Geochemical Features and Geological Significance of Yuhaixi Plutons in Eastern Tianshan, Xinjiang
-
摘要: 玉海西Mo矿位于东天山大南湖-头苏泉岛弧带东段,为新疆有色地勘局704队在2015年新发现的钼矿床.矿区出露的岩石主要为石炭系盐池组、新近系葡萄沟组砂砾岩及一套片麻状花岗岩-闪长岩-辉长岩脉复式岩体.LA-ICP-MS锆石U-Pb定年结果显示,玉海西片麻状花岗岩、闪长岩分别侵位于364 Ma和306 Ma.玉海西岩体均具有正的εHf(t)(10.5~14.2)和εNd(t)(0.9~4.0)值,较低的ISr(0.703 282~0.704 111)含量,显示新生地壳或亏损地幔来源特征.其中,片麻状花岗岩具有较小的Mg#值(22~27)、Zr/Hf(28~33)、Ti/Zr(10~29)和Ti/Y(94~149)比值,表明其来源于新生下地壳.闪长岩和辉长岩具有较低的SiO2(47.55%~57.54%)含量,较高的Mg#值(51~59)及Ti/Zr(20~380)、Ti/Zr(246~269)比值,表明其来源于亏损地幔;此外,样品富集LREEs和LILEs(Rb、Sr等),Ce/Pb(6.5~12.0)比值较低,表明有壳源物质的加入.结合区域地质研究成果,表明玉海西片麻状花岗岩来源于新生下地壳的部分熔融,由古亚洲洋向北俯冲引起;闪长岩同样形成于古亚洲洋俯冲阶段,由亏损地幔并混染地壳形成;辉长岩脉来源于亏损地幔的部分熔融并混染地壳成分,形成于碰撞后伸展阶段,晚于闪长岩(306 Ma)侵位.
-
关键词:
- 玉海西钼矿 /
- 东天山 /
- LA-ICP-MS锆石U-Pb定年 /
- 地球化学 /
- Sr-Nd-Hf同位素
Abstract: The Yuhaixi Mo deposit, located in the eastern part of the Dananhu-Tousuquan island arc belt, was discovered by the No.704 Geological Party of Xinjiang Geological Exploration Bureau for Nonferrous Metals in 2015. Rocks occurring at Yuhaixi contain the Carboniferous Yanchi Formation, Neogene Putaogou Formation and felsic-mafic plutons (gneissic granite, granite, diorite and gabbro dike). LA-ICP-MS zircon U-Pb dating reveals that gneissic granite and diorite replaced at ca. 364 Ma and 306 Ma, respectively. Yuhaixi intrusions are characterized by high εHf(t) (10.5-14.2) and εNd(t) (0.9-4.0) values, and low ISr (0.703 282-0.704 111) values, indicating depleted-mantle or juvenile-crust sources. The gneissic granite is characterized by low Mg# value (22-27), and Zr/Hf (28-33), Ti/Zr (10-29) and Ti/Y (94-149) ratios, implying a juvenile-crust source. The diorite and the gabbro dike are marked by low Si2O content (47.55%-57.54%), high Mg# values (51-59), and Ti/Zr (20-380) and Ti/Zr (246-269) ratios, which indicate that these rocks were likely formed by the part melting of the depleted mantle. However, diorite and the gabbro dike samples are rich in LREEs and LILEs (e.g., Rb, Sr), with low Ce/Pb ratios (6.5-12.0), suggesting the mixing of crustal component. Combining with the regional geological studies, the Yuhaixi gneissic granite was likely derived from the juvenile low crust, related with the north subduction of the Kangguer ocean plate; the diorite was also formed under a subducion setting by the partial melting of depleted mantle, and mixed with crustal component when it traversed the crust; the gabbro dike was probably derived from the depleted mantle, mixing with crustal component as well, in a post-collisional extension setting, the age of which was latter than 306 Ma.-
Key words:
- Yuhaixi Mo deposit /
- eastern Tianshan /
- zircon U-Pb dating /
- geochemistry /
- Sr-Nd-Hf isotope
-
图 1 中亚造山带构造简图(a);新疆北部构造简图(b);东天山地质特征及重要矿床分布(c)
图a据Wang et al.(2018);图b据Chen et al.(2012)修改;图c据王京彬等(2006)、王京彬和徐新(2006)、Deng et al.(2017)修改
Fig. 1. Tectonic sketch of the Central Asian orogenic Belt (a) and northern Xinjiang (b); geological characteristics of the eastern Tianshan belt and major mineral deposit distribution (c)
图 2 玉海西矿集区(a)和斑岩Cu-Mo矿区(b)地质简图
图a据Wang et al.(2016b)修改;图b据新疆有色地勘局704队,2015,新疆哈密市玉海西铜(钼)矿预查,哈密
Fig. 2. Geological sketch of the Yuhaixi mineral camp (a) and porphyry Cu-Mo deposit (b)
图 5 玉海西岩体N2O+K2O vs. SiO2图解(a), K2O vs. SiO2图解(b)以及A/NK vs. A/CNK图解(c)
图a据Peccerillo and Taylor(1976);图b据Maniar and Piccoli(1989)
Fig. 5. N2O+K2O vs. SiO2 diagram (a), K2O vs. SiO2 diagram (b) and A/NK vs. A/CNK diagram (c) for the Yuhaixi intrusions
图 6 玉海西岩体球粒陨石标准化REE模式(a、c、e)和原始地幔标准化微量元素蛛网图(b、d、f)
Fig. 6. Chondrite-normalized REE (a, c, e) and primitive-mantle-normalized trace elements diagrams for Yuhaixi intrusions (b, d, f)
图 7 玉海西岩体ISr-εNd(t)图解(a)及锆石εHf(t) vs. U-Pb年龄(b)图解
图a据Morris and Hart(1983);图b据Arculus and Powell(1986)
Fig. 7. ISr-εNd(t) (a) and zircon εHf(t) vs. U-Pb ages (b) diagrams for the Yuhaixi intrusions
图 8 玉海西片麻状花岗岩Zr vs. 104×Ga/Al相关图解
Fig. 8. Zr vs. 104×Ga/Al diagram for Yuhaixi gneissic granite
图 9 玉海西片麻状花岗岩构造判别图解
a.Rb vs. Ta+Yb图解;b.Rb vs. Y+Nb图解;据Pearce et al.(1984).VAG.火山弧花岗岩类;Syn-COLG.同碰撞花岗岩类;WPG.板内花岗岩类;ORG.洋中脊花岗岩类
Fig. 9. Tectonic discrimination diagrams for the Yuhaixi gnenissic granite
图 10 玉海西岩体Zr/Nb vs. Zr (a)、Th/Yb vs. Nb/Yb (b)及Hf/3-Th-Ta(c)相关图解
IAB.岛弧玄武岩;WPA.板内拉斑玄武岩;WPT.碱性板内玄武岩;图a据Pearce and Peate(1995);图b据Wang et al.(2016b);图c据Harris et al.(1986)
Fig. 10. Zr/Nb vs. Zr (a), Th/Yb vs. Nb/Yb (b) and Hf/3-Th-Ta (c) diagrams for Yuhaixi intrusions
图 11 玉海西岩体Ba vs. Nb/Y相关图解
Fig. 11. Ba vs. Nb/Y diagram for Yuhaixi intrusions
表 1 玉海西岩体LA-ICP-MS锆石U-Pb定年结果
Table 1. Results of LA-ICP-MS U-Pb dating for Yuhaixi intrusions
分析号 元素含量(10-6) Th/U 同位素比值 年龄(Ma) Th U 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 206Pb/238U 1σ 样品S001-2,片麻状花岗岩,21个点 S001-2-2 132 228 0.58 0.344 2 0.026 5 0.047 4 0.001 0 300.4 20.0 298.8 6.1 S001-2-4 42 83 0.51 0.413 1 0.050 1 0.049 2 0.001 8 351.1 36.0 309.5 11.1 S001-2-5 53 102 0.52 0.402 6 0.034 8 0.048 9 0.001 3 343.5 25.2 307.9 8.2 S001-2-6 47 91 0.51 0.307 5 0.033 8 0.048 7 0.001 3 272.2 26.2 306.5 8.0 S001-2-7 61 103 0.60 0.397 2 0.032 3 0.050 0 0.001 3 339.6 23.4 314.6 7.7 S001-2-8 81 146 0.55 0.354 3 0.030 5 0.048 2 0.001 1 307.9 22.8 303.5 6.7 S001-2-9 49 119 0.41 0.331 6 0.026 4 0.048 1 0.001 2 290.8 20.1 302.6 7.7 S001-2-11 151 260 0.58 0.353 8 0.022 9 0.049 8 0.000 9 307.6 17.2 313.3 5.5 S001-2-12 39 109 0.35 0.351 7 0.033 7 0.047 8 0.001 2 306.0 25.3 301.2 7.5 S001-2-13 58 137 0.42 0.359 8 0.031 7 0.049 1 0.001 1 312.1 23.7 309.0 7.0 S001-2-14 20 86 0.24 0.353 6 0.033 8 0.048 4 0.001 3 307.5 25.4 304.9 8.2 S001-2-15 102 162 0.63 0.378 9 0.030 9 0.047 7 0.001 1 326.2 22.7 300.1 6.5 S001-2-16 94 156 0.60 0.404 6 0.041 1 0.049 7 0.001 5 345.0 29.7 312.9 9.3 S001-2-17 35 72 0.48 0.381 0 0.036 1 0.048 7 0.001 6 327.8 26.6 306.4 9.9 S001-2-19 22 72 0.31 0.392 0 0.044 0 0.049 8 0.001 5 335.9 32.1 313.4 9.4 S001-2-20 107 174 0.62 0.359 4 0.028 1 0.048 6 0.001 0 311.8 21.0 306.1 5.9 S001-2-21 69 111 0.63 0.388 2 0.035 8 0.048 0 0.001 4 333.1 26.2 302.5 8.5 S001-2-24 40 107 0.37 0.400 9 0.041 4 0.049 4 0.001 5 342.3 30.0 311.1 9.1 S001-2-25 77 115 0.67 0.368 8 0.031 5 0.048 4 0.001 3 318.8 23.4 304.4 7.9 S001-2-28 25 63 0.40 0.335 3 0.045 0 0.047 5 0.001 5 293.6 34.3 299.3 9.5 S001-2-30 15 88 0.17 0.407 7 0.041 8 0.050 0 0.001 6 347.2 30.1 314.6 