S-Pb-Sr-Nd-C-H-O Isotopic Geochemistry of the Wulasigou Cu Deposit in the South Altay: Constraints for the Fluid and Metal Sources
-
摘要: 新疆乌拉斯沟铜矿床位于阿尔泰造山带南缘克兰盆地内,为近年来新发现的矿床,受NW向断裂控制的脉状矿体产于泥盆系康布铁堡组变质火山岩系中,目前其成矿流体和成矿物质来源尚不明确.在细致的矿床地质研究基础上,通过开展S-Pb-Sr-Nd-C-H-O同位素分析,根据野外和显微镜下观察,可将乌拉斯沟铜矿床的形成划分为黄铁矿-磁铁矿-石英、黄铜矿-绿泥石-绿帘石-石英及石英-碳酸盐阶段.同位素分析结果显示:乌拉斯沟铜矿硫化物样品δ34S值为0.1‰~3.2‰,平均为1.6‰,落入未矿化围岩δ34S值范围(-4.7‰~18.68‰),矿石硫可能源自康布铁堡组.成矿晚阶段的方解石样品δ13CV-PDB‰=-1.1‰,δ18OV-PDB‰=-20.3‰,海相碳酸盐地层和有机碳是可能的碳质来源.8件黄铁矿的Pb同位素为206Pb/204Pb=17.939~18.508(平均18.255),207Pb/204Pb=15.519~15.674(平均15.578),208Pb/204Pb=37.881~38.653(平均38.209),与康布铁堡组围岩类似.初始ISr(220 Ma)为0.710 4~0.711 7,平均值为0.711 1,初始143Nd/144Nd值为0.512 002~0.512 240(平均0.512 103).矿石Sr-Nd-Pb同位素组成均指示乌拉斯沟铜矿成矿物质可能主要源自围岩康布铁堡组,并可能有外来成矿物质的加入.流体的δDV-SMOW变化于-103.8‰~-92‰(平均值为-99.2‰),石英和方解石矿物的δ18OV-SMOW值集中在9.4‰~11.5‰(平均值为10.4‰),δ18OH2O值为2.1‰~4.2‰(平均值为3.1‰),结合流体包裹体物理化学特征,成矿热液可能来源于变质水,但可能受到大气降水的影响而偏移.因此,乌拉斯沟铜矿成矿物质主要来源于赋矿围岩的变质脱挥发分作用,这与造山型矿床的成矿机制吻合.Abstract: The Wulasigou Cu deposit is a recent discovered ore deposit, located in Devonian volcanic-sedimentary basin of the Altay orogenic belt. Vein-shaped orebodies are hosted in the Kangbutiebao Formation and controlled by the NW-trending faults. In order to investigate the origin of ore-forming fluid and metal, a series of S-Pb-Sr-Nd-C-H-O isotopic analysis was carried out. According to field work and microscopic observation, the mineralization stages of the Wulasigou Cu deposit can be divided into pyrite-magnetite-quartz, chalcopyrite-chlorite-epidote-quartz and quartz-carbonate stages. The δ34S values of sulfide samples in this deposit are 0.1‰-3.2‰ (average:1.6‰), falling into the range of the δ34S values of wall rocks (-4.7‰-18.68‰), indicating that sulfur may be mainly derived from the Kangbutiebao Formation. The calcite sample shows δ13CV-PDB‰=-1.1‰ and δ18OV-PDB‰=-20.3‰, indicating that the marine carbonate strata and organic carbon are probably the sources of carbon. The Pb isotopes of eight pyrite samples are 206Pb/204Pb=17.939-18.508 (average 18.255), 207Pb/204Pb=15.519-15.674 (average 15.578), 208Pb/204Pb=37.881-38.653 (average 38.209), similar to those of the Kangbutiebao Formation. The ISr(220 Ma) values of pyrite are 0.710 4-0.711 7 (average 0.711 1), with initial 143Nd/144Nd values of 0.512 002-0.512 240 (average 0.512 103). The Sr-Nd-Pb isotopic compositions indicate that the metal sources of Wulasigou Cu deposit may be mainly from the Kangbutiebao Formation but with additional minerals. The δDV-SMOW values of the fluid range from -103.8‰ to -92‰ (average -99.2‰), the δ18OV-SMOW values for quartz and calcite are concentrated at 9.4‰-11.5‰ (average 10.4‰), and the δ18OH2O values range from 2.1‰ to 4.2‰ (average 3.1‰), indicating that the hydrothermal fluids may be originated from metamorphic water with the effect of meteoric water combined with physical and chemical characteristics of fluid inclusions. The metallogenic material of the Wulasigou Cu deposit is mainly derived from the metamorphic devolatilization of the host rock, which is consistent with the ore-forming mechanism of the orogenic deposit.
