Zircon U-Pb Geochronology and Geochemistry and Their Geological Significances of Eclogites from East Kunlun High-Pressure Metamorphic Belt
-
摘要: 近年来在东昆仑造山带中发现出露多处榴辉岩,由夏日哈木-苏海图、大格勒、宗加、尕日当(浪木日上游)、温泉、加当等多个榴辉岩、榴闪岩高压变质地体组成,呈透镜体或条带状产于金水口岩群中,构成了一条长达530 km的高压变质带.从榴辉岩的岩石学、地球化学、同位素年代学等方面进行系统梳理,结果表明岩石类型复杂,主要可分为榴辉岩、退变榴辉岩、榴闪岩,岩石地球化学显示东昆仑榴辉岩SiO2含量为41.58%~59.00%,平均值为50.19%,Al2O3含量为11.27%~18.54%,平均值为14.66%,TiO2含量为0.76%~1.59%,平均值为1.03%.稀土配分曲线主要为轻稀土富集型,微量元素配分主要介于E-MORB与N-MORB之间.获得加当榴闪岩变质年龄为440±13 Ma,原岩年龄为934±15 Ma,同时结合东昆仑地区榴辉岩锆石年龄对其进行分析,锆石单点206Pb/238U年龄在直方图上显示出丰富的信息,变质峰期年龄出现明显3个年龄峰,分别为451 Ma、432 Ma和412 Ma,原岩年龄出现峰值934 Ma,其中515~440 Ma记录了板块俯冲时段的岩浆热事件;440~420 Ma为陆壳俯冲-碰撞的记录;420~390 Ma是榴辉岩在折返过程中退化变质的反映.东昆仑榴辉岩变质时代与东昆仑原特提斯洋构造演化密切相关.Abstract: Eclogites have been recognized in areas of Xiarihamu-Suhaitu, Dagele, Zongjia, Garidang(the upper reach of Langmuri), Jiadang, and Wenquan, respectively, in East Kunlun orogenic belt. The eclogites in various sizes occur in Jinshuikou metamorphic rocks and different terranes of eclogites constitute the East Kunlun high pressure metamorphic belt with a length of more than 530 km. This paper presents a research on the petrology, geochemistry and isotope chronology of the eclogites. The results show that eclogite types are complex which can be further divided into eclogites, retrograded eclogites and amphibole-eclogites. The eclogite geochemical analyses show that SiO2 contents range from 41.58% to 59.00% with an average of 50.19%; Al2O3 contents range from 11.27% to 18.54% with an average of 14.66%; TiO2 contents range from 0.76% to 1.59% with an average of 1.03%; REE distribution patterns mainly show enrichment in LREE and the trace element distribution patterns show the characteristics between the E-MORB and N-MORB. 440±13 Ma metamorphism age and 934±15 Ma original age of amphibole-eclogites in Jiadang were obtained. And the histogram of eclogite zircon age shows a variety of information including three peak ages of the metamorphic ages at 451 Ma, 432 Ma and 412 Ma respectively, one peak age of the original rock age at 936 Ma, 515-440 Ma records the subduction of the magma thermal event, 440-420 Ma recording subduction and collision of high pressure metamorphic and 420-390 Ma as a reflection of eclogite degradation. It is concluded that the metamorphic age of eclogite is closely related to the tectonic evolution of East Kunlun.
-
Key words:
- geochronology /
- geochemistry /
- eclogite /
- high-pressure metamorphic belt /
- East Kunlun
-
图 1 青藏高原构造单元划分
Fig. 1. Distribution of major tectonic units in the Tibetan plateau
图 4 东昆仑榴辉岩Nb/Y-Zr/TiO2(a)及Nb/Y-SiO2(b)图解
Fig. 4. Nb/Y-Zr/TiO2 (a) and Nb/Y-SiO2 (b) diagrams of eclogites in East Kunlun
图 5 东昆仑榴辉岩稀土元素球粒陨石标准化配分模式
标准化数据据Sun and Mcdonough(1989),温泉榴辉岩编号1-11,其余样品编号见表 1
Fig. 5. Chondrite-normalized REE patterns of eclogites in East Kunlun
图 6 东昆仑榴辉岩微量元素原始地幔标准化蛛网图
标准化数据据Sun and Mcdonough(1989),温泉榴辉岩编号1-11,其余样品编号见表 1
Fig. 6. Primitive mantle-normalized trace element patterns of eclogites in East Kunlun
图 8 东昆仑地区榴辉岩锆石206Pb/238U年龄直方图
数据来源同表 4
Fig. 8. Diagrams of zircon 206Pb/238U ages of eclogites in East Kunlun
图 9 东昆仑榴辉岩构造判别图解
ALB.碱性玄武岩;ORB.洋脊玄武岩;MORB.洋中脊玄武岩;OIB.洋岛玄武岩;IAT.岛弧拉斑玄武岩;WPB.板内玄武岩.a.据Bass et al.(1973);b.据Glassley(1974);c.据Pearce and Cann(1973);d.据Shervais(1982)
Fig. 9. Tectonic discrimination diagrams of eclogites in East Kunlun
表 1 东昆仑榴辉岩、榴闪岩主量元素(%)分析结果
Table 1. Major (%) element concentrations of eclogites and amphibole-eclogites in East Kunlun
样品编号 尕日当榴辉岩① 大格勒榴辉岩( Du et al., 2017 )苏海图榴辉岩② 加当榴闪岩(本文) D1817/1 D1817/2 D1817/3 D1817/4 D1817/5 D1817/6 dgl-10 dgl-14 dgl-22 dgl-26 dgl-29 D.Gs4200 D.Gs4200-2 17eclH1 17eclH2 17eclH3 17eclH4 17eclH5 SiO2 49.90 51.46 50.83 51.91 50.46 50.91 44.12 41.58 44.40 44.86 45.32 47.44 48.40 48.39 49.70 48.81 49.94 50.56 TiO2 1.03 1.01 0.76 0.91 0.95 0.93 0.94 1.24 0.95 0.95 0.93 1.27 1.59 1.17 1.20 1.18 1.21 1.36 Al2O3 13.80 11.56 13.34 11.27 11.38 12.27 17.81 18.43 15.72 17.35 18.54 14.33 16.40 14.18 14.07 14.13 14.01 13.40 Fe2O3 0.10 0.10 0.10 0.10 0.10 0.10 11.92 14.32 10.99 12.68 12.29 2.69 2.05 1.73 1.38 1.36 1.52 1.08 FeO 12.23 12.41 12.24 12.30 12.88 12.41 9.85 8.85 9.31 10.03 9.94 9.68 10.92 MnO 0.22 0.21 0.21 0.22 0.23 0.22 0.18 0.23 0.16 0.18 0.18 0.24 0.18 0.20 0.20 0.21 0.20 0.21 MgO 9.43 10.34 9.74 10.80 10.90 10.24 8.20 7.83 11.23 8.62 7.37 7.93 7.29 8.07 8.20 8.68 7.94 7.31 CaO 10.83 11.05 11.02 10.78 10.32 10.80 11.62 12.25 11.88 11.68 11.78 11.63 11.00 11.71 11.38 12.03 11.66 11.32 Na2O 1.22 1.16 1.19 1.08 0.94 1.12 2.86 1.61 2.08 2.56 2.69 2.12 2.10 2.13 1.93 1.61 1.71 2.09 K2O 0.18 0.05 0.11 0.05 0.11 0.10 0.19 0.15 0.22 0.21 0.17 0.47 0.41 0.37 0.30 0.29 0.20 0.18 P2O5 0.11 0.07 0.22 0.06 0.08 0.11 0.19 0.30 0.08 0.15 0.19 0.12 0.12 0.11 0.09 0.10 0.08 0.11 H2O+ 1.68 0.75 LOS 0.35 0.27 0.29 0.49 0.51 0.48 0.54 0.15 0.40 0.16 0.03 1.40 0.62 2.54 1.42 1.57 1.76 1.39 Total 99.40 99.69 100.05 99.97 98.86 99.69 98.57 98.09 98.11 99.40 99.49 101.17 99.76 99.91 99.90 99.91 99.91 99.93 注:①陕西省核工业地质调查院,2016.青海省都兰县尕日当地区I47E002011、I47E003011、I47E004011、I47E004012四幅1:5万区域地质调查报告.1-468.②青海省地质调查院,2013.青海1:25万大灶火(J46C004003)幅区域地质调查报告.1-416. 表 2 东昆仑榴辉岩、榴闪岩微量元素(10-6)分析结果