9.9 样品S3601-16,闪长岩,20个点 S3601-16-1 404 1 064 0.38 0.457 0 0.019 9 0.060 1 0.001 0 382.2 13.9 376.3 6.1 S3601-16-2 63 148 0.42 0.460 6 0.032 8 0.057 6 0.001 3 384.7 22.8 361.1 7.6 S3601-16-3 113 247 0.46 0.443 8 0.029 5 0.058 4 0.001 3 372.9 20.7 365.9 7.8 S3601-16-4 42 133 0.32 0.367 9 0.032 3 0.055 9 0.001 4 318.1 24.0 350.7 8.8 S3601-16-5 96 255 0.38 0.422 6 0.031 9 0.056 9 0.001 2 357.9 22.8 356.6 7.4 S3601-16-6 126 342 0.37 0.442 3 0.028 2 0.058 4 0.001 1 371.9 19.9 365.7 6.8 S3601-16-9 154 372 0.42 0.400 0 0.022 2 0.058 1 0.001 0 341.7 16.1 364.0 5.9 S3601-16-10 151 435 0.35 0.408 3 0.022 6 0.058 2 0.000 9 347.6 16.3 364.4 5.5 S3601-16-12 347 981 0.35 0.444 3 0.017 4 0.058 4 0.000 8 373.3 12.2 365.9 5.0 S3601-16-15 110 249 0.44 0.417 9 0.030 7 0.058 9 0.001 3 354.6 22.0 368.8 7.9 S3601-16-17 153 335 0.46 0.457 2 0.026 7 0.056 0 0.000 9 382.3 18.6 351.5 5.8 S3601-16-18 160 341 0.47 0.434 5 0.028 4 0.056 9 0.000 9 366.4 20.1 356.7 5.3 S3601-16-20 73 174 0.42 0.463 2 0.032 7 0.057 7 0.001 1 386.5 22.7 361.6 6.8 S3601-16-22 160 272 0.59 0.472 7 0.032 9 0.057 1 0.001 3 393.1 22.7 358.0 7.7 S3601-16-23 471 1 139 0.41 0.455 1 0.019 9 0.057 8 0.001 0 380.9 13.9 362.5 5.9 S3601-16-24 500 1 140 0.44 0.426 5 0.018 0 0.058 0 0.000 8 360.7 12.8 363.2 4.6 S3601-16-25 280 932 0.30 0.448 3 0.020 1 0.059 7 0.000 8 376.1 14.1 373.9 4.8 S3601-16-26 146 436 0.33 0.436 8 0.024 3 0.059 7 0.001 0 368.0 17.2 374.1 6.1 S3601-16-29 97 165 0.59 0.459 3 0.039 1 0.060 3 0.001 4 383.8 27.2 377.5 8.6 S3601-16-30 45 118 0.38 0.466 2 0.040 7 0.058 0 0.001 4 388.6 28.2 363.3 8.3 表 2 玉海西岩体锆石微量元量含量(10-6)
Table 2. Zircon trace elements (10-6) results of the Yuhaixi intrusions
点号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu S001-2,片麻状花岗岩,21个点 S001-2-2 12.08 0.066 1.98 4.84 0.97 29.02 8.18 102.81 36.35 172.75 35.33 400.93 69.81 S001-2-4 0.009 7.37 0.013 0.54 1.32 0.60 8.78 3.62 45.35 17.23 83.63 17.48 203.93 36.89 S001-2-5 7.78 0.033 1.09 2.71 0.59 14.27 4.25 52.99 20.57 97.21 21.16 235.78 40.93 S001-2-6 0.018 8.41 0.055 1.07 3.25 0.56 15.76 5.06 60.34 21.36 107.12 22.60 255.80 43.76 S001-2-7 0.051 10.01 0.129 4.17 5.94 1.11 24.28 7.33 80.34 29.25 137.36 28.02 311.93 52.15 S001-2-8 9.99 0.059 1.85 3.87 0.92 22.44 6.82 83.29 29.47 141.65 29.09 333.38 58.14 S001-2-9 0.019 8.22 0.025 0.21 0.96 0.25 10.19 3.47 47.11 19.31 97.62 21.29 257.90 43.00 S001-2-11 11.10 0.048 1.47 3.66 0.92 24.82 7.43 94.17 34.26 170.36 36.83 453.46 77.49 S001-2-12 8.22 0.006 0.10 1.40 0.22 8.64 3.60 47.10 18.26 95.61 20.74 254.85 46.85 S001-2-13 0.019 9.19 0.033 0.00 1.93 0.21 8.17 3.06 41.51 16.46 86.22 17.81 211.63 38.84 S001-2-14 2.85 0.006 0.49 0.19 0.18 2.46 0.89 11.21 4.91 28.26 7.13 100.85 21.15 S001-2-15 11.20 0.032 0.86 5.19 1.10 28.32 7.85 99.20 36.14 171.54 34.94 381.33 64.19 S001-2-16 10.62 0.067 0.61 3.83 0.74 19.78 6.39 78.68 28.17 136.00 29.15 328.37 57.43 S001-2-17 7.07 0.061 0.15 1.39 0.46 9.81 3.26 41.99 14.54 73.65 15.48 180.40 33.78 S001-2-19 3.67 0.000 0.59 0.96 0.30 4.23 1.77 22.22 8.65 44.78 10.39 124.04 25.26 S001-2-20 0.242 11.45 0.170 3.64 6.46 1.11 29.86 8.41 106.36 37.74 180.53 35.77 400.74 70.21 S001-2-21 10.73 0.000 0.95 2.45 0.47 20.10 5.70 79.70 29.58 138.73 28.93 320.87 54.35 S001-2-24 7.01 0.000 0.37 1.74 0.34 6.49 2.56 33.87 14.48 75.44 17.04 202.95 38.44 S001-2-25 11.08 0.101 2.95 5.01 1.24 27.81 7.84 96.61 33.29 156.76 30.01 332.07 56.55 S001-2-28 5.95 0.014 0.17 1.60 0.31 6.53 2.22 28.51 10.75 58.65 12.18 146.03 26.76 S001-2-30 2.93 0.000 0.00 0.29 0.13 2.38 0.62 9.39 4.19 25.54 6.41 97.87 22.34 S3601-16,闪长岩,20个点 S3601-16-1 0.459 68.19 0.440 4.94 8.15 1.90 40.52 16.10 235.26 98.90 504.12 109.12 1 262.05 214.87 S3601-16-2 0.021 20.63 0.021 0.93 2.80 0.83 14.49 5.61 75.00 31.30 156.24 35.48 421.35 78.49 S3601-16-3 34.07 0.099 0.77 2.38 1.18 18.00 6.49 90.86 36.96 192.91 42.13 497.53 88.47 S3601-16-4 13.63 0.034 0.40 0.83 0.31 7.89 3.47 49.84 21.10 113.92 25.99 317.82 58.98 S3601-16-5 20.45 0.036 0.48 2.23 0.85 15.58 6.53 86.93 36.35 189.95 41.49 505.07 91.27 S3601-16-6 0.066 22.98 0.015 0.74 2.81 1.05 14.98 7.37 101.57 41.81 213.76 45.39 556.74 98.54 S3601-16-9 46.50 0.046 0.60 3.56 1.03 22.70 9.99 137.30 58.65 300.74 65.75 789.20 139.06 S3601-16-10 0.304 32.46 0.488 2.95 3.79 0.75 15.84 6.94 95.45 39.41 201.16 44.66 520.03 89.80 S3601-16-12 44.87 0.058 1.02 4.30 1.11 31.23 13.39 185.48 78.62 391.59 84.73 999.13 170.49 S3601-16-15 0.010 21.66 0.046 1.21 4.72 1.61 24.64 8.96 117.23 44.43 223.51 48.25 548.08 96.51 S3601-16-17 26.63 0.019 0.42 1.55 0.76 14.39 5.50 79.89 32.29 156.44 34.78 404.52 69.65 S3601-16-18 0.092 34.24 0.225 3.10 5.56 1.51 33.17 11.70 161.42 64.13 326.89 70.59 808.03 137.57 S3601-16-20 1.022 20.54 0.511 2.53 3.58 1.14 18.59 6.74 100.55 38.49 191.19 40.92 470.30 85.06 S3601-16-22 1.774 38.80 2.793 25.33 16.58 3.45 51.49 11.18 131.84 46.89 226.94 49.63 571.07 100.80 S3601-16-23 6.820 113.82 11.976 70.30 50.55 4.06 111.35 32.53 341.60 114.31 534.26 112.91 1237.84 208.19 S3601-16-24 69.67 0.035 0.88 3.79 1.20 50.27 21.35 320.04 131.44 681.02 143.76 1639.95 276.30 S3601-16-25 0.397 30.59 0.220 2.88 5.29 0.66 30.42 12.63 190.47 79.74 419.40 91.23 1042.88 181.10 S3601-16-26 23.22 0.048 0.58 1.94 0.50 15.64 6.41 92.63 38.12 195.72 42.64 502.04 91.03 S3601-16-29 0.119 28.15 0.272 4.64 6.26 1.31 29.04 9.89 114.38 41.67 205.64 43.01 488.72 86.46 S3601-16-30 15.21 0.026 0.67 1.26 0.38 10.54 3.92 59.27 22.79 124.85 27.87 329.85 60.84 表 3 玉海西岩体主(%)、微量元素(10-6)含量
Table 3. Whole rock major (%) and trace (10-6) elements of Yuhaixi intrusions