-
Key words:
- Wulasigou Cu deposit /
- orogenic deposit /
- Altay orogenic belt /
- isotope /
- geochemistry
-
图 1 研究区大地构造背景和区域地质及矿产分布
a.研究区大地构造背景;b.阿尔泰南缘阿尔泰南缘克兰盆地区域地质及矿产分布.据Zheng et al.(2012)及其引文
Fig. 1. Tectonic background and regional geology and mineral distribution of the study area
图 2 乌拉斯沟铜矿床矿区地质简图(a)及A1-A2勘探线剖面(b)
据Zheng et al.(2012)及其引文
Fig. 2. Geological sketch and exploration line A1-A2 of the Wulasigou Cu deposit
图 4 乌拉斯沟铜矿床成矿流体δ18O-δD组成
底图据Taylor(1974)
Fig. 4. δ18O-δD isotopic composition of the ore-forming fluid in the Wulasigou Cu deposit
表 1 乌拉斯沟铜矿床硫化物及围岩硫同位素组成
Table 1. S isotopic composition of sulfide and wall rocks in the Wulasigou Cu deposit
序号 样品编号 δ34SV-CDT(‰) 测试样品 数据来源 1 10WL-09 1.7 黄铁矿 本文 2 10WL-12 2.9 黄铁矿 本文 3 10WL-Q5B 2.0 黄铁矿 本文 4 10WL-13 3.2 黄铁矿 本文 5 10WL-Q1 1.0 黄铁矿 本文 6 10WL-Q8B 0.7 黄铁矿 本文 7 10WL-Q4 0.1 黄铁矿 本文 8 10WL-Q3 1.3 黄铁矿 本文 9 10TMZK-34A 5.6 无矿化大理岩 Niu et al., 2017 10 SL-30 7.5 无矿化绿片岩 Niu et al., 2017 11 TM-26 7.5 未矿化大理岩 Niu et al., 2017 12 SL-38 16.5 未矿化凝灰岩 Niu et al., 2017 13 SL-37 16.4 未矿化凝灰岩 Niu et al., 2017 14 SL-15 18.7 未矿化凝灰岩 Niu et al., 2017 15 10DD-13 -4.7 无矿化灰岩 Niu et al., 2017 16 TM-51 -19.3 矿化绿泥片岩 Niu et al., 2017 17 TM-01 -24.1 浸染矿化砂岩 Niu et al., 2017 18 TM-06 -16.8 矿化绿泥片岩 Niu et al., 2017 19 TM-14 -13.7 矿化绿泥片岩 Niu et al., 2017 表 2 乌拉斯沟铜矿床氢氧同位素组成
Table 2. δ18O-δD isotopic composition of quartz in the Wulasigou Cu deposit
序号 样品编号 岩性 δDV-SMOW(‰) δ18OV-SMOW(‰) δ18OH2O(‰) T(℃) 1 WL-Q1 石英 / 9.4 2.1 289 2 WL-Q3 石英 -103.8 10.8 3.5 289 3 WL-Q4 石英 -103.7 10.4 3.1 289 4 WL-Q8B 石英 / 10.1 2.8 289 5 WL-13 石英 -92.0 10.5 3.2 289 6 WL-09 石英 / 10.7 3.4 289 7 WL-12 石英 -94.8 11.5 4.2 289 8 WL-Q5B 石英 -101.6 9.7 2.4 289 表 3 乌拉斯沟铜矿床碳同位素组成
Table 3. C isotopic composition of the Wulasigou Cu deposit
样品编号 矿物/岩石 δ13CV-PDB(‰) δ18OV-PDB(‰) δ18OV-SMOW(‰) 数据来源 10WL-0-5C 方解石 -1.1 -20.3 9.9 本文 DDZK-7 大理岩 -1.2 -15.8 14.7 Niu et al., 2017 10TMZK-37B 大理岩 2.7 -18.5 11.9 Niu et al., 2017 10TMZK-34A 大理岩 2.2 -20.5 9.7 Niu et al., 2017 10DD-13 灰岩 -1.6 -15.8 14.6 Niu et al., 2017 10SK-11A 灰岩 -1.7 -16.3 14.1 Niu et al., 2017 注:本次测试只获得1件成矿晚阶段的方解石样品(样品编号10WL-0-5C),δ13CV-PDB(‰)=-1.1‰,δ18OV-PDB(‰)=-20.3‰. Niu et al.(2017) 获得围岩C同位素值介于-1.7‰~2.7‰(平均值为2.1‰),其中大理岩δ13CV-PDB为-1.2‰~2.7‰(平均值为1.2‰),灰岩δ13CV-PDB为-1.6‰~-1.7‰(平均值-1.7‰).表 4 乌拉斯沟矿床金属硫化物及围岩Sr同位素组成
Table 4. Sr isotopic composition of sulfides and wall rocks in the Wulasigou deposit