Table 2. Trace element (10-6) concentrations of eclogites and amphibole-eclogites in East Kunlun
样品编号 尕日当榴辉岩① 大格勒榴辉岩( Du et al., 2017 )苏海图榴辉岩② 加当榴闪岩(本文) D1817/1 D1817/2 D1817/3 D1817/4 D1817/5 D1817/6 dgl-10 dgl-14 dgl-22 dgl-26 dgl-29 D.Gs4200 D.Gs4200-2 17eclH1 17eclH2 17eclH3 17eclH4 17eclH5 Rb 10.40 4.48 7.68 3.89 8.20 6.90 5.28 6.04 5.03 5.01 5.15 20.19 16.84 25.20 10.40 26.30 10.40 7.21 Sr 126 109 104 119 124 116 760.67 720.35 258.76 558.16 677.28 181 180 158 101 160 121 128 Ba 74.2 20.4 28.6 17.6 27.9 33.7 64.81 34.20 33.05 73.96 62.77 94.6 95.0 101.0 60.0 93.9 49.7 39.4 Th 1.19 0.66 1.32 0.66 0.99 0.96 0.11 0.10 0.02 0.07 0.11 0.99 1.46 2.15 0.57 1.28 0.68 0.66 U 9.52 11.50 12.80 13.30 11.10 11.64 0.06 0.05 0.05 0.04 0.03 0.54 0.45 0.78 0.17 0.26 0.21 0.26 Nb 0.81 0.51 0.74 0.53 0.56 0.63 7.91 12.40 3.55 6.07 8.32 3.84 1.91 5.08 4.51 5.90 5.41 5.66 Ta 0.51 0.51 0.53 0.51 0.51 0.51 0.23 0.33 0.11 0.16 0.21 12.40 8.28 0.39 0.33 0.38 0.38 0.38 Zr 55.1 51.5 45.4 53.2 56.2 52.3 26.32 26.94 14.52 26.21 26.70 76.3 104.5 54.1 49.8 53.7 55.8 66.2 Hf 10.5 10.8 10.5 10.9 10.8 10.7 1.00 1.02 0.69 0.99 0.98 3.3 3.6 1.56 1.44 1.48 1.59 1.94 V 273 292 286 291 266 281 349.18 374.30 329.01 362.51 354.37 310.7 243.5 289 285 295 308 333 Ti 6 180 6 060 4 560 5 460 5 700 5 580 5 640 7 440 5 700 5 700 5 580 7 620 9 540 7 020 7 200 7 080 7 260 8 160 La 5.10 3.85 9.38 4.06 4.84 5.45 9.92 13.96 2.69 7.23 10.00 5.76 10.10 7.37 4.54 9.53 5.77 5.78 Ce 9.43 7.61 18.04 8.25 9.91 10.65 26.83 36.66 9.44 19.74 26.64 13.21 22.14 15.7 11.1 21.1 14.1 14.4 Pr 1.72 1.50 2.77 1.55 1.73 1.86 3.80 5.04 1.68 2.96 3.73 1.97 2.97 2.18 1.69 2.92 2.06 2.20 Nd 8.52 7.70 12.62 8.16 8.99 9.20 17.88 23.03 9.28 14.11 16.95 8.74 13.80 9.85 8.13 12.10 9.78 10.80 Sm 2.78 2.52 3.34 2.60 2.72 2.79 3.90 5.19 2.63 3.54 3.85 2.57 3.28 2.69 2.36 2.94 2.72 2.99 Eu 0.96 0.81 1.11 0.85 0.86 0.92 1.28 1.68 0.94 1.19 1.19 0.95 1.38 0.95 0.88 0.98 1.01 1.06 Gd 3.10 2.81 3.89 2.95 3.02 3.15 3.89 5.67 2.77 3.77 3.88 3.35 3.94 3.01 2.81 3.50 3.26 3.52 Tb 0.67 0.65 0.74 0.67 0.67 0.68 0.58 0.89 0.44 0.54 0.59 0.67 0.74 0.52 0.48 0.58 0.55 0.61 Dy 4.02 3.98 4.40 4.27 4.07 4.15 3.52 5.44 2.61 3.12 3.42 4.32 4.67 3.27 3.11 3.56 3.61 3.98 Ho 0.95 0.97 1.05 1.06 1.01 1.01 0.70 1.12 0.53 0.64 0.70 0.89 0.97 0.69 0.67 0.72 0.75 0.82 Er 2.62 2.72 2.84 3.06 2.78 2.81 2.01 3.29 1.44 1.79 1.99 2.54 2.81 1.97 1.89 2.10 2.11 2.36 Tm 0.43 0.45 0.45 0.49 0.45 0.46 0.28 0.47 0.20 0.25 0.27 0.39 0.42 0.30 0.29 0.32 0.32 0.36 Yb 2.66 2.82 2.82 3.08 2.75 2.83 1.73 2.91 1.24 1.55 1.76 2.56 2.76 1.95 1.82 1.95 2.02 2.31 Lu 0.43 0.46 0.46 0.51 0.46 0.47 0.25 0.43 0.18 0.22 0.26 0.37 0.39 0.28 0.27 0.29 0.31 0.34 Y 22.91 23.17 24.87 25.21 23.54 23.90 17.15 27.23 12.64 15.66 17.47 21.8 24.9 21.2 17.4 20.4 18.5 22.2 ΣREE 43.39 38.85 63.91 41.56 44.26 46.43 76.57 105.78 36.07 60.65 75.23 48.29 70.37 50.73 40.04 62.59 48.37 51.53 LREE 28.51 23.99 47.26 25.47 29.05 30.87 63.61 85.56 26.66 48.77 62.36 33.20 53.67 38.74 28.70 49.57 35.44 37.23 HREE 14.88 14.86 16.65 16.09 15.21 15.56 12.96 20.22 9.41 11.88 12.87 15.09 16.70 11.99 11.34 13.02 12.93 14.30 LREE/HREE 1.92 1.61 2.84 1.58 1.91 1.98 4.908 18 4.231 45 2.833 16 4.105 22 4.845 38 2.200 13 3.213 77 3.231 03 2.530 86 3.807 22 2.740 91 2.603 50 (La/Yb)N 1.38 0.98 2.39 0.95 1.26 1.38 4.11 3.44 1.56 3.35 4.08 1.61 2.62 2.71 1.79 3.51 2.05 1.79 δEu 1.00 0.93 0.94 0.94 0.92 0.95 1.004 68 0.946 80 1.064 72 0.995 86 0.941 29 0.989 82 1.173 59 1.020 68 1.044 71 0.933 99 1.036 94 0.998 90 δCe 0.78 0.78 0.87 0.81 0.84 0.82 1.07 1.07 1.09 1.05 1.07 0.96 0.99 0.96 0.98 0.98 1.00 0.99 注:数值由分析值经标准化值得来,采用Sun and Mcdonough(1989)的标准值.其中:(La/Yb)N=(La/0.237)/(Yb/0.17);(La/Sm)N=(La/0.237)/(Sm/0.153). 表 3 加当榴闪岩锆石LA-ICP-MS测年结果
Table 3. LA-ICP-MS isotopic data of zircon from Jiadang amphibole-eclogites in East Kunlun