样号 片麻状花岗岩 闪长岩 辉长岩脉 S3601-16 S3201-26 S3201-20 S001-1 S001-2 S001-3 S3201-11 S3201-11-1 S3201-12 SiO2 75.65 72.93 75.04 57.54 54.64 53.79 48.22 47.55 48.96 Al2O3 12.48 14.27 13.70 16.77 17.42 17.86 16.36 16.38 16.06 K2O 4.86 5.32 3.90 1.23 1.53 1.12 0.93 1.11 1.02 Na2O 2.91 3.45 4.19 3.84 4.01 4.26 2.88 2.58 2.92 CaO 1.28 1.40 1.26 6.97 7.18 7.78 9.51 8.84 9.22 Fe2O3T 1.67 1.89 1.54 7.41 8.13 8.49 10.73 11.00 10.62 MgO 0.24 0.35 0.28 4.14 4.32 4.52 7.71 8.03 7.84 MnO 0.08 0.09 0.10 0.14 0.18 0.17 0.23 0.24 0.24 P2O5 0.04 0.06 0.04 0.20 0.26 0.28 0.41 0.41 0.38 TiO2 0.16 0.19 0.11 0.86 1.00 1.02 1.10 1.10 1.02 LOI 0.48 0.67 0.41 0.68 1.20 0.63 2.16 2.47 2.20 Total 99.85 100.62 100.57 99.78 99.87 99.92 100.24 99.71 100.48 Na2O+K2O 7.77 8.77 8.09 5.07 5.54 5.38 3.81 3.69 3.94 K2O/Na2O 1.67 1.54 0.93 0.32 0.38 0.26 0.32 0.43 0.35 Mg# 22 27 26 53 51 51 59 59 59 A/CNK 1.01 1.02 1.02 0.83 0.82 0.80 0.71 0.76 0.71 A/NK 1.24 1.25 1.23 2.19 2.11 2.17 2.85 3.01 2.72 Rb 47.5 69.9 58.6 26.1 29.1 21.1 20.4 24.7 22.6 Ba 1 020 786 816 377 558 404 151 185 164 Th 3.970 4.470 6.270 0.575 1.560 1.78 0.284 0.325 0.307 U 1.210 1.020 2.770 0.283 0.803 0.715 0.155 0.155 0.160 Nb 4.77 7.04 5.30 4.67 5.31 5.29 2.76 2.78 2.64 Ta 0.26 0.42 0.64 0.28 0.31 0.30 0.13 0.14 0.13 K 40 328 44 145 32 362 10 206 12 696 9 294 7 717 9 211 8 464 La 17.40 19.90 16.90 12.70 14.40 16.50 8.92 9.05 8.85 Ce 33.40 38.90 30.80 31.20 37.20 42.40 24.60 25.00 24.20 Pb 11.90 15.40 13.10 4.82 4.69 4.23 2.30 2.08 2.35 Pr 3.70 4.32 3.22 4.38 5.32 6.01 3.81 3.88 3.72 Sr 191 203 289 671 694 746 522 466 479 Nd 12.80 14.90 10.40 18.90 22.80 25.70 18.10 18.30 17.50 P 175 262 175 873 1 135 1 223 1 790 1 790 1 659 Sm 2.10 2.56 1.64 4.35 4.92 5.48 4.48 4.57 4.34 Zr 42.2 36.0 63.0 13.5 15.5 15.4 30.5 25.7 25.2 Hf 1.29 1.23 2.11 0.78 0.88 0.90 1.01 0.91 0.92 Eu 0.72 0.73 0.38 0.99 1.26 1.37 1.49 1.48 1.43 Ti 842 1 050 619 5 060 5 730 5 850 6 380 6 400 5 900 Gd 1.55 1.88 1.20 3.97 4.31 4.77 4.48 4.56 4.32 Tb 0.20 0.25 0.17 0.60 0.63 0.70 0.68 0.69 0.66 Dy 1.05 1.31 0.951 3.48 3.63 4.00 4.03 4.10 3.90 Y 5.80 7.06 6.60 20.40 21.50 23.80 23.70 23.90 22.80 Ho 0.21 0.25 0.20 0.71 0.75 0.83 0.86 0.86 0.83 Er 0.56 0.65 0.57 2.00 2.09 2.31 2.39 2.39 2.29 Tm 0.08 0.09 0.09 0.30 0.32 0.36 0.36 0.36 0.35 Yb 0.56 0.61 0.67 1.95 2.10 2.31 2.31 2.31 2.22 Lu 0.088 0.095 0.11 0.28 0.32 0.35 0.34 0.34 0.33 Co 1.33 2.73 1.32 23.00 25.90 25.70 35.20 37.70 34.50 Ni 1.29 1.68 1.40 33.60 36.10 36.30 89.70 95.50 94.40 Cr 12.3 13.3 18.7 59.3 73.8 96.8 504.0 524.0 537.0 ∑REE 51.01 58.80 47.70 43.90 51.60 58.90 37.33 37.93 40.67 (La/Yb)N 22.29 23.48 18.15 4.67 4.92 5.12 2.77 2.81 2.86 (Tb/Yb)N 1.64 1.90 1.18 1.41 1.37 1.38 1.34 1.37 1.35 (La/Sm)N 5.35 5.02 6.65 1.88 1.89 1.94 1.29 1.28 1.32 Eu* 1.22 1.02 0.82 0.73 0.84 0.82 1.02 0.99 1.01 表 4 玉海西岩体锆石Hf同位素值
Table 4. Zircon Hf isotopes of Yuhaixi intrusions
样品号 年龄(Ma) 176Yb/177Hf 1σ 176Lu/177Hf 1σ 176Hf/177Hf 1σ εHf(0) εHf(t) TDM(Ma) TDM2(Ma) fLu/Hf 样品S001-2,片麻状花岗岩,10个点 S001-2-2 376.3 0.074 947 0.000 445 0.002 975 0.000 016 0.282 912 - 5.0 12.5 508 576 -0.91 S001-2-5 361.1 0.029 499 0.000 233 0.001 205 0.000 006 0.282 888 - 4.1 11.8 519 612 -0.96 S001-2-6 365.9 0.029 753 0.000 465 0.001 240 0.000 018 0.282 955 - 6.5 14.2 424 458 -0.96 S001-2-11 350.7 0.022 884 0.000 076 0.000 957 0.000 002 0.282 865 - 3.3 10.8 549 667 -0.97 S001-2-17 356.6 0.047 433 0.000 272 0.001 901 0.000 012 0.282 936 - 5.8 13.2 458 515 -0.94 S001-2-19 365.7 0.044 243 0.000 628 0.001 784 0.000 021 0.282 881 - 3.8 11.5 537 634 -0.95 S001-2-21 364.0 0.035 883 0.000 053 0.001 486 0.000 002 0.282 900 - 4.5 12.2 505 587 -0.96 S001-2-24 364.4 0.045 994 0.000 236 0.001 829 0.000 011 0.282 895 - 4.4 11.9 517 603 -0.94 S001-2-25 365.9 0.070 392 0.000 333 0.002 785 0.000 010 0.282 916 - 5.1 12.5 500 570 -0.92 S001-2-28 368.8 0.050 052 0.000 619 0.001 980 0.000 020 0.282 885 - 4.0 11.6 534 626 -0.94 样品S3601-16,闪长岩,10个点 S3601-16-4 314.6 0.022 314 0.000 107 0.000 868 0.000 005 0.282 905 - 4.7 11.5 489 595 -0.97 S3601-16-5 303.5 0.019 014 0.000 060 0.000 750 0.000 001 0.282 917 - 5.1 11.7 471 573 -0.98 S3601-16-6 302.6 0.014 597 0.000 056 0.000 599 0.000 001 0.282 929 - 5.5 12.1 453 546 -0.98 S3601-16-9 313.3 0.023 379 0.000 093 0.000 913 0.000 002 0.282 915 - 5.1 11.8 476 574 -0.97 S3601-16-10 301.2 0.013 627 0.000 087 0.000 556 0.000 003 0.282 937 - 5.8 12.4 441 527 -0.98 S3601-16-15 309.0 0.013 162 0.000 077 0.000 526 0.000 002 0.282 917 - 5.1 11.8 469 568 -0.98 S3601-16-17 304.9 0.015 455 0.000 519 0.000 629 0.000 019 0.282 884 - 4.0 10.5 517 647 -0.98 S3601-16-26 300.1 0.021 888 0.000 104 0.000 824 0.000 001 0.282 947 - 6.2 12.6 430 509 -0.98 S3601-16-29 312.9 0.011 583 0.000 047 0.000 472 0.000 001 0.282 887 - 4.1 10.9 510 632 -0.99 S3601-16-30 306.4 0.019 577 0.000 062 0.000 748 0.000 004 0.282 922 - 5.3 11.9 464 560 -0.98 表 5 玉海西岩体全岩Sr-Nd同位素
Table 5. Whole rock Sr-Nd isotopes of Yuhaixi intrusions
样号 岩性 年龄
(Ma)Rb
(10-6)Sr
(10-6)87Rb/86Sr 87Sr/86Sr ISr Sm
(10-6)Nd
(10-6)147Sm/144Nd 143Nd/144Nd εNd(0) εNd(t) TDM(Ma) TDM2(Ma) S3201-20 片麻状花岗岩 364 58.6 289 0.586 601 0.70 632 220 0.703 282 1.64 10.4 0.095 334 0.512 603 -0.68 4.03 705 786 S3201-26 364 69.9 203 0.996 404 0.70 893 905 0.703 776 2.56 14.9 0.103 870 0.512 599 -0.76 3.56 765 824 S001-1 闪长岩 306 26.1 671 0.112 504 0.70 415 823 0.703 668 4.35 18.9 0.139 143 0.512 598 -0.78 1.47 1 128 947 S001-2 306 29.1 694 0.121 284 0.70 463 893 0.704 111 4.92 22.8 0.130 456 0.512 595 -0.84 1.75 1 016 924 S001-3 306 21.1 746 0.081 807 0.70 403 246 0.703 676 5.48 25.7 0.128 909 0.512 602 -0.70 1.95 985 908 S3201-11 辉长岩脉 291 20.4 522 0.113 034 0.70 411 156 0.703 644 4.48 18.1 0.149 636 0.512 601 -0.72 1.03 1 305 970 S3201-11-1 291 24.7 466 0.153 308 0.70 424 492 0.703 610 4.57 18.3 0.150 973 0.512 597 -0.80 0.90 1 342 981 S3201-12 291 22.6 479 0.136 466 0.70 419 776 0.703 633 4.34 17.5 0.149 930 0.512 603 -0.68 1.06 1 306 968 -
[1] Aldanmaz, E., Pearce, J.A., Thirlwall, M.F., et al., 2000.Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey.Journal of Volcanology and Geothermal Research, 102(1-2):67-95. https://doi.org/10.1016/S0377-0273(00)00182-7 [2] Allen, M.B., Windley, B.F., Zhang, C., 1993.Palaeozoic Collisional Tectonics and Magmatism of the Chinese Tien Shan, Central Asia.Tectonophysics, 220(1-4):89-115. https://doi.org/10.1016/0040-1951(93)90225-9 [3] Anderson, D.L., 1983.Chemical Composition of the Mantle.Journal of Geophysical Research:Solid Earth, 88(S1):41-52. https://doi.org/10.1029/jb088is01p00b41 [4] Arculus, R.J., Powell, R., 1986.Source Component Mixing in the Regions of Arc Magma Generation.Journal of Geophysical Research, 91(B6):5913-5926. https://doi.org/10.1029/jb091ib06p05913 [5] Barbarin, B., 1999.A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments.Lithos, 46(3):605-626. https://doi.org/10.1016/s0024-4937(98)00085-1 [6] Bouvier, A., Vervoort, J.D., Patchett, P.J., 2008.The Lu-Hf and Sm-Nd Isotopic Composition of CHUR:Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets.Earth and Planetary Science Letters, 273(1-2):48-57. https://doi.org/10.1016/j.epsl.2008.06.010 [7] Cao, F.G., Tu, Q.J., Zhang, X.M., et al., 2006.Preliminary Determination of the Early Paleozoic Magmatic Arc in the Karlik Mountains, East Tianshan, Xinjiang, China-Evidence from Zircon SHRIMP U-Pb Dating of Granite Bodies in the Tashuihe Area.Geological Bulletin of China, 25(8):923-927 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD200608004.htm [8] Chappell, B.W., White, A.J.R., Chappell, B., et al., 1974.Two Contrasting Granite Types.Pacific Geology, 8:173-174. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027419645/ [9] Chen, X.J., Shu, L.S., Santosh, M., 2011.Late Paleozoic Post-Collisional Magmatism in the Eastern Tianshan Belt, Northwest China:New Insights from Geochemistry, Geochronology and Petrology of Bimodal Volcanic Rocks.Lithos, 127(3-4):581-598. https://doi.org/10.1016/j.lithos.2011.06.008 [10] Chen, X.J., Shu, L.S., 2010.Features of the Post-Collisional Tectono-Magmatism and Geochronological Evidence in the Harlik Mt., Xinjiang.Acta Petrologica Sinica, 26(10):3057-3064 (in Chinese with English abstract). [11] Chen, Y.J., Chen, H.Y., Zaw, K., et al., 2007.Geodynamic Settings and Tectonic Model of Skarn Gold Deposits in China:An Overview.Ore Geology Reviews, 31(1-4):139-169. https://doi.org/10.1016/j.oregeorev.2005.01.001 [12] Chen, Y.J., Pirajno, F., Wu, G., et al., 2012.Epithermal Deposits in North Xinjiang, NW China.International Journal of Earth Sciences, 101(4):889-917. https://doi.org/10.1007/s00531-011-0689-4 [13] Collerson, K.D., Kamber, B.S., Schoenberg, R., 2002.Applications of Accurate, High-Precision Pb Isotope Ratio Measurement by Multi-Collector ICP-MS.Chemical Geology, 188(1-2):65-83. https://doi.org/10.1016/s0009-2541(02)00059-1 [14] Deng, X.H., Chen, Y.J., Santosh, M., et al., 2017.U-Pb Zircon, Re-Os Molybdenite Geochronology and Rb-Sr Geochemistry from the Xiaobaishitou W (-Mo) Deposit:Implications for Triassic Tectonic Setting in Eastern Tianshan, NW China.Ore Geology Reviews, 80:332-351. https://doi.org/10.1016/j.oregeorev.2016.05.013 [15] Ding, L.X., Huang, G.C., Xia, J.L., et al., 2017.Petrogenesis and Implications of the Yinzu Pluton in Southeast Hubei Province:Evidence from Geochronology, Geochemistry, and Sr-Nd-Hf Isotopes.Acta Geologica Sinica, 91(2):362-383 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201702005.htm [16] Gao, J.F., Zhou, M.F., Qi, L., et al., 2015.Chalcophile Elemental Compositions and Origin of the Tuwu Porphyry Cu Deposit, NW China.Ore Geology Reviews, 66:403-421. https://doi.org/10.1016/j.oregeorev.2014.08.009 [17] Green, T.H., 1995.Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System.Chemical Geology, 120(3-4):347-359. https://doi.org/10.1016/0009-2541(94)00145-x [18] Griffin, W.L., Belousova, E.A., Shee, S.R., et al., 2004.Archean Crustal Evolution in the Northern Yilgarn Craton:U-Pb and Hf-Isotope Evidence from Detrital Zircons.Precambrian Research, 131(3-4):231-282. https://doi.org/10.1016/j.precamres.2003.12.011 [19] Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002.Zircon Chemistry and Magma Mixing, SE China:In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes.Lithos, 61(3-4):237-269. https://doi.org/10.1016/s0024-4937(02)00082-8 [20] Guo, H.C., Zhong, L., Li, L.Q., et al., 2006.Zircon SHRIMP U-Pb Dating of Quartz Diorite in the Koumenzi Area, Karlik Mountains, East Tianshan, Xinjiang, China, and Its Geological Significance.Geological Bulletin of China, 25(8):928-931 (in Chinese with English abstract). [21] Guo, Q.Q., Pan, C.Z., Xiao, W.J., et al., 2010.Geological and Geochemical Characteristics of the Yandong Porphyry Copper Deposits in Hami, Xinjiang.Xinjiang Geology, 28(4):419-426 (in Chinese with English abstract). [22] Han, C.M., Xiao, W.J., Zhao, G.C., et al., 2010.In-Situ U-Pb, Hf and Re-Os Isotopic Analyses of the Xiangshan Ni-Cu-Co Deposit in Eastern Tianshan (Xinjiang), Central Asia Orogenic Belt:Constraints on the Timing and Genesis of the Mineralization.Lithos, 120(3-4):547-562. https://doi.org/10.1016/j.lithos.2010.09.019 [23] Harris, N.B.W., Pearce, J.A., Tindle, A.G., 1986.Geochemical Characteristics of Collision-Zone Magmatism.Geological Society, London, Special Publications, 19(1):67-81. https://doi.org/10.1144/gsl.sp.1986.019.01.04 [24] Hofmann, A.W., 1997.Mantle Geochemistry:The Message from Oceanic Volcanism.Nature, 385(6613):219-229. https://doi.org/10.1038/385219a0 [25] Hou, T., Zhang, Z.C., Santosh, M., et al., 2014.Geochronology and Geochemistry of Submarine Volcanic Rocks in the Yamansu Iron Deposit, Eastern Tianshan Mountains, NW China:Constraints on the Metallogenesis.Ore Geology Reviews, 56:487-502. https://doi.org/10.1016/j.oregeorev.2013.03.008 [26] Hua, L.B., 2001.Element Geochemistry Subarea and Ore-Finding Direction of Metallogenic District, Yamansu-Shaquanzi, Eastern Tianshan, Xinjiang.Journal of Guilin Institute of Technology, 21(2):99-103 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GLGX200102001.htm [27] Jahn, B.M., Zhang, Z.Q., 1984.Archean Granulite Gneisses from Eastern Hebei Province, China:Rare Earth Geochemistry and Tectonic Implications.Contributions to Mineralogy and Petrology, 85(3):224-243. https://doi.org/10.1007/bf00378102 [28] Jia, L.Q., Mo, X.X., Dong, G.C., et al., 2013.Genesis of Lamprophyres from Machangqing, Western Yunnan:Constraints from Geochemistry, Geochronology and Sr-Nd-Pb-Hf Isotopes.Acta Petrologica Sinica, 29(4):1247-1260 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201304012.htm [29] Kepezhinskas, P., McDermott, F., Defant, M.J., et al., 1997.Trace Element and Sr-Nd-Pb Isotopic Constraints on a Three-Component Model of Kamchatka Arc Petrogenesis.Geochimica et Cosmochimica Acta, 61(3):577-600. https://doi.org/10.1016/s0016-7037(96)00349-3 [30] Li, B.P., Greig, A., Zhao, J.X., et al., 2005.ICP-MS Trace Element Analysis of Song Dynasty Porcelains from Ding, Jiexiu and Guantai Kilns, North China.Journal of Archaeological Science, 32(2):251-259. https://doi.org/10.1016/j.jas.2004.09.004 [31] Li, C., Qu, W.J., Du, A.D., et al., 2009.Decoupling of Re and Os and Migration Model of 187Os in Coarse-Grained Molybdenite.Mineral Deposits, 28(5):707-712 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ200905017.htm [32] Li, H.Q., 2004.Isotope Geochronology of Regional Mineralization in Xinjiang, NW China.Geological Publishing House, Beijing (in Chinese). [33] Li, H.Q., Chen, F.W., Li, J.Y., et al., 2006.Age of Mineralization and Host Rocks in the Baishan Rhenium-Molybdenum District, East Tianshan, Xinjiang, China:Revisited.Geological Bulletin of China, 25(8):916-922 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200608003.htm [34] Li, H.Q., Chen, F.W., Lu, Y.F., et al., 2004.Zircon SHRIMP U-Pb Age and Strontium Isotopes of Mineralized Granitoids in the Sanchakou Copper Polymetallic Depoist, East Tianshan Mountains.Acta Geoscientica Sinica, 25(2):191-195 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQXB200402017.htm [35] Li, H.Y., Huang, X.L., Li, W.X., et al., 2013.Age and Geochemistry of the Early Permian Basalts from Qimugan in the Southwestern Tarim Basin.Acta Petrologica Sinica, 29(10):3353-3368 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-YSXB201310004.htm [36] Li, W., Chen, J.L., Dong, Y.P., et al., 2016.Early Paleozoic Subduction of the Paleo-Asian Ocean:Zircon U-Pb Geochronological and Geochemical Evidence from the Kalatag High-Mg Andesites, East Tianshan.Acta Petrologica Sinica, 32(2):505-521 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201602016 [37] Li, W.M., Ren, B.C., Yang, X.K., et al., 2002.The Intermediate-Acid Intrusive Magmatism and Its Geodynamic Significance in Eastern Tianshan Region.Northwestern Geology, 35(4):41-64 (in Chinese with English abstract). [38] Liu, M., Wang, Z.L., Zhang, Z.H., et al., 2009.Fluid Inclusion Geochemistry of Tuwu Porphyry Copper Deposit, Eastern Tianshan in Xinjiang.Acta Petrologica Sinica, 25(6):1446-1455 (in Chinese with English abstract). [39] Ma, X.H., Chen, B., Wang, C., et al., 2015.Early Paleozoic Subduction of the Paleo-Asian Ocean:Zircon U-Pb Geochronological, Geochemical and Sr-Nd Isotopic Evidence from the Harlik Pluton, Xinjiang.Acta Petrologica Sinica, 31(1):89-104 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501007 [40] Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643.https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 [41] Mao, J.W., Pirajno, F., Zhang, Z.H., et al., 2008.A Review of the Cu-Ni Sulphide Deposits in the Chinese Tianshan and Altay Orogens (Xinjiang Autonomous Region, NW China):Principal Characteristics and Ore-Forming Processes.Journal of Asian Earth Sciences, 32(2-4):184-203. https://doi.org/10.1016/j.jseaes.2007.10.006 [42] Mao, J.W., Goldfarb, R., Wang, Y.T., et al., 2005.Late Paleozoic Base and Precious Metal Deposits, East Tianshan, Xinjiang, China:Characteristics and Geodynamic Setting.Episodes, 28:1-14. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027203778/ [43] McKenzie, D., 1989.Some Remarks on the Movement of Small Melt Fractions in the Mantle.Earth and Planetary Science Letters, 95(1-2):53-72. https://doi.org/10.1016/0012-821x(89)90167-2 [44] Meng, Q.R., 2003.What Drove Late Mesozoic Extension of the Northern China-Mongolia Tract? Tectonophysics, 369(3-4):155-174. https://doi.org/10.1016/s0040-1951(03)00195-1 [45] Mišković, A., Schaltegger, U., 2009.Crustal Growth along a Non-Collisional Cratonic Margin:A Lu-Hf Isotopic Survey of the Eastern Cordilleran Granitoids of Peru.Earth and Planetary Science Letters, 279(3-4):303-315. https://doi.org/10.1016/j.epsl.2009.01.002 [46] Morris, J.D., Hart, S.R., 1983.Isotopic and Incompatible Element Constraints on the Genesis of Island Arc Volcanics from Cold Bay and Amak Island, Aleutians, and Implications for Mantle Structure:Reply to a Critical Comment by M.R.Perfit and R.W.Kay.Geochimica et Cosmochimica Acta, 50(3):483-487. https://doi.org/10.1016/0016-7037(86)90202-4 [47] Pearce, J.A., Baker, P.E., Harvey, P.K., et al., 1995.Geochemical Evidence for Subduction Fluxes, Mantle Melting and Fractional Crystallization beneath the South Sandwich Island Arc.Journal of Petrology, 36(4):1073-1109. https://doi.org/10.1093/petrology/36.4.1073 [48] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956 [49] Pearce, J.A., Kempton, P.D., Nowell, G.M., et al., 1999.Hf-Nd Element and Isotope Perspective on the Nature and Provenance of Mantle and Subduction Components in Western Pacific Arc-Basin Systems.Journal of Petrology, 40(11):1579-1611. https://doi.org/10.1093/petroj/40.11.1579 [50] Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey.Contributions to Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/bf00384745 [51] Pirajno, F., 2009.Hydrothermal Processes and Mineral Systems.Springer, Berlin. https://doi.org/10.1007/978-1-4020-8613-7 [52] Pirajno, F., 2013.The Geology and Tectonic Settings of China's Mineral Deposits.Springer, Berlin. https://doi.org/10.1007/978-94-007-4444-8_7 [53] Plank, T., Langmuir, C.H., 1998.The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle.Chemical Geology, 145(3/4):325-394. https://doi.org/10.1016/s0009-2541(97)00150-2 [54] Qin, K.Z., Fang, T.H., Wang, S.L., et al., 2002.Plate Tectonics Division, Evolution and Metallogenic Settings in Eastern Tianshan Mountains, NW-China.Xinjiang Geology, 20(4):302-308 (in Chinese with English abstract). [55] Qin, K.Z., Su, B.X., Sakyi, P.A., et al., 2011.SIMS Zircon U-Pb Geochronology and Sr-Nd Isotopes of Ni-Cu-Bearing Mafic-Ultramafic Intrusions in Eastern Tianshan and Beishan in Correlation with Flood Basalts in Tarim Basin (NW China):Constraints on a ca.280Ma Mantle Plume.American Journal of Science, 311(3):237-260. https://doi.org/10.2475/03.2011.03 [56] Rapp, R.P., Watson, E.B., 1995.Dehydration Melting of Metabasalt at 8-32kbar:Implications for Continental Growth and Crust-Mantle Recycling.Journal of Petrology, 36(4):891-931. https://doi.org/10.1093/petrology/36.4.891 [57] Richards, J.P., Kerrich, R., 2007.Special Paper:Adakite-Like Rocks:Their Diverse Origins and Questionable Role in Metallogenesis.Economic Geology, 102(4):537-576. https://doi.org/10.2113/gsecongeo.102.4.537 [58] Rudnich, R.L., Gao, S., 2003.Composition of the Continental Crust.Treatise on Geochemistry, 3:1-64. https://doi.org/10.1016/B0-08-043751-6/03016-4 [59] Rui, Z.Y., Liu, Y.L., Wang, L.S., et al., 2002.The Eastern Tianshan Porphyry Copper Belt in Xinjiang and Its Tectonic Framework.Acta Geologica Sinica, 76(1):83-94 