样品号 样品名称 Rb(10-6) Sr(10-6) 87Rb/86Sr 87Sr/86Sr ISr(220 Ma) 10WL-09 黄铁矿 0.03 0.37 0.246 8 0.712 3 0.711 6 10WL-12 黄铁矿 0.13 1.52 0.239 4 0.712 0 0.711 3 10WL-Q5B 黄铁矿 0.09 1.16 0.229 4 0.712 4 0.711 7 10WL-13 黄铁矿 0.24 0.79 0.889 4 0.713 6 0.710 8 10WL-Q1 黄铁矿 0.05 0.68 0.194 4 0.712 0 0.711 4 10WL-Q8B 黄铁矿 0.10 1.42 0.207 0 0.710 7 0.710 1 10WL-Q4 黄铁矿 0.04 0.73 0.160 6 0.710 9 0.710 4 10WL-Q3 黄铁矿 0.05 0.51 0.278 0 0.712 4 0.711 5 平均值(n=8) 0.711 1 样品号 样品名称 Rb(10-6) Sr(10-6) 87Rb/86Sr 87Sr/86Sr ISr(220 Ma) 10SKY-09 方解石 0.14 341.0 0.001 2 0.720 5 0.720 5 10SKY-07 方解石 0.13 459.0 0.000 8 0.717 3 0.717 3 10SKY-05 方解石 0.22 511.0 0.001 3 0.714 2 0.714 2 10SKY-02 方解石 0.06 315.0 0.000 6 0.717 2 0.717 2 10TMZK 大理岩 0.84 103.0 0.023 6 0.713 1 0.713 0 10DD-13 灰岩 107.00 372.0 0.833 5 0.710 9 0.708 3 10TM-11 晶屑凝灰岩 97.80 12.3 23.08 5 0.809 8 0.737 6 10SK-10 晶屑凝灰岩 51.10 33.4 4.429 4 0.742 3 0.728 5 10SK-3a 钙质粉砂岩 146.00 49.8 8.467 1 0.754 2 0.727 7 SL-30 绿片岩 6.98 348.0 0.058 1 0.711 8 0.711 6 平均值(n=10) 0.719 6 注:表中的87Rb/86Sr是根据实测的样品元素含量和同位素比值计算所得,成矿年龄采用黑云母Ar-Ar年龄220 Ma( Zheng et al., 2012 ),将测得的87Sr/86Sr同位素比值返算回220 Ma时的87Sr/86Sr比值ISr(220 Ma);初始Sr计算公式:ISr=(87Sr/86Sr)m-(87Rb/86Sr)m(eλt-1).表 5 乌拉斯沟铜矿金属硫化物及围岩Nd同位素组成
Table 5. Nd isotopic composition of sulfides and wall rocks in the Wulasigou deposit
样品号 样品名称 Sm(10-6) Nd(10-6) 147Sm/144Nd 143Nd/144Nd (143Nd/144Nd)i εNd 10WL-09 黄铁矿 0.35 1.00 0.209 1 0.512 444 0.512 143 -9.7 10WL-12 黄铁矿 0.22 0.80 0.161 5 0.512 473 0.512 240 -7.8 10WL-Q5B 黄铁矿 0.09 0.25 0.204 4 0.512 387 0.512 093 -10.6 10WL-13 黄铁矿 0.39 2.19 0.106 0 0.512 325 0.512 172 -9.1 10WL-Q1 黄铁矿 0.05 0.20 0.139 5 0.512 233 0.512 031 -11.8 10WL-Q8B 黄铁矿 0.24 1.23 0.120 4 0.512 260 0.512 087 -10.8 10WL-Q4 黄铁矿 0.17 0.67 0.148 3 0.512 216 0.512 002 -12.4 10WL-Q3 黄铁矿 0.05 0.19 0.168 0 0.512 300 0.512 058 -11.3 平均值(n=8) 0.512 103 -10.4 10SKY-09 方解石 0.16 0.53 0.179 1 0.512 470 0.512 212 -12.4 10SKY-07 方解石 0.25 0.63 0.239 9 0.512 681 0.512 336 -11.4 10SKY-05 方解石 1.04 2.79 0.225 1 0.512 632 0.512 308 -11.6 10SKY-02 方解石 0.54 1.28 0.254 8 0.512 640 0.512 273 -13.0 10TMZK 大理岩 0.43 1.87 0.140 0 0.512 450 0.512 248 -10.8 10DD-13 灰岩 3.73 18.6 0.121 7 0.512 322 0.512 147 -12.4 10TM-11 晶屑凝灰岩 3.09 15.8 0.117 9 0.512 550 0.512 380 -7.7 10SK-10 晶屑凝灰岩 7.82 39.8 0.118 7 0.512 499 0.512 328 -8.8 10SK-3a 钙质粉砂岩 7.24 36.8 0.119 1 0.512 559 0.512 388 -7.6 SL-30 绿片岩 4.27 15.2 0.169 8 0.512 881 0.512 636 -3.9 平均值(n=10) 0.512 326 -10.2 注:表中的147Sm/144Nd是根据实测的样品元素含量和同位素比值计算所得,成矿年龄采用黑云母Ar-Ar成矿年龄220 Ma( Zheng et al., 2012 ),将测得的143Nd/144Nd同位素比值返算回220 Ma时的(143Nd/144Nd)i(220 Ma)和εNd(t)值;初始Nd计算公式:(143Nd/144Nd)=(143Nd/144Nd)m-(147Sm/144Nd)m(eλt-1),其中λ=0.006 54×10-9 a-1.计算过程中,球粒陨石均一储库(CHUR)Nd同位素参数采用143Nd/144Nd=0.512 638(Goldstein et al., 1984 ),147Sm/144Nd=0.196 7(Jacobsen and Wasserburg, 1984).表 6 乌拉斯沟矿床金属硫化物及围岩Pb同位素组成