样品 U Th U/Th 207Pb/206Pb 207Pb/235U 206Pb/238U 206Pb/238U 207Pb/235U 007CL04.D 30.60 0.53 0.02 0.063 0 0.011 0 0.573 0 0.085 0 0.069 3 0.003 7 432 22 454 61 012CL08.D 33.80 0.51 0.02 0.054 4 0.008 0 0.545 0 0.080 0 0.072 8 0.003 6 452 21 437 58 015CL11.D 29.10 0.72 0.02 0.057 0 0.010 0 0.600 0 0.100 0 0.076 2 0.004 8 473 29 466 69 020CL13.D 46.80 0.22 0.00 0.068 8 0.007 8 0.658 0 0.070 0 0.070 2 0.003 0 437 18 503 43 022CL15.D 22.57 0.53 0.02 0.055 0 0.012 0 0.530 0 0.100 0 0.071 2 0.003 8 443 23 437 69 024CL17.D 35.70 1.01 0.03 0.060 6 0.007 6 0.609 0 0.079 0 0.073 5 0.004 2 456 25 467 54 025CL18.D 39.40 1.37 0.03 0.061 0 0.010 0 0.551 0 0.086 0 0.067 9 0.003 9 423 24 428 56 027CL19.D 24.50 0.30 0.01 0.060 0 0.012 0 0.600 0 0.120 0 0.070 9 0.004 7 441 28 439 79 030CL22.D 42.10 0.46 0.01 0.060 2 0.007 9 0.587 0 0.076 0 0.069 3 0.003 3 431 20 456 48 037CL26.D 26.10 0.48 0.02 0.052 0 0.012 0 0.490 0 0.100 0 0.068 6 0.003 8 427 23 374 72 045CL33.D 43.90 0.63 0.01 0.055 0 0.008 1 0.527 0 0.079 0 0.071 4 0.003 7 444 22 418 55 021CL14.D 246.00 101.40 0.41 0.072 0 0.002 2 1.605 0 0.058 0 0.159 0 0.002 5 951 14 970 22 046CL34.D 370.00 121.00 0.33 0.069 6 0.001 9 1.463 0 0.058 0 0.154 0 0.005 7 923 32 912 24 047CL35.D 1 023.00 161.10 0.16 0.070 0 0.001 1 1.481 0 0.028 0 0.154 6 0.001 7 927 10 922 11 表 4 东昆仑榴辉岩锆石同位素年龄
Table 4. Summary on eclogite ages in East Kunlun
位置 岩石 原岩年龄 榴辉岩相变质年龄 测定方法 资料来源 温泉 细粒榴辉岩 934±2 Ma SHRIMP Meng et al., 2013 温泉 粗粒榴辉岩 428±2 Ma LA-MC-ICPMS Meng et al., 2013 温泉 榴辉岩 451±2 Ma LA-ICP-MS 贾丽辉等,2014 温泉 榴辉岩中石英脉 449.9±1.9 Ma LA-ICP-MS 贾丽辉等,2014 夏日哈木-苏海图 榴辉岩 410.9±1.6 Ma LA-ICP-MS 祁生胜等,2014 尕日当 榴辉岩 432.1±4.5 Ma LA-ICP-MS 祁晓鹏等,2016 大格勒沟 榴辉岩 650~520 Ma 451.0±4.1 Ma LA-ICP-MS 熊富浩和马昌前,2016 加当 榴闪岩 934±15 Ma 440±13 Ma LA-ICP-MS 本文 -
[1] Barbarin, B., 1999.A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments.Lithos, 46(3):605-626. https://doi.org/10.1016/s0024-4937(98)00085-1 [2] Bass, M.N., Moberly, R., Rhodes, J.M., et al., 1973.Volcanic Rocks Cored in the Central Pacific, Leg 17, Deep Sea Drilling Project.Contributions of the Hawaii Institute of Geophysics, 555(54):505-509. https://doi.org/10.2973/dsdp.proc.17.114.1973 [3] Becker, H., Jochum, K.P., Carlson, R.W., 1999.Constraints from High-Pressure Veins in Eclogites on the Composition of Hydrous Fluids in Subduction Zones.Chemical Geology, 160(4):291-308. https://doi.org/10.1016/s0009-2541(99)00104-7 [4] Chen, H.W., Luo, Z.H., Mo, X.X., et al., 2006.SHRIMP Ages of Kayakedengtage Complex in the East Kunlun Mountains and Their Geological Implications.Acta Petrologica et Mineralogica, 25(1):25-32 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YSKW200601002.htm [5] Chen, J., Xie, Z.Y., Li, B., et al., 2013.Petrogenesis of Devonian Intrusive Rocks in Lalingzaohuo Area, Eastern Kunlun, and Its Geological Significance.Journal of Mineralogy and Petrology, 33(2):26-34 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwys201302005 [6] Chen, N.S., He, L., Sun, M., et al., 2002.The Limits of the Age in Early Paleozoic Metamorphic Peak and Thrust Structure, East Kunlun Orogenic Belt.Chinese Science Bulletin, 47(8):628-631 (in Chinese). [7] Chen, N.S., Sun, M., Wang, Q.Y., et al., 2008.The Annual and Tectonic Evolution of Zircon U-Pb Dating in the East Kunlun Orogenic Belt.Science in China (Series D:Earth Sciences), 38(6):657-666 (in Chinese). [8] Cui, M.H., Meng, F.C., Wu, X.K., 2011.Early Ordovician Island Arc of Qimantag Mountain, Eastern Kunlun:Evidences from Geochemistry, Sm-Nd Isotope and Geochronology of Intermediate-Basic Igneous Rocks.Acta Petrologica Sinica, 27(11):3365-3379 (in Chinese with English abstract). doi: 10.1097-TP.0b013e3182295bed/ [9] Cullers, R.L., Graf, J.L., 1984.Chapter 7-Rare Earth Elements in Igneous Rocks of the Continental Crust:Predominantly Basic and Ultrabasic Rocks.Developments in Geochemistry, 2:237-274. https://doi.org/10.1016/B978-0-444-42148-7.50012-5 [10] Deng, J.F., Zhao, H.L., Lai, S.C., et al., 1994.Generation of Muscovite/Two-Mica Granite and Intracontinental Subduction.Earth Science, 19(2):139-147 (in Chinese with English abstract). http://www.cqvip.com/QK/84134A/199401/4001418664.html [11] Du, W., Jiang, C.Y., Xia, Z.D., et al., 2017.A Newly Discovered Early Paleozoic Ophiolite in Dagele, Eastern Kunlun, China, and Its Geological Significance.Geological Journal, 52(7):425-435. https://doi.org/10.1002/gj.2996 [12] Ernst, W.G., 2001.Subduction, Ultrahigh-Pressure Metamorphism, and Regurgitation of Buoyant Crustal Slices-Implications for Arcs and Continental Growth.Physics of the Earth and Planetary Interiors, 127(1-4):253-275. https://doi.org/10.1016/s0031-9201(01)00231-x [13] Glassley, W., 1974.Geochemistry and Tectonics of the Crescent Volcanic Rocks, Olympic Peninsula, Washington.Geological Society of America Bulletin, 85(5):785.https://doi.org/10.1130/0016-7606(1974)85<785:gatotc>2.0.co;2 doi: 10.1130/0016-7606(1974)85<785:gatotc>2.0.co;2 [14] Gu, F.B., 1994.Geological Characteristics of East Kunlun and Tectonic Evolution in Late Palaezoic-Mesozoic Era.Geology of Qinghai, (1):4-14 (in Chinese with English abstract). http://www.cqvip.com/qk/95266X/199401/1446718.html [15] Guo, X.Z., Jia, Q.Z., Qian, B., et al., 2017.Geochemical Characteristics of Eclogites and Garnet-Amphibolites in East Kunlun High Pressure Metamorphic Belt and Their Geodynamic Setting.Journal of Earth Sciences and Environment, 39(6):735-750 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XAGX201706006.htm [16] Guo, Z.F., Deng, J.F., Xu, Z.Q., et al., 1998.Late Palaeozoic-Mesozoic Intracontinental Orogenic Process and Intermedate-Acidic Igneous Rocks from the Eastern Kunlun Mountains of Northwestern China.Geoscience, 12(3):344-352 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-XDDZ803.006.htm [17] Hou, Z.Q., Mo, X.X., 1996.Mantle Plume in the Sanjiang Paleo-Tethyan Lithosphere:Evidence from Mid-Ocean Ridge Basalts.Acta Geoscientia Sinica, 17(4):362-375 (in Chinese with English abstract). [18] Jahn, B.M., 1999.Sm-Nd Isotope Tracer Study of UHP Metamorphic Rocks:Implications for Continental Subduction and Collisional Tectonics.International Geology Review, 41(10):859-885. https://doi.org/10.1080/00206819909465175 [19] Jia, L.H., Meng, F.C., Feng, H.B., 2014.Fluid Activity during Eclogite-Facies Peak Metamorphism:Evidence from a Quartz Vein in Eclogite in the East Kunlun, NW China.Acta Petrologica Sinica, 30(8):2339-2350 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201408016 [20] Kong, H.L., Li, J.C., Li, Y.Z., et al., 2014.Geochemistry and Zircon U-Pb Geochronology of Annage Diorite in the Eastern Section from East Kunlun in Qinghai Province.Geological Science and Technology Information, 33(6):11-17 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201406002.htm [21] Li, C.S., Zhang, Z.W., Li, W.Y., et al., 2015.Geochronology, Petrology and Hf-S Isotope Geochemistry of the Newly-Discovered Xiarihamu Magmatic Ni-Cu Sulfide Deposit in the Qinghai-Tibet Plateau, Western China.Lithos, 216/217:224-240. https://doi.org/10.1016/j.lithos.2015.01.003 [22] Li, R.S., Ji, W.H., Yang, Y.C., 2008.The Geology of Kunlun Mountain and Its Adjacent Area.Geological Publishing House, Beijing (in Chinese). [23] Li, R.S., Ji, W.H., Zhao, Z.M., et al., 2007.Progress in the Study of the Early Paleozoic Kunlun Orogenic Belt.Geological Bulletin of China, 26(4):373-382 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200704001.htm [24] Li, Y.G., Wang, S.S., Liu, M.W., et al., 2015.U-Pb Dating Study of Baddeleyite by LA-ICP-MS:Technique and Application.Acta Geologica Sinica, 89(12):2400-2418 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZXE201512015.htm [25] Li, Z., Chen, Y.L., Liu, C.Z., et al., 2016.Formation and Evolution History on the Northern Qilian Orogen:The Evidences from Compositions of Rivers' Sediments and Their Zircon U-Pb Ages, Hf Isotopic Compositions.Acta Geologica Sinica, 90(2):267-283 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2016AGUFMEP13A1016C [26] Liou, J.G., Ernst, W.G., Song, S.G., et al., 2009.Tectonics and HP-UHP Metamorphism of Northern Tibet-Preface.Journal of Asian Earth Sciences, 35(3-4):191-198. https://doi.org/10.1016/j.jseaes.2009.03.001 [27] Liu, B., Ma, C.Q., Zhang, J.Y., et al., 2012.Petrogenesis of Early Devonian Intrusive Rocks in the East Part of Eastern Kunlun Orogen and Implication for Early Palaeozoic Orogenic Processes.Acta Petrologica Sinica, 28(6):1785-1807 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201206007 [28] Liu, L., Kang, L., Cao, Y.T., et al., 2015.Early Paleozoic Granitic Magmatism Related to the Processes from Subduction to Collision in South Altyn, NW China.Science China Earth Sciences, 58(9):1513-1522. https://doi.org/10.1007/s11430-015-5151-1 [29] Liu, L., Liao, X.Y., Wang, Y.W., et al., 2016.Early Paleozoic Tectonic Evolution of the North Qinling Orogenic Belt in Central China:Insights on Continental Deep Subduction and Multiphase Exhumation.Earth-Science Reviews, 159:58-81. https://doi.org/10.1016/j.earscirev.2016.05.005 [30] Liu, L., Wang, C., Chen, D.L., et al., 2009.Petrology and Geochronology of HP-UHP Rocks from the South Altyn Tagh, Northwestern China.Journal of Asian Earth Sciences, 35(3-4):232-244. https://doi.org/10.1016/j.jseaes.2008.10.007 [31] Long, X.P., Jin, W., Ge, W.C., et al., 2006.Zircon U-Pb Geochronology and Geological Implications of the Granitoids in Jinshuikou, East Kunlun, NW China.Geochimica, 35(4):367-376 (in Chinese with English abstract). https://doi.org/10.19700/j.0379-1726.2006.04.004 [32] Lu, L., Zhang, Y.L., Wu, Z.H., et al., 2013.Zircon U-Pb Dating of Early Paleozoic Granites from the East Kunlun Mountains and Its Geological Significance.Acta Geoscientica Sinica, 34(4):447-454 (in Chinese with English abstract). https://doi.org/10.3975/cagsb.2013.04.07 [33] Maruyama, S., Liou, J.G., Terabayashi, M., 1996.Blueschists and Eclogites