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200201011 [60] Shen, P., Pan, H.D., Cao, C., et al., 2017.The Formation of the Suyunhe Large Porphyry Mo Deposit in the West Junggar Terrain, NW China:Zircon U-Pb Age, Geochemistry and Sr-Nd-Hf Isotopic Results.Ore Geology Reviews, 81:808-828. https://doi.org/10.1016/j.oregeorev.2016.02.015 [61] Shen, P., Pan, H.D., Dong, L.H., 2014a.Yandong Porphyry Cu Deposit, Xinjiang, China-Geology, Geochemistry and SIMS U-Pb Zircon Geochronology of Host Porphyries and Associated Alteration and Mineralization.Journal of Asian Earth Sciences, 80:197-217. https://doi.org/10.1016/j.jseaes.2013.11.006 [62] Shen, P., Pan, H.D., Zhou, T.F., et al., 2014b.Petrography, Geochemistry and Geochronology of the Host Porphyries and Associated Alteration at the Tuwu Cu Deposit, NW China:A Case for Increased Depositional Efficiency by Reaction with Mafic Hostrock? Mineralium Deposita, 49(6):709-731. https://doi.org/10.1007/s00126-014-0517-4 [63] Shu, L.S., Wang, B., Zhu, W.B., et al., 2010.Timing of Initiation of Extension in the Tianshan, Based on Structural, Geochemical and Geochronological Analyses of Bimodal Volcanism and Olistostrome in the Bogda Shan (NW China).International Journal of Earth Sciences, 100(7):1647-1663. https://doi.org/10.1007/s00531-010-0575-5 [64] Smithies, R.H., Champion, D.C., 2000.The Archaean High-Mg Diorite Suite:Links to Tonalite-Trondhjemite-Granodiorite Magmatism and Implications for Early Archaean Crustal Growth.Journal of Petrology, 41(12):1653-1671. https://doi.org/10.1093/petrology/41.12.1653 [65] Söderlund, U., Patchett, P.J., Vervoort, J.D., et al., 2004.The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions.Earth and Planetary Science Letters, 219(3-4):311-324. https://doi.org/10.1016/s0012-821x(04)00012-3 [66] Song, B., Li, J.Z., Li, W.Q., et al., 2002.Shrimp Dating of Zircons from Dananhu and Kezirkalasayi Granitoid Batholith in Southern Margin of Tuha Basin and Their Geological Implication.Xinjiang Geology, 20 (4):342-345 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjdz200204010 [67] Song, X.Y., Li, X.R., 2009.Geochemistry of the Kalatongke Ni-Cu-(PGE) Sulfide Deposit, NW China:Implications for the Formation of Magmatic Sulfide Mineralization in a Postcollisional Environment.Mineralium Deposita, 44(3):303-327. https://doi.org/10.1007/s00126-008-0219-x [68] Su, B.X., Qin, K.Z., Lu, Y.H., et al., 2015.Decoupling of Whole-Rock Nd-Hf and Zircon Hf-O Isotopic Compositions of a 284Ma Mafic-Ultramafic Intrusion in the Beishan Terrane, NW China.International Journal of Earth Sciences, 104(7):1721-1737. https://doi.org/10.1007/s00531-015-1168-0 [69] Su, B.X., Qin, K.Z., Tang, D.M., et al., 2013.Late Paleozoic Mafic-Ultramafic Intrusions in Southern Central Asian Orogenic Belt (NW China):Insight into Magmatic Ni-Cu Sulfide Mineralization in Orogenic Setting.Ore Geology Reviews, 51:57-73. https://doi.org/10.1016/j.oregeorev.2012.11.007 [70] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [71] Tang, J.H., Gu, L.X., Zhang, Z.Z., et al., 2007.Characteristics, Age and Origin of the Xianshuiquan Gneissose Granite in Eastern Tianshan.Acta Petrologica Sinica, 23(8):1803-1820 (in Chinese with English abstract). [72] Vervoort, J.D., Blichert-Toft, J., 1999.Evolution of the Depleted Mantle:Hf Isotope Evidence from Juvenile Rocks through Time.Geochimica et Cosmochimica Acta, 63(3-4):533-556. https://doi.org/10.1016/s0016-7037(98)00274-9 [73] Wang, C., Chen, B., Ma, X.H., et al., 2015.Petrogenesis of Early and Late Paleozoic Plutons in Sanchakou Area of East Tianshan and Their Implications for Evolution of Kangur Suture Zone.Journal of Earth Sciences and Environment, 37(5):52-70 (in Chinese with English abstract). [74] Wang, J.B., Wang, Y.W., He, Z.J., et al., 2006.Ore Deposits as a Guide to the Tectonic Evolution in the East Tianshan Mountains, NW China.Geology in China, 33(3):461-469 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200603001.htm [75] Wang, J.B., Xu, X., 2006.Post-Collisional Tectonic Evolution and Metallogenesis in Northern Xinjiang, China.Acta Geologica Sinica, 80(1):23-31 (in Chinese with English abstract). [76] Wang, Y.F., Chen, H.Y., Han, J.S., et al., 2018.Paleozoic Tectonic Evolution of the Dananhu-Tousuquan Island Arc Belt, Eastern Tianshan:Constraints from the Magmatism of the Yuhai Porphyry Cu Deposit, Xinjiang, NW China.Journal of Asian Earth Sciences, 153:282-306. https://doi.org/10.1016/j.jseaes.2017.05.022 [77] Wang, Y.F., Chen, H.Y., Xiao, B., et al., 2016.Porphyritic-Overlapped Mineralization of Tuwu and Yandong Copper Deposits in Eastern Tianshan Mountains, Xinjiang.Mineral Deposits, 35(1):51-68 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201601004.htm [78] Wang, Y.F., Chen, H.Y., Xiao, B., et al., 2017.Overprinting Mineralization in the Paleozoic Yandong Porphyry Copper Deposit, Eastern Tianshan, NW China-Evidence from Geology, Fluid Inclusions and Geochronology.Ore Geology Reviews, Online.https://doi.org/10.1016/j.oregeorev.2017.04.013 [79] Wang, Y.H., Zhang, F.F., 2016a.Petrogenesis of Early Silurian Intrusions in the Sanchakou Area of Eastern Tianshan, Northwest China, and Tectonic Implications:Geochronological, Geochemical, and Hf Isotopic Evidence.International Geology Review, 58(10):1294-1310. https://doi.org/10.1080/00206814.2016.1152516 [80] Wang, Y.H., Zhang, F.F., Liu, J.J., 2016b.The Genesis of the Ores and Intrusions at the Yuhai Cu-Mo Deposit in Eastern Tianshan, NW China:Constraints from Geology, Geochronology, Geochemistry, and Hf Isotope Systematics.Ore Geology Reviews, 77:312-331. https://doi.org/10.1016/j.oregeorev.2016.03.003 [81] Wang, Y.H., Zhang, F.F., Liu, J.J., et al., 2016c.Genesis of the Fuxing Porphyry Cu Deposit in Eastern Tianshan, China:Evidence from Fluid Inclusions and C-H-O-S-Pb Isotope Systematics.Ore Geology Reviews, 79:46-61. https://doi.org/10.1016/j.oregeorev.2016.04.022 [82] Wang, Y.H., Xue, C.J., Liu, J.J., et al., 2014.Geochemistry, Geochronology, Hf Isotope, and Geological Significance of the Tuwu Porphyry Copper Deposit in Tianshan, Xinjiang.Acta Petrologica Sinica, 30(11):3383-3399 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201411022 [83] Wedepohl, K.H., 1995.The Composition of the Continental