Table 6. Pb isotopic composition of sulfides and wall rocks in the Wulasigou deposit
样品号 样品名称 206Pb/
204Pb207Pb/
204Pb208Pb/
204Pb10WL-09 黄铁矿 18.255 15.570 38.123 10WL-12 黄铁矿 18.449 15.648 38.537 10WL-Q5B 黄铁矿 18.199 15.519 37.888 10WL-13 黄铁矿 18.455 15.674 38.653 10WL-Q1 黄铁矿 18.508 15.611 38.436 10WL-Q8B 黄铁矿 18.087 15.545 37.881 10WL-Q4 黄铁矿 18.145 15.526 37.901 10SK-06 黄铁矿 17.939 15.528 38.250 平均值(n=8) 18.255 15.578 38.209 10TMZK 大理岩 18.066 15.510 37.762 10DD-13 灰岩 18.102 15.506 37.813 10TM-11 晶屑凝灰岩 18.651 15.551 38.576 10SK-10 晶屑凝灰岩 18.674 15.551 38.541 10SK-3a 钙质粉砂岩 18.850 15.584 38.707 SL-30 绿片岩 18.265 15.528 38.070 平均值(n=6) -
[1] Chai, F.M., Mao, J.W., Dong, L.H., et al., 2009.Geochronology of Metarhyolites from the Kangbutiebao Formation in the Kelang Basin, Altay Mountains, Xinjiang:Implications for the Tectonic Evolution and Metallogeny.Gondwana Research, 16(2):189-200. https://doi.org/10.1016/j.gr.2009.03.002 [2] Chen, H.Y., Chen, Y.J., Liu, Y.L., 2000.Metallogenesis of the Ertix Gold Belt, Xinjiang and Its Relationship to Central Asia-Type Orogenesis.Science in China (Series D), (S1):38-44 (in Chinese with English abstract). doi: 10.1007/BF02882259 [3] Chen, Y.J., 2000.Progress in the Study of Central Asia-Type Orogenesis-Metallogenesis in Northwest China.Geological Journal of China Universities, 6(1):17-22 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200001001.htm [4] Chen, Y.J., 2013.The Development of Continental Collision Metallogeny and Its Application.Acta Petrologica Sinica, 29(1):1-17 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201301001 [5] Chen, Y.J., Pirajno, F., Sui, Y.H., 2004.Isotope Geochemistry of the Tieluping Silver-Lead Deposit, Henan, China:A Case Study of Orogenic Silver-Dominated Deposits and Related Tectonic Setting.Mineralium Deposita, 39(5-6):560-575. https://doi.org/10.1007/s00126-004-0429-9 [6] Chen, Y.J., Sui, Y.H., Pirajno, F., 2003.Exclusive Evidences for CMF Model and a Case of Orogenic Silver Deposits:Isotope Geochemistry of the Tieluping Silver Deposit, East Qinling Orogen.Acta Petrologica Sinica, 19(3):551-568 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20030367 [7] Clayton, R.N., O'Neil, J.R., Mayeda, T.K., 1972.Oxygen Isotope Exchange between Quartz and Water.Journal of Geophysical Research, 77(17):3057-3067. https://doi.org/10.1029/jb077i017p03057 [8] Deng, J., Liu, X.F., Wang, Q.F., et al., 2015.Origin of the Jiaodong-Type Xinli Gold Deposit, Jiaodong Peninsula, China:Constraints from Fluid Inclusion and C-D-O-S-Sr Isotope Compositions.Ore Geology Reviews, 65:674-686. https://doi.org/10.1016/j.oregeorev.2014.04.018 [9] Ding, R.F., Wang, J.B., Ma, Z.M., et al., 2001.Geochemical Character of the Sarekoubu Volcanic Exhalation-Sed Imentary-Superimposition Gold Deposit in Xinjiang.Geology and Prospecting, 37(3):11-15 (in Chinese with English abstract). [10] Geng, X.X., Yang, F.Q., Yang, J.M., et al., 2010.Stable Isotope Characteristics of Tiemurte Pb-Zn Deposit in Altay, Xinjiang.Mineral Deposits, 29(6):1088-1100 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ201006010.htm [11] Goldfarb, R.J., Baker, T., Dube, B., et al., 2005.Distribution, Character, and Genesis of Gold Deposits in Metamorphic Terranes.Economic Geology, 100th Anniversary Volume: 407-450. [12] Goldstein, S.L., O'Nions, R.K., Hamilton, P.J., 1984.A Sm-Nd Isotopic Study of Atmospheric Dusts and Particulates from Major River Systems.Earth and Planetary Science Letters, 70(2):221-236. https://doi.org/10.1016/0012-821x(84)90007-4 [13] He, D.F., Li, H.P., Li, W., et al., 2014.Re-Determination of the Kangbutiebao Formation in the Southern Margin of Altay, Xinjiang.Geoscience, 28(4):751-760 (in Chinese with English abstract). [14] He, G.Q., Liu, D.Q., Li, M.S., et al., 1995.The Five-Stage Model of Crust Evolution and Metallogenic Series of Chief Orogenic Belts in Xinjiang.Xinjiang Geology, 13(2):99-196 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S004019510500449X [15] Jacobsen, S.B., Wasserburg, G.J., 1984.Sm-Nd Isotopic Evolution of Chondrites and Achondrites, Ⅱ.Earth and Planetary Science Letters, 67(2):137-150. https://doi.org/10.1016/0012-821x(84)90109-2 [16] Li, Z.C., Zhao, Z.Z., 2002.Creation of the Altai Orogenic Belt and the Altai Mts.Tectono-Metallogenic Province.Chinese Journal of Geology, 37(4):483-490 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1342937X05710194 [17] Liu, M., Zhang, Z.H., Wang, Y.Q., et al., 2008.Geology and Stable Isotope Geochemistry of the Dadonggou Pb-Zn Ore Deposit, Altay, Xinjiang, NW China.Acta Geologica Sinica, 82(11):1504-1513 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0169136814001565 [18] Niu, J., Zheng, Y., Zhang, L., et al., 2017.Isotope Geochemistry of the Sarekuobu Metavolcanic-Hosted Gold Deposit in the Chinese Altay (NW China):Implications for the Fluid and Metal Sources.Ore Geology Reviews. https://doi.org/10.1016/j.oregeorev.2017.10.016 [19] Pirajno, F., 2009.Hydrothermal Processes and Mineral Systems.Springer, Berlin. [20] Qin, K.Z., 2000.Metellogeneses in Relation to Central-Asia Style Orogeny of Northern Xinjiang (Post Doctor Research Report).Insitute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 39-61 (in Chinese with English