of the World and Their Exhumation.International Geology Review, 38(6):485-594. https://doi.org/10.1080/00206819709465347 [34] Meng, F.C., Cui, M.H., Jia, L.H., et al., 2015.Paleozoic Continental Collision of the East Kunlun Orogen:Evidence from Protoliths of the Eclogites.Acta Petrologica Sinica, 31(12):3581-3594 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201512006 [35] Meng, F.C., Cui, M.H., Wu, X.K., et al., 2013.Magmatic and Metamorphic Events Recorded in Granitic Gneisses from the Qimantag, East Kunlun Mountains, Northwest China.Acta Petrologica Sinica, 29(6):2107-2122 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201306018 [36] Meng, F.C., Zhang, J.X., Cui, M.H., 2013.Discovery of Early Paleozoic Eclogite from the East Kunlun, Western China and Its Tectonic Significance.Gondwana Research, 23(2):825-836. https://doi.org/10.1016/j.gr.2012.06.007 [37] Meng, F.C., Zhang, J.X., Yang, J.S., et al., 2003.Geochemical Characteristics of Eclogites in Xitieshan Area, North Qaidam of Northwestern China.Acta Petrologica Sinica, 19(3):435-442 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=a6e3ccebba52e667aa5db0157f56c37a&encoded=0&v=paper_preview&mkt=zh-cn [38] Pan, G.T., Xiao, Q.H., Lu, S.N., et al., 2009.Subdivision of Tectonic Units in China.Geology in China, 36(1):1-28 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201804003 [39] Pearce, J.A., Cann, J.R., 1973.Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses.Earth and Planetary Science Letters, 19(2):290-300. https://doi.org/10.1016/0012-821x(73)90129-5 [40] Qi, S.S., Song, S.G., Shi, L.C., et al., 2014.Discovery and Its Geological Significance of Early Paleozoic Eclogite in Xiarihamu-Suhaitu Area, Western Part of the East Kunlu.Acta Petrologica Sinica, 30(11):3345-3356 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201411018.htm [41] Qi, X.P., Fan, X.G., Yang, J., et al., 2016.The Discovery of Early Paleozoic Eclogite in the Upper Reaches of Langmuri in Eastern East Kunlun Mountains and Its Significance.Geological Bulletin of China, 35(11):1771-1783 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201611002.htm [42] Shatsky, V.S., Kozmenko, O.A., Sobolev, N.V., 1990.Behaviour of Rare-Earth Elements during High-Pressure Metamorphism.Lithos, 25(1-3):219-226. https://doi.org/10.1016/0024-4937(90)90017-u [43] Shervais, J.W., 1982.Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas.Earth and Planetary Science Letters, 59(1):101-118. https://doi.org/10.1016/0012-821x(82)90120-0 [44] Shi, B., Zhu, Y.H., Zhong, Z.Q., et al., 2016.Petrological, Geochemical Characteristics and Geological Significance of the Caledonian Peraluminous Granites in Heihai Region, Eastern Kunlun.Earth Science, 41(1):35-54 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.003 [45] Song, S.G., Niu, Y.L., Su, L., et al., 2013.Tectonics of the North Qilian Orogen, NW China.Gondwana Research, 23(4):1378-1401. https://doi.org/10.1016/j.gr.2012.02.004 [46] Song, S.G., Niu, Y.L., Su, L., et al., 2014.Continental Orogenesis from Ocean Subduction, Continent Collision/Subduction, to Orogen Collapse, and Orogen Recycling:The Example of the North Qaidam UHPM Belt, NW China.Earth-Science Reviews, 129:59-84. https://doi.org/10.1016/j.earscirev.2013.11.010 [47] Song, S.G., Su, L., Li, X.H., et al., 2012.Grenville-Age Orogenesis in the Qaidam-Qilian Block:The Link between South China and Tarim.Precambrian Research, 220-221:9-22. https://doi.org/10.1016/j.precamres.2012.07.007 [48] Song, S.G., Yang, J.S., Liou, J.G., et al., 2003.Petrology, Geochemistry and Isotopic Ages of Eclogites from the Dulan UHPM Terrane, the North Qaidam, NW China.Lithos, 70(3-4):195-211. https://doi.org/10.1016/s0024-4937(03)00099-9 [49] Song, S.G., Zhang, L.F., 2007.Two Different Metamorphic Paths of Eclogites and Differential Exhumation of Subducted Continental Crust:A Case Study of the Dulan UHP Terrane in the North Qaidam UHP Belt.Geological Journal of China Universities, 13(3):515-525 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GXDX200703015.htm [50] Song, S.G., Zhang, L.F., Niu, Y.L., et al., 2006.Evolution from Oceanic Subduction to Continental Collision:A Case Study from the Northern Tibetan Plateau Based on Geochemical and Geochronological Data.Journal of Petrology, 47(3):435-455. https://doi.org/10.1093/petrology/egi080 [51] Song, T.Z., Zhao, H.X., Zhang, W.K., et al., 2010.The Geological Features of Shizigou Ophiolites in Qimantage Area.Northwestern Geology, 43(4):124-133 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBDI201004019.htm [52] Song, X.Y., Yi, J.N., Chen, L.M., et al., 2016.The Giant Xiarihamu Ni-Co Sulfide Deposit in the East Kunlun Orogenic Belt, Northern Tibet