Crust.Geochimica et Cosmochimica Acta, 59:1217-1232. https://doi.org/10.1016/0016-7037(95)00038-2 [84] Whalen, J.B., Currie, K.L., Chappell, B.W., 1987.A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis.Contributions to Mineralogy and Petrology, 95(4):407-419. https://doi.org/10.1007/bf00402202 [85] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007.Lu-Hf Isotopic Systematics and Their Applications in Petrology.Acta Petrologica Sinica, 23(2):185-220 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200702002.htm [86] Wu, F.Y., Sun, D.Y., Ge, W.C., et al., 2011.Geochronology of the Phanerozoic Granitoids in Northeastern China.Journal of Asian Earth Sciences, 41(1):1-30. https://doi.org/10.1016/j.jseaes.2010.11.014 [87] Wu, F.Y., Sun, D.Y., Li, H.M., et al., 2002.A-Type Granites in Northeastern China:Age and Geochemical Constraints on Their Petrogenesis.Chemical Geology, 187(1-2):143-173. https://doi.org/10.1016/s0009-2541(02)00018-9 [88] Wu, Y.S., Xiang, N., Tang, S.H., et al., 2013.Molybdenite Re-Os Isotope Age of the Donggebi Mo Deposit and the Indosinian Metallogenic Event in Eastern Tianshan.Acta Petrologica Sinica, 29(1):121-130 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201301009 [89] Xiao, B., Chen, H.Y., Hollings, P., et al., 2015.Magmatic Evolution of the Tuwu-Yandong Porphyry Cu Belt, NW China:Constraints from Geochronology, Geochemistry and Sr-Nd-Hf Isotopes.Gondwana Research, 43:74-91. https://doi.org/10.1016/j.gr.2015.09.003 [90] Xiao, B., Chen, H.Y., Wang, Y.F., et al., 2015.Discovery of the Late Silurian Granodiorite and Its Tectonic Significance in the Tuwu-Yandong Porphyry Copper Deposits, Dananhu-Tousuquan Island Arc, Eastern Tianshan.Earth Science Frontiers, 22(6):251-266 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201506021 [91] Xiao, B., Chen, H.Y., Wang, Y.F., et al., 2017.Zircon U-Pb and Molybdenite Re-Os Dating of the Tuwu-Yandong Cu Deposit Belt of the Eastern Tianshan Mountains and Its Geological Significance.Geotectonica et Metallogenia, 41(1):145-156 (in Chinese with English abstract). [92] Xiao, W.J., Windley, B.F., Allen, M.B., et al., 2013.Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage.Gondwana Research, 23(4):1316-1341. https://doi.org/10.1016/j.gr.2012.01.012 [93] Xiao, W.J., Windley, B.F., Hao, J., et al., 2003.Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China:Termination of the Central Asian Orogenic Belt.Tectonics, 22(6):1069-1088. https://doi.org/10.1029/2002tc001484 [94] Xiao, W.J., Zhang, L.C., Qin, K.Z., et al., 2004.Paleozoic Accretionary and Collisional Tectonics of the Eastern Tianshan (China):Implications for the Continental Growth of Central Asia.American Journal of Science, 304(4):370-395. https://doi.org/10.2475/ajs.304.4.370 [95] Xu, B., Charvet, J., Chen, Y., et al., 2013.Middle Paleozoic Convergent Orogenic Belts in Western Inner Mongolia (China):Framework, Kinematics, Geochronology and Implications for Tectonic Evolution of the Central Asian Orogenic Belt.Gondwana Research, 23(4):1342-1364. https://doi.org/10.1016/j.gr.2012.05.015 [96] Xu, L.L., Chai, F.M., Li, Q., et al., 2014.Geochemistry and Zircon U-Pb Age of Volcanic Rocks from the Shaquanzi Fe-Cu Deposit in East Tianshan Mountains and Their Geological Significance.Geology in China, 41(6):1771-1790 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201406002.htm [97] Yuan, C., Sun, M., Wilde, S., et al., 2010.Post-Collisional Plutons in the Balikun Area, East Chinese Tianshan:Evolving Magmatism in Response to Extension and Slab Break-Off.Lithos, 119(3/4):269-288. https://doi.org/10.1016/j.lithos.2010.07.004 [98] Zhai, Y.S., Yao, S.Z., Cai, K.Q., 2011.Mineral Deposits (3rd Edition).Geological Publishing House, Beijing (in Chinese). [99] Zhang, D.Y., Zhou, T.F., Yuan, F., et al., 2010.Geochemical Characters, Metallogenic Chronology and Geological Significance of the Yanxi Copper Deposit in Eastern Tianshan, Xinjiang.Acta Petrologica Sinica, 26(11):3327-3338 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201608008.htm [100] Zhang, F.F., Wang, Y.H., Liu, J.J., et al., 2015.Zircon U-Pb and Molybdenite Re-Os Geochronology, Hf Isotope Analyses, and Whole-Rock Geochemistry of the Donggebi Mo Deposit, Eastern Tianshan, Northwest China, and Their Geological Significance.International Geology Review, 57(4):446-462. https://doi.org/10.1080/00206814.2015.1013067 [101] Zhang, F.F., Wang, Y.H., Liu, J.J., 2016a.Petrogenesis of Late Carboniferous Granitoids in the Chihu Area of Eastern Tianshan, Northwest China, and Tectonic Implications:Geochronological, Geochemical, and Zircon Hf-O Isotopic Constraints.International Geology Review, 58(8):949-966. https://doi.org/10.1080/00206814.2015.1136800 [102] Zhang, L.C., Liu, T.B., Shen, Y.C., et al., 2002.Isotopic Geochronology of the Late Paleozoic Kanggur Gold Deposit of East Tianshan Mountains, Xinjiang, NW China.Resource Geology, 52(3):249-261. https://doi.org/10.1111/j.1751-3928.2002.tb00135.x [103] Zhang, L.C., Qin, K.Z., Xiao, W.J., 2008.Multiple Mineralization Events in the Eastern Tianshan District, NW China:Isotopic Geochronology and Geological Significance.Journal of Asian Earth Sciences, 32(2-4):236-246. https://doi.org/10.1016/j.jseaes.2007.10.011 [104] Zhang, L.C., Shen, Y.C., Ji, J.S., 2003.Characteristics and Genesis of Kanggur Gold Deposit in the Eastern Tianshan Mountains, NW China:Evidence from Geology, Isotope Distribution and Chronology.Ore Geology Reviews, 23(1-2):71-90. https://doi.org/10.1016/s0169-1368(03)00016-7 [105] Zhang, L.C., Xiao, W.J., Qin, K.Z., et al., 2004.Types, Geological Features and Geodynamic Significances of Gold-Copper Deposits in the Kanggurtag Metallogenic Belt, Eastern Tianshan, NW China.International Journal of Earth Sciences, 93(2):224-240. https://doi.org/10.1007/s00531-004-0383-x [106] Zhang, L.C., Xiao, W.J., Qin, K.Z., et al., 2006.The Adakite Connection of the Tuwu-Yandong Copper Porphyry Belt, Eastern Tianshan, NW China:Trace Element and Sr-Nd-Pb Isotope Geochemistry.Mineralium Deposita, 41(2):188-200. https://doi.org/10.1007/s00126-006-0058-6 [107] Zhang, W.F., Chen, H.Y., Han, J.S., et al., 2016b.Geochronology and Geochemistry of Igneous Rocks in the Bailingshan Area:Implications for the Tectonic Setting of Late Paleozoic