abstract). [21] Sengor, A.M.C., Natal'in, B.A., 1996.Paleotectonics of Asia: Frangments of Synthesis.In: Yin, A., Harrison, T.M., eds., The Tectonic Evolution of Asia.Cambridge University Press, Cambridge, 480-640. [22] Sun, M., Yuan, C., Xiao, W.J., et al., 2008.Zircon U-Pb and Hf Isotopic Study of Gneissic Rocks from the Chinese Altai:Progressive Accretionary History in the Early to Middle Palaeozoic.Chemical Geology, 247(3-4):352-383. https://doi.org/10.1016/j.chemgeo.2007.10.026 [23] Taylor, H.P., 1974.The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition.Economic Geology, 69(6):843-883. https://doi.org/10.2113/gsecongeo.69.6.843 [24] Tian, H.B., Chen, Y.X, Yang, Y.Q., et al., 2017.Ages, Origin and Tectonic Significance of Halaerci Granites from Northeastern Part of Chinese Altay Mountains.Earth Science, 42(10):1658-1672 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.553 [25] Tu, X.L., Zhang, H., Deng, W.F., et al., 2001.Application of Resolution In-Situ Laser Ablation ICP-MS in Trace Element Analyses.Geochimica, 40(1):83-98 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX201101009.htm [26] Wan, B., Zhang, L.C., Xiao, W.J., 2010.Geological and Geochemical Characteristics and Ore Genesis of the Keketale VMS Pb-Zn Deposit, Southern Altai Metallogenic Belt, NW China.Ore Geology Reviews, 37(2):114-126. https://doi.org/10.1016/j.oregeorev.2010.01.002 [27] Wang, J.B., Qin, K.Z., Wu, Z.L., et al., 1998.The Sedex Pb-Zn deposit on the Southern Margin of Altay, Xinjiang.Geological Publishing House, Beijing (in Chinese). [28] Wang, L.L., Xu, J.H., Sun, F.Y., et al., 2012.Two Types of Mineralization and Genesis in Sarekoubu-Tiemurte Area of Altay Xinjiang.Global Geology, 31(1):100-112 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SJDZ201201012.htm [29] Wang, S.H., 2006.Mineralization Evolusion and Geological Featuers of Altay Copper-Gold Polymetallic Ore Belt.Contributions to Geology and Mineral Resources Research, 21(2):80-86 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZZK200602002.htm [30] Wang, S.L., Chen, K.Q., Kang, J.C., et al., 2007.Stable Isotope of Pb-Zn Deposits Occurred in the Maizi Devonian Volcanic-Sedimentary Basin in the South Margin of Altay Mountain, Xinjiang.Geology and Prospecting, 43(6):25-31 (in Chinese with English abstract). [31] Wei, G.J., Liang, X.R., Li, X.H., et al., 2002.Precise Measurement of Sr Isotopic Composition of Liquid and Solid Base Using (LP)MC-ICPMS.Geochimica, 31(3):295-299 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200203010.htm [32] Xia, Z.D., Jiang, C.Y., Lu, R.H., et al., 2012.Geochemical Characteristics