Plateau, China.Economic Geology, 111(1):29-55. https://doi.org/10.2113/econgeo.111.1.29 [53] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [54] Wang, B.Z., Luo, Z.H., Li, H.Y., et al., 2009.Petrotectonic Assemblages and Temporal-Spatial Framework of the Late Paleozoic-Early Mesozoic Intrusions in the Qimantage Corridor of the East Kunlun Belt.Geology in China, 36(4):769-782 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DIZI200904004.htm [55] Wang, B.Z., Luo, Z.H., Pan, T., et al., 2012.Petrotectonic Assemblages and LA-ICP-MS Zircon U-Pb Age of Early Paleozoic Volcanic Rocks in Qimantag Area, Tibetan Plateau.Geological Bulletin of China, 31(6):860-874 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201206005.htm [56] Wang, G., Sun, F.Y., Li, B.L., et al., 2013.Zircon U-Pb Geochronology and Geochemistry of the Early Devonian Syenogranite in the Xiarihamu Ore District from East Kunlun, with Implications for the Geodynamic Setting.Geotectonica et Metallogenia, 37(4):685-697 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=e3a2031513b9917445685cf34c3430fa&encoded=0&v=paper_preview&mkt=zh-cn [57] Wang, G., Sun, F.Y., Li, B.L., et al., 2016.Geochronology, Geochemistry and Tectonic Implication of Early Neoproterozoic Monzogranite in Xiarihamu Ore District from East Kunlun.Geotectonica et Metallogenia, 40(6):1247-1260 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK201606012.htm [58] Wang, H., Wu, Y.B., 2013.Early Paleozoic HP-UHP Metamorphism of the Qinling Orogen.Chinese Science Bulletin, 58 (22):2124-2131 (in Chinese). http://d.old.wanfangdata.com.cn/Conference/9222251 [59] Wang, T., Li, B., Chen, J., et al., 2016.Characteristics of Chronology and Geochemistry of the Early Silurian Monzogranite in the Wulonggou Area, East Kunlun and Its Geological Significance.Journal of Mineralogy and Petrology, 36(2):62-70 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwys201602008 [60] Wei, X.L., Zhang, D.X., Gan, C.P., et al., 2016.Discovery and Geological Significance of Neoproterozoic Intrusive Body in the Kaerqueka Area of the East Kunlun Mountain.Contributions to Geology and Mineral Resources Research, 31(2):236-244 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZZK201602011.htm [61] Winchester, J.A., Floyd, P.A., 1977.Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements.Chemical Geology, 20:325-343. https://doi.org/10.1016/0009-2541(77)90057-2 [62] Wu, Y.B., Zheng, Y.F., 2004.Genesis of Zircon Mineralogy and Implications for U-Pb Age.Chinese Science Bulletin, 49(16):1589-1604 (in Chinese). doi: 10.1007%2FBF03184122 [63] Xia, X.H., Song, S.G., Niu, Y.L., 2012.Tholeiite-Boninite Terrane in the North Qilian Suture Zone:Implications for Subduction Initiation and Back-Arc Basin Development.Chemical Geology, 328:259-277. https://doi.org/10.1016/j.chemgeo.2011.12.001 [64] Xiao, Q.H., Deng, J.F., Qiu, R.Z., et al., 2009.A Preliminary Study of the Relationship between Granitoids and the Growth of Continental Crust:A Case Study of the Formation of Key Orogen Granitoids in China.Geology in China, 36(3):594-622 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=17bd4b513662b80c427c474de206ad14&encoded=0&v=paper_preview&mkt=zh-cn [65] Xiong, F.H., Ma, C.Q., 2016.The Petrology Evidence from the Deep Subduction in the Central East Kunlun, Proto Tethys.Resources and Environment and Spatial Information Technology Progress Academic Proceedings, Special Subject 1: 16-17(in Chinese). [66] Xu, Z.Q., Yang, J.S., Li, H.B., et al., 2006a.The Early Palaeozoic Terrene Framework and the Formation of the High-Pressure (HP) and Ultra-High Pressure (UHP) Metamorphic Belts at the Central Orogenic Belt (COB).Acta Geologica Sinica, 80(12):1793-1806 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE200612001.htm [67] Xu, Z.Q., Yang, J.S., Li, H.B., et al., 2006b.The Qinghai-Tibet Plateau and Continental Dynamics:A Review on Terrain Tectonics, Collisional Orogenesis, and Processes and Mechanisms for the Rise of the Plateau.Geology in China, 33(2):221-238 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=56f7ee707c46d3e2260ffe4a8de5edff&encoded=0&v=paper_preview&mkt=zh-cn [68] Yang, J.S., Xu, Z.Q., Pei, X.Z., et al., 2002.Discovery of Diamond in North Qinling:Evidence for a Giant UHPM Belt across Central China and Recognition of Paleozoic and Mesozoic Dual Deep Subduction between North China and Yangtze Plates.Acta Geologica Sinica, 76(4):484-495 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2002AGUFM.T61A1228Y [69] Yang, J.S., Xu, Z.Q., Song, S.G., et al., 2000.Discovery of Eclogite in Dulan, Qinghai Province and Its Significance for Studying the HP-UHP Metamorphic Belt along the Central Orogenic Belt of China.Acta Geologica