Magmatism and Iron Skarn Mineralization in the Eastern Tianshan, NW China.Gondwana Research, 38:40-59. https://doi.org/10.1016/j.gr.2015.10.011 [108] Zhang, Z.W., Zang, Y.S., Wang, Y.L., et al., 2016.Zircon SHRIMP U-Pb Age of the Yuhai Porphyry Copper Deposit in Eastern Tianshan Mountains of Xinjiang and Its Tectonic Implications.Acta Geoscientica Sinica, 37(1):59-68 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQXB201601006.htm [109] Zhao, L.D., Chen, H.Y., Zhang, L., et al., 2018.The Late Paleozoic Magmatic Evolution of the Aqishan-Yamansu Belt, Eastern Tianshan:Constraints from Geochronology, Geochemistry and Sr-Nd-Pb-Hf Isotopes of Igneous Rocks.Journal of Asian Earth Sciences, 153:170-192. https://doi.org/10.1016/j.jseaes.2017.07.038 [110] Zheng, R.Q., 2015.Geological Characteristics and Genesis of Hongyuntan Iron Deposits in the Estern Tianshan, Xinjiang (Dissertation).China University of Geosciences, Beijing (in Chinese with English abstract). [111] Zhou, L.G., Xia, Q.X., Zheng, Y.F., et al., 2014.Polyphase Growth of Garnet in Eclogite from the Hong'an Orogen:Constraints from Garnet Zoning and Phase Equilibrium.Lithos, 206-207:79-99. https://doi.org/10.1016/j.lithos.2014.06.020 [112] Zhou, T.F., Yuan, F., Zhang, D.Y., et al., 2010.Geochronology, Tectonic Setting and Mineralization of Granitoids in Jueluotage Area, Eastern Tianshan, Xinjiang.Acta Petrologica Sinica, 26(2):478-502 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-ysxb201002014.htm [113] Zhu, Y.F., An, F., Feng, W.Y., et al., 2016.Geological Evolution and Huge Ore-Forming Belts in the Core Part of the Central Asian Metallogenic Region.Journal of Earth Science, 27(3):491-506. https://doi.org/10.1007/s12583-016-0673-7 [114] 曹福根, 涂其军, 张晓梅, 任燕, 等, 2006.哈尔里克山早古生代岩浆弧的初步确定——来自塔水河一带花岗质岩体锆石SHRIMP U-Pb测年的证据.岩石学报, 25(8):923-927. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ZQYD200608004&dbname=CJFD&dbcode=CJFQ [115] 陈希节, 舒良树, 2010.新疆哈尔里克山后碰撞期构造岩浆活动特征及年代学证据.岩石学报, 26(10):3057-3064. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201010017 [116] 丁丽雪, 黄圭成, 夏金龙, 等, 2017.鄂东南地区殷祖岩体的成因及其地质意义:年代学、地球化学和Sr-Nd-Hf同位素证据.地质学报, 91(2):362-383. doi: 10.3969/j.issn.0001-5717.2017.02.005 [117] 郭华春, 钟莉, 李丽群, 等, 2006.哈尔里克山口门子地区石英闪长岩锆石SHRIMP U-Pb测年及其地质意义.地质通报, 25(8):928-931. doi: 10.3969/j.issn.1671-2552.2006.08.005 [118] 郭谦谦, 潘成泽, 肖文交, 等, 2010.哈密延东铜矿床地质和地球化学.新疆地质, 28(4):419-426. doi: 10.3969/j.issn.1000-8845.2010.04.012 [119] 花林宝, 2001.新疆东天山雅满苏-沙泉子成矿区元素地球化学分区及找矿方向.桂林工学院学报, 21(2):99-103. doi: 10.3969/j.issn.1674-9057.2001.02.002 [120] 贾丽琼, 莫宣学, 董国臣, 等, 2013.滇西马厂箐煌斑岩成因:地球化学、年代学及Sr-Nd-Pb-Hf同位素约束.岩石学报, 29(4):1247-1260. http://d.old.wanfangdata.com.cn/Conference/7958115 [121] 李超, 屈文俊, 杜安道, 等, 2009.大颗粒辉钼矿Re-Os同位素使耦现象及187Os迁移模式研究.矿床地质, 28(5):707-712. doi: 10.3969/j.issn.0258-7106.2009.05.016 [122] 李洪颜, 黄小龙, 李武显, 等, 2013.塔西南其木干早二叠世玄武岩的喷发时代及地球化学特征.岩石学报, 29(10):3353-3368. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=YSXB201310004&dbname=CJFD&dbcode=CJFQ [123] 李华芹, 2004.中国新疆区域成矿作用年代学.北京:地质出版社. [124] 李华芹, 陈富文, 李锦轶, 等, 2006.再论东天山白山铼钼矿区成岩成矿时代.地质通报, 25(8):916-922. doi: 10.3969/j.issn.1671-2552.2006.08.003 [125] 李华芹, 陈富文, 路远发, 等, 2004.东天山三岔口铜矿区矿化岩体SHRIMP U-Pb年代学及锶同位素地球化学特征研究.地球学报, 25(2):191-195. doi: 10.3321/j.issn:1006-3021.2004.02.018 [126] 李玮, 陈隽璐, 董云鹏, 等, 2016.早古生代古亚洲洋俯冲记录:来自东天山卡拉塔格高镁安山岩的年代学、地球化学证据.岩石学报, 32(2):505-521. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=YSXB201602016&dbname=CJFD&dbcode=CJFQ [127] 李文明, 任秉琛, 杨兴科, 等, 2002.东天山中酸性侵入岩浆作用及其地球动力学意义.西北地质, 35(4):41-64. doi: 10.3969/j.issn.1009-6248.2002.04.005 [128] 刘敏, 王志良, 张作衡, 等, 2009.新疆东天山土屋斑岩铜矿流体包裹体地球化学特征.岩石学报, 25(6):1446-1455. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200906015 [129] 马星华, 陈斌, 王超, 等, 2015.早古生代古亚洲洋俯冲作用:来自新疆哈尔里克侵入岩的锆石U-Pb年代学、岩石地球化学和Sr-Nd同位素证据.岩石学报, 31(1):89-104. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=YSXB201501007&dbname=CJFD&dbcode=CJFQ [130] 秦克章, 方同辉, 王书来, 等, 2002.东天山板块构造分区、演化与成矿地质背景研究.新疆地质, 20(4):302-308. doi: 10.3969/j.issn.1000-8845.2002.04.002 [131] 芮宗瑶, 刘玉琳, 王龙生, 等, 2002.新疆东天山斑岩型铜矿带及其大地构造格局.地质学报, 76(1):83-94. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200201011 [132] 宋彪, 李锦轶, 李文铅, 等, 2002.吐哈盆地南缘克孜尔卡拉萨依和大南湖花岗质岩基锆石SHRIMP定年及其地质意义.新疆地质, 20(4):342-345. doi: 10.3969/j.issn.1000-8845.2002.04.010 [133] 唐俊华, 顾连兴, 张遵忠, 等, 2007.东天山咸水泉片麻状花岗岩特征、年龄及成因.岩石学报, 23(8):1803-1820. doi: 10.3969/j.issn.1000-0569.2007.08.003 [134] 王超, 陈斌, 马星华, 等, 2015.东天山三岔口地区早、晚古生代岩体成因及其对康古尔缝合带演化的意义.地球科学与环境学报, 37(5):52-70. doi: 10.3969/j.issn.1672-6561.2015.05.004 [135] 王京彬, 王玉往, 何志军, 等, 2006.东天山大地构造演化的成矿示踪.中国地质, 33(3):461-469. doi: 10.3969/j.issn.1000-3657.2006.03.002 [136] 王京彬, 徐新, 2006.新疆北部后碰撞构造演化与成矿.地质学报, 80(1):23-31. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200601003 [137] 王银宏, 薛春纪, 刘家军, 等, 2014.新疆东天山土屋斑岩铜矿矿床地球、化学年代学、Lu-Hf同位素及其地质意义.岩石学报, 30(11):3383-3399. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=YSXB201411022&dbname=CJFD&dbcode=CJFQ [138] 王云峰, 陈华勇, 肖兵, 等, 2016.新疆东天山地区土屋和延东铜矿床斑岩-叠加改造成矿作用.矿床地质, 35(1):51-68. http://d.old.wanfangdata.com.cn/Periodical/kcdz201601004 [139] 吴福元, 李献华, 郑永飞, 等, 2007.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702001 [140] 吴艳爽, 项楠, 汤书好, 等, 2013.东天山东戈壁钼矿床辉钼矿Re-Os年龄及印支期成矿事件.岩石学报, 29(1):121-130. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=YSXB201301010&dbname=CJFD&dbcode=CJFQ [141] 肖兵, 陈华勇, 王云峰, 等, 2015.东天山土屋-延东铜矿矿区晚志留世岩体的发现及构造意义.地学前缘, 22(6):251-266. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DXQY201506024&dbname=CJFD&dbcode=CJFQ [142] 肖兵, 陈华勇, 王云峰, 等, 2017.东天山土屋-延东铜矿带石英钠长斑岩与辉钼矿形成年龄及其重要意义.大地构造与成矿学, 41(1):145-156. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201701012 [143] 徐璐璐, 柴凤梅, 李强, 等, 2014.东天山沙泉子铁铜矿区火山岩地球化学特征, 锆石U-Pb年龄及地质意义.中国地质, 41(6):1771-1790. doi: 10.3969/j.issn.1000-3657.2014.06.002 [144] 翟裕生, 姚书振, 蔡克勤, 2011.矿床学(第三版).北京:地质出版社. [145] 张达玉, 周涛发, 袁峰, 等, 2010.新疆东天山地区延西铜矿床的地球化学、成矿年代及其地质意义.岩石学报, 26(11):3327-3338. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=YSXB201011015&dbname=CJFD&dbcode=CJFQ [146] 张照伟, 臧遇时, 王亚磊, 等, 2016.新疆东天山玉海斑岩铜矿锆石SHRIMP U-Pb年龄及构造意义.地球学报, 37(1):59-68. http://d.old.wanfangdata.com.cn/Periodical/dqxb201601007 [147] 郑仁乔, 2015.新疆东天山红云滩铁矿床地质特征与矿床成因研究(硕士学位论文).北京: 中国地质大学. [148] 周涛发, 袁峰, 张达玉, 等, 2010.新疆东天山觉罗塔格地区花岗岩类年代学、构造背景及其成矿作用研究.岩石学报, 26(2):478-502. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201002012