and Geologic Implications of Halaqiaola Mafic Intrusion, Southeast Altai, Xinjiang.Earth Science, 37(5):937-946 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2012.102 [33] Xiao, W.J., Han, C.M., Yuan, C., et al., 2006.Unique Carboniferous-Permian Tectonic-Metallogenic Framework of Northern Xinjiang (NW China):Constraints for the Tectonics of the Southern Paleoasian Domain.Acta Petrologica Sinica, 22(5):1062-1076 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200605002.htm [34] Xiao, W.J., Shu, L.S., Gao, J., et al., 2008.Continental Dynamics of the Central Asian Orogenic Belt and Its Metallogeny.Xinjiang Geology, 26(1):4-7 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJDI200801005.htm [35] Xiao, W.J., Windley, B.F., Hao, J., et al., 2003.Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China:Termination of the Central Asian Orogenic Belt.Tectonics, 22(6):1069. https://doi.org/10.1029/2002tc001484 [36] Zheng, Y., Zhang, L., Chen, Y.J., et al., 2012.Geology, Fluid Inclusion Geochemistry, and 40Ar/39Ar Geochronology of the Wulasigou Cu Deposit, and Their Implications for Ore Genesis, Altay, Xinjiang, China.Ore Geology Reviews, 49:128-140. https://doi.org/10.1016/j.oregeorev.2012.09.005 [37] Zheng, Y., Zhang, L., Liu, C.F., et al., 2010.Evolution of Ore-Forming Fluid and Its Genesis in the Tiemuerte Pb-Zn (Cu) Deposit in Xinjiang.Mineral Deposits, 29(S1):629-630 (in Chinese with English abstract). https://www.researchgate.net/publication/277964257_Evolution_of_Ore-forming_Fluid_of_the_Bafangshan-Erlihe_Pb-Zn-Cu_Deposit_in_the_Fengtai_Ore_Cluster_West_Qinling_China_Evidence_from_Stable_Isotopes_and_Fluid_Inclusions [38] Zheng, Y.F., Chen, J.F., 2000.Stable Isotope Geochemistry.Science Press, Beijing (in Chinese). [39] Zhou, G., Han, D.N., Deng, J.N., 1998.Study of Isotope Geochemistry on the Keketale Lead-Zinc Deposit, Xinjiang.Mineral Resource and Geology, 12(1):33-38 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0169136810000156 [40] Zhou, G., Zhang, Z.C., Yang, W.P., et al., 2005.Metabasic Rock on the South Side of Mayin'ebo Fault in the South Margin of Altay Mountains, Xinjiang, and Its Geological Implications.Earth Science, 30(6):738-746 (in Chinese with English abstract). https://doi.org/10.3321/j.issn:1000-2383.2005.06.010 [41] 陈华勇, 陈衍景, 刘玉琳, 2000.新疆额尔齐斯金矿带的成矿作用及其与中亚型造山作用的关系.中国科学(D辑), (S1): 38-44. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd2000Z1006 [42] 陈衍景, 2000.中国西北地区中亚型造山-成矿作用的研究意义和进展.高校地质学报, 6(1): 17-22. doi: 10.3969/j.issn.1006-7493.2000.01.002 [43] 陈衍景, 2013.大陆碰撞成矿理论的创建及应用.岩石学报, 29(1): 1-17. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201301001 [44] 陈衍景, 隋颖慧, Pirajno, F., 2003.CMF模式的排他性依据和造山型银矿实例:东秦岭铁炉坪银矿同位素地球化学.岩石学报, 19(3): 551-568. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200303022 [45] 丁汝福, 王京彬, 马忠美, 等, 2001.新疆萨热阔布火山喷流沉积改造型金矿地球化学特征.地质与勘探, 37(3): 11-15. doi: 10.3969/j.issn.0495-5331.2001.03.004 [46] 耿新霞, 杨富全, 杨建民, 等, 2010.新疆阿尔泰铁木尔特铅锌矿床稳定同位素组成特征.矿床地质, 29(6): 1088-1100. doi: 10.3969/j.issn.0258-7106.2010.06.011 [47] 何登峰, 李海平, 李玮, 等, 2014.新疆阿尔泰南缘康布铁堡组的重新厘定.现代地质, 28(4): 751-760. doi: 10.3969/j.issn.1000-8527.2014.04.010 [48] 何国琦, 刘德权, 李茂松, 等, 1995.新疆主要造山带地壳发展的五阶段模式及成矿系列.新疆地质, 13(2): 99-196. http://www.cnki.com.cn/Article/CJFDTOTAL-XJDI199502000.htm [49] 李志纯, 赵志忠, 2002.阿尔泰造山带和阿尔泰山构造成矿域的形成.地质科学, 37(4): 483-490. doi: 10.3321/j.issn:0563-5020.2002.04.012 [50] 刘敏, 张作衡, 王永强, 等, 2008.新疆阿尔泰大东沟铅锌矿床地质特征及稳定同位素地球化学研究.地质学报, 82(11): 1504-1513. doi: 10.3321/j.issn:0001-5717.2008.11.005 [51] 秦克章, 2000.新疆北部中亚型造山与成矿作用(博士后报告).中国科学院地质与地球物理研究所, 39-61. http://cdmd.cnki.com.cn/Article/CDMD-80075-2006045793.htm [52] 田红彪, 陈有炘, 杨永强, 等, 2017.中国阿尔泰东北部哈拉尔次花岗岩的年龄、成因及构造意义.地球科学, 42(10): 1658-1672. http://earth-science.net/WebPage/Article.aspx?id=3670 [53] 涂湘林, 张红, 邓文峰, 等, 2011.Resolution激光剥蚀系统在微量元素原位微区分析中的应用.地球化学, 40(1): 83-98. http://d.old.wanfangdata.com.cn/Periodical/dqhx201101009 [54] 王京彬, 秦克章, 吴志亮, 等, 1998.阿尔泰山南缘火山喷流沉积型铅锌矿床.北京:地质出版社. [55] 王琳琳, 徐九华, 孙丰月, 等, 2012.新疆阿尔泰萨热阔布-铁木尔特地区两类矿化及成因.世界地质, 31(1): 100-112. doi: 10.3969/j.issn.1004-5589.2012.01.012 [56] 王少怀, 2006.阿尔泰多金属成矿带矿床地质特征及其成矿历史演化.地质找矿论丛, 21(2): 80-86. doi: 10.3969/j.issn.1001-1412.2006.02.002 [57] 王书来, 陈克强, 康吉昌, 等, 2007.新疆阿尔泰山南缘产于麦兹泥盆纪火山-沉积盆地铅锌矿床稳定同位素特征.地质与勘探, 43(6): 25-31. doi: 10.3969/j.issn.0495-5331.2007.06.005 [58] 韦刚健, 梁细荣, 李献华, 等, 2002.(LP)MC-ICPMS方法精确测定液体和固体样品的Sr同位素组成.地球化学, 31(3): 295-299. doi: 10.3321/j.issn:0379-1726.2002.03.011 [59] 夏昭德, 姜常义, 卢荣辉, 2012.新疆阿尔泰东南缘哈拉乔拉镁铁质岩体地球化学特征与地质意义.地球科学, 37(5): 937-946. http://earth-science.net/WebPage/Article.aspx?id=2299 [60] 肖文交, 韩春明, 袁超, 等, 2006.新疆北部石炭纪-二叠纪独特的构造-成矿作用对古亚洲洋构造域南部大地构造演化的制约.岩石学报, 22(5): 1062-1076. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200605002 [61] 肖文交, 舒良树, 高俊, 等, 2008.中亚造山带大陆动力学过程与成矿作用.新疆地质, 26(1): 4-7. doi: 10.3969/j.issn.1000-8845.2008.01.002 [62] 郑义, 张莉, 刘春发, 等, 2010.新疆铁木尔特铅锌(铜)矿床成矿流体演化特征及矿床成因.矿床地质.29(S1): 629-630. http://d.old.wanfangdata.com.cn/Conference/7413215 [63] 郑永飞, 陈江峰, 2000.稳定同位素地球化学.北京:科学出版社. [64] 周刚, 韩东南, 邓吉牛, 1998.新疆可可塔勒铅锌矿床同位素地球化学研究.矿产与地质, 12(1): 34-39. http://d.old.wanfangdata.com.cn/Periodical/kcydz201206012 [65] 周刚, 张招崇, 杨文平, 等, 2005.新疆阿尔泰山南缘玛音鄂博断裂南侧变质基性岩的发现及其地质意义.地球科学, 30(6): 738-746. doi: 10.3321/j.issn:1000-2383.2005.06.010