Sinica, 74(2):156-168 (in Chinese with English abstract). [70] Zhang, A.D., 2006.Geochemistry and Geochronology of Eelogites from Alytn Tagh and Its Geological Significance (Dissertation).Northwest University, Xi'an, 1-96 (in Chinese with English abstract). [71] Zhang, J.X., Meng, F.C., Wan, Y.S., et al., 2003.Early Paleozoic Tectono-Thermal Event of the Jinshuikou Group on the Southern Margin of Qaidam:Zircon U-Pb SHRIMP Age Evidence.Geological Bulletin of China, 22(6):397-404 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200306003.htm [72] Zhang, J.X., Yang, J.S., Xu, Z.Q., et al., 2002.Evidence of Ultrahigh Pressure Metamorphism in Allogit.Chinese Science Bulletin, 47(3):231-234 (in Chinese). doi: 10.1360/02tb9055 [73] Zhang, J.X., Yu, S.Y., Li, Y.S., et al., 2015.Subduction, Accretion and Closure of Proto-Tethyan Ocean:Early Paleozoic Accretion/Collision Orogeny in the Altun-Qilian-North Qaidam Orogenic System.Acta Petrologica Sinica, 31(12):3531-3554 (in Chinese with English abstract). [74] Zhang, J.X., Yu, S.Y., Meng, F.C., 2011.Ployphase Early Paleozoic Metamorphism in the Northern Qinling Orogenic Belt.Acta Petrologica Sinica, 27(4):1179-1190 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201104022 [75] Zhang, K.X., Pan, G.T., He, W.H., et al., 2015.New Division of Tectonic-Strata Superregion in China.Earth Science, 40(2):206-233 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.016 [76] Zhang, L.F., Wang, Q.J., Song, S.G., 2009.Lawsonite Blueschist in Northern Qilian, NW China:P-T Pseudosections and Petrologic Implications.Journal of Asian Earth Sciences, 35(3/4):354-366. https://doi.org/10.1016/j.jseaes.2008.11.007 [77] Zhang, Y.F., Pei, X.Z., Ding, S.P., et al., 2010.LA-ICP-MS Zircon U-Pb Age of Quartz Diorite at the Kekesha Area of Dulan County, Eastern Section of the East Kunlun Orogenic Belt, China and Its Significance.Geological Bulletin of China, 29(1):79-85 (in Chinese with English abstract). http://www.cqvip.com/qk/95894A/201001/34053570.html [78] Zhang, Z.W., Li, W.Y., Qian, B., et al., 2015.Metallogenic Epoch of the Xiarihamu Magmatic Ni-Cu Sulfide Deposit in Eastern Kunlun Orogenic Belt and Its Prospecting Significance.Geology in China, 42(3):438-451 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201503004.htm [79] Zhang, Z.W., Qian, B., Li, W.Y., et al., 2017.The Discovery of Early Paleozoic Eclogite from the Xiarihamu Magmatic Ni-Cu Sulfide Deposit in Eastern Kunlun Orogenic Belt:Zircon U-Pb Chronologic Evidence.Geology in China, 44(4):816-817 (in Chinese). [80] Zhao, Z.M., Ma, H.D., Wang, B.Z., et al., 2008.The Evidence of Intrusive Rocks about Collision-Orogeny during Early Devonian in Eastern Kunlun Area.Geological Review, 54(1):47-56 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dzlp200801007.htm [81] 谌宏伟, 罗照华, 莫宣学, 等, 2006.东昆仑喀雅克登塔格杂岩体的SHRIMP年龄及其地质意义.岩石矿物学杂志, 25(1):25-32. doi: 10.3969/j.issn.1000-6524.2006.01.003 [82] 陈静, 谢智勇, 李彬, 等, 2013.东昆仑拉陵灶火地区泥盆纪侵入岩成因及其地质意义.矿物岩石, 33(2):26-34. http://d.old.wanfangdata.com.cn/Periodical/kwys201302005 [83] 陈能松, 何蕾, 孙敏, 等, 2002.东昆仑造山带早古生代变质峰期和逆冲构造变形年代的精确限定.科学通报, 47(8):628-631. doi: 10.3321/j.issn:0023-074X.2002.08.016 [84] 陈能松, 孙敏, 王勤燕, 等, 2008.东昆仑造山带中带的锆石U-Pb定年与构造演化启示.中国科学(D辑:地球科学), 38(6):657-666. http://www.cnki.com.cn/Article/CJFDTotal-JDXK200806000.htm [85] 崔美慧, 孟繁聪, 吴祥珂, 2011.东昆仑祁漫塔格早奥陶世岛弧:中基性火成岩地球化学、Sm-Nd同位素及年代学证据.岩石学报, 27(11):3365-3379. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201111017 [86] 邓晋福, 赵海玲, 赖绍聪, 等, 1994.白云母/二云母花岗岩形成与陆内俯冲作用.地球科学, 19(2):139-147. doi: 10.3321/j.issn:1000-2383.1994.02.006 [87] 古凤宝, 1994.东昆仑地质特征及晚古生代-中生代构造演化.青海地质, (1):4-14. http://www.cqvip.com/qk/95266X/199401/1446718.html [88] 国显正, 贾群子, 钱兵, 等, 2017.东昆仑高压变质带榴辉岩和榴闪岩地球化学特征及形成动力学背景.地球科学与环境学报, 39(6):735-750. doi: 10.3969/j.issn.1672-6561.2017.06.005 [89] 郭正府, 邓晋福, 许志琴, 等, 1998.青藏东昆仑晚古生代末-中生代中酸性火成岩与陆内造山过程.现代地质, 12(3):344-352. http://www.cnki.com.cn/Article/CJFDTotal-XDDZ803.006.htm [90] 侯增谦, 莫宣学, 1996."三江"古特提斯地幔热柱——洋中脊玄武岩证据.地球学报(中国地质科学院院报), 17(4):362-375. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB604.002.htm [91] 贾丽辉, 孟繁聪, 冯惠彬, 2014.榴辉岩相峰期流体活动:来自东昆仑榴辉岩石英脉的证据.岩石学报, 30(8):2339-2350. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201408016 [92] 孔会磊, 李金超, 栗亚芝, 等, 2014.青海东昆仑东段按纳格闪长岩地球化学及锆石U-Pb年代学研究.地质科技情报, 33(6):11-17. http://www.cqvip.com/QK/93477A/201406/663235468.html [93] 李荣社, 计文化, 杨永成, 2008.昆仑山及邻区地质.北京:地质出版社. [94] 李荣社, 计文化, 赵振明, 等, 2007.昆仑早古生代造山带研究进展.地质通报, 26(4):373-382. doi: 10.3969/j.issn.1671-2552.2007.04.002 [95] 李艳广, 汪双双, 刘民武, 等, 2015.斜锆石LA-ICP-MS U-Pb定年方法及应用.地质学报, 89(12):2400-2418. doi: 10.3969/j.issn.0001-5717.2015.12.015 [96] 李兆, 陈岳龙, 刘长征, 等, 2016.北祁连的形成与演化历史:来自河流沉积物地球化学及其碎屑锆石U-Pb年龄、Hf同位素组成的证据.