矿锆石SHRIMP U-Pb年龄及构造意义.地球学报, 37(1):59-68. http://d.old.wanfangdata.com.cn/Periodical/dqxb201601007 [61] 郑有业, 次琼, 吴松, 等, 2017.西藏班公湖-怒江成矿带荣嘎斑岩型钼矿床的发现及意义.地球科学, 42(9):1441-1453. http://earth-science.net/WebPage/Article.aspx?id=3652