地质学报, 90(2):267-283. doi: 10.3969/j.issn.0001-5717.2016.02.006 [97] 刘彬, 马昌前, 张金阳, 等, 2012.东昆仑造山带东段早泥盆世侵入岩的成因及其对早古生代造山作用的指示.岩石学报, 28(6):1785-1807. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201206007 [98] 龙晓平, 金巍, 葛文春, 等, 2006.东昆仑金水口花岗岩体锆石U-Pb年代学及其地质意义.地球化学, 35(4):367-376. doi: 10.3321/j.issn:0379-1726.2006.04.004 [99] 陆露, 张延林, 吴珍汉, 等, 2013.东昆仑早古生代花岗岩锆石U-Pb年龄及其地质意义.地球学报, 34(4):447-454. http://d.old.wanfangdata.com.cn/Periodical/dqxb201304007 [100] 孟繁聪, 崔美慧, 贾丽辉, 等, 2015.东昆仑造山带早古生代的大陆碰撞:来自榴辉岩原岩性质的证据.岩石学报, 31(12):3581-3594. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201512006 [101] 孟繁聪, 崔美慧, 吴祥珂, 等, 2013.东昆仑祁漫塔格花岗片麻岩记录的岩浆和变质事件.岩石学报, 29(6):2107-2122. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201306018 [102] 孟繁聪, 张建新, 杨经绥, 等, 2003.柴北缘锡铁山榴辉岩的地球化学特征.岩石学报, 19(3):435-442. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200303007 [103] 潘桂棠, 肖庆辉, 陆松年, 等, 2009.中国大地构造单元划分.中国地质, 36(1):1-28. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200901001 [104] 祁生胜, 宋述光, 史连昌, 等, 2014.东昆仑西段夏日哈木-苏海图早古生代榴辉岩的发现及意义.岩石学报, 30(11):3345-3356. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201411018 [105] 祁晓鹏, 范显刚, 杨杰, 等, 2016.东昆仑东段浪木日上游早古生代榴辉岩的发现及其意义.地质通报, 35(11):1771-1783. doi: 10.3969/j.issn.1671-2552.2016.11.002 [106] 施彬, 朱云海, 钟增球, 等, 2016.东昆仑黑海地区加里东期过铝质花岗岩岩石学、地球化学特征及地质意义.地球科学, 41(1):35-54. http://earth-science.net/WebPage/Article.aspx?id=3217 [107] 宋述光, 张立飞, 2007.榴辉岩的两种变质演化轨迹和俯冲大陆地壳的差异折返——以柴北缘都兰超高压地体为例.高校地质学报, 13(3):515-525. doi: 10.3969/j.issn.1006-7493.2007.03.020 [108] 宋泰忠, 赵海霞, 张维宽, 等, 2010.祁漫塔格地区十字沟蛇绿岩地质特征.西北地质, 43(4):124-133. doi: 10.3969/j.issn.1009-6248.2010.04.015 [109] 王秉璋, 罗照华, 李怀毅, 等, 2009.东昆仑祁漫塔格走廊域晚古生代-早中生代侵入岩岩石组合及时空格架.中国地质, 36(4):769-782. doi: 10.3969/j.issn.1000-3657.2009.04.003 [110] 王秉璋, 罗照华, 潘彤, 等, 2012.青藏高原祁漫塔格地区早古生代火山岩岩石构造组合和LA-ICP-MS锆石U-Pb年龄.地质通报, 31(6):860-874. doi: 10.3969/j.issn.1671-2552.2012.06.005 [111] 王冠, 孙丰月, 李碧乐, 等, 2013.东昆仑夏日哈木矿区早泥盆世正长花岗岩锆石U-Pb年代学、地球化学及其动力学意义.大地构造与成矿学, 37(4):685-697. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201304013 [112] 王冠, 孙丰月, 李碧乐, 等, 2016.东昆仑夏日哈木矿区新元古代早期二长花岗岩锆石U-Pb年代学、地球化学及其构造意义.大地构造与成矿学, 40(6):1247-1260. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201606012 [113] 王浩, 吴元保, 2013.秦岭造山带早古生代高压-超高压变质作用.科学通报, 58(22):2124-2131. http://www.cnki.com.cn/Article/CJFDTotal-KXTB201322002.htm [114] 王涛, 李彬, 陈静, 等, 2016.东昆仑五龙沟地区早志留世花岗岩锆石年代学、地球化学特征及其地质意义.矿物岩石, 36(2):62-70. http://d.old.wanfangdata.com.cn/Periodical/kwys201602008 [115] 魏小林, 张得鑫, 甘承萍, 等, 2016.卡而却卡地区新元古代变质侵入岩体的发现及其地质意义.地质找矿论丛, 31(2):236-244. http://d.old.wanfangdata.com.cn/Periodical/dzzklc201602011 [116] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [117] 肖庆辉, 邓晋福, 邱瑞照, 等, 2009.花岗岩类与大陆地壳生长初探——以中国典型造山带花岗岩类岩石的形成为例.中国地质, 36(3):594-622. doi: 10.3969/j.issn.1000-3657.2009.03.008 [118] 熊富浩, 马昌前, 2016.东昆仑中部原特提斯洋壳深俯冲事件的岩石学证据.资源环境与地学空间信息技术新进展学术会议论文集, 专题1: 16-17. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-CDDQ201610001006.htm [119] 许志琴, 杨经绥, 李海兵, 等, 2006a.中央造山带早古生代地体构架与高压/超高压变质带的形成.地质学报, 80(12):1793-1806. http://www.cnki.com.cn/Article/CJFDTotal-DZXE200612001.htm [120] 许志琴, 杨经绥, 李海兵, 等, 2006b.青藏高原与大陆动力学——地体拼合、碰撞造山及高原隆升的深部驱动力.中国地质, 33(2):221-238. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200602001 [121] 杨经绥, 许志琴, 裴先治, 等, 2002.秦岭发现金刚石:横贯中国中部巨型超高压变质带新证据及古生代和中生代两期深俯冲作用的识别.地质学报, 76(4):484-495. doi: 10.3321/j.issn:0001-5717.2002.04.007 [122] 杨经绥, 许志琴, 宋述光, 等, 2000.青海都兰榴辉岩的发现及对中国中央造山带内高压-超高压变质带研究的意义.地质学报, 74(2):156-168. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200002007 [123] 张安达, 2006.阿尔金超高压榴辉岩及其围岩的地球化学、年代学研究及其地质意义(博士学位论文).西安: 西北大学, 1-96. http://cdmd.cnki.com.cn/article/cdmd-10697-2006090134.htm [124] 张建新, 孟繁聪, 万渝生, 等, 2003.柴达木盆地南缘金水口群的早古生代构造热事件:锆石U-Pb SHRIMP年龄证据.地质通报, 22(6):397-404. doi: 10.3969/j.issn.1671-2552.2003.06.004 [125] 张建新, 杨经绥, 许志琴, 等, 2002.阿尔金榴辉岩中超高压变质作用证据.科学通报, 47(3):231-234. doi: 10.3321/j.issn:0023-074X.2002.03.016 [126] 张建新, 于胜尧, 李云帅, 等, 2015.原特提斯洋的俯冲、增生及闭合:阿尔金-祁连-柴北缘造山系早古生代增生/碰撞造山作用.岩石学报, 31(12):3531-3554. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201512003 [127] 张建新, 于胜尧, 孟繁聪, 2011.北秦岭造山带的早古生代多期变质作用.岩石学报, 27(4):1179-1190. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201104022 [128] 张克信, 潘桂棠, 何卫红, 等, 2015.中国构造-地层大区划分新方案.地球科学, 40(2):206-233. http://earth-science.net/WebPage/Article.aspx?id=3179 [129] 张亚峰, 裴先治, 丁仨平, 等, 2010.东昆仑都兰县可可沙地区加里东期石英闪长岩锆石LA-ICP-MS U-Pb年龄及其意义.地质通报, 29(1):79-85. doi: 10.3969/j.issn.1671-2552.2010.01.010 [130] 张照伟, 李文渊, 钱兵, 等, 2015.东昆仑夏日哈木岩浆铜镍硫化物矿床成矿时代的厘定及其找矿意义.中国地质, 42(3):438-451. doi: 10.3969/j.issn.1000-3657.2015.03.004 [131] 张照伟, 钱兵, 李文渊, 等, 2017.东昆仑夏日哈木铜镍矿区发现早古生代榴辉岩:锆石U-Pb定年证据.中国地质, 44(4):816-817. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201704016 [132] 赵振明, 马华东, 王秉璋, 等, 2008.东昆仑早泥盆世碰撞造山的侵入岩证据.地质论评, 54(1):47-56. doi: 10.3321/j.issn:0371-5736.2008.01.006