Origin of Granites from A'quedun Area in Qimantage Mountains: Constraints from Zircon U-Pb Dating, Geochemistry and Hf Isotope
-
摘要: 祁漫塔格阿确墩地区花岗岩的形成背景对东昆仑加里东期碰撞-伸展过程具有重要制约意义.阿确墩地区泥盆纪侵入岩主要由花岗闪长岩和英云闪长岩组成,锆石U-Pb定年结果显示,花岗闪长岩和英云闪长岩形成年龄分别为385±5 Ma和393±5 Ma,为中泥盆世岩浆活动的产物.花岗闪长岩的SiO2含量为63.56%~66.57%,Mg#为0.31~0.35,K2O/Na2O比值为0.49~0.66,铝饱和指数A/CNK值为0.95~1.02,富集Rb、Ba和LREE,亏损Nb-Ta、Sr、P和Ti等元素,具有明显Eu负异常(δEu=0.38~0.98).相对于花岗闪长岩,英云闪长岩具有较高的SiO2含量(67.93%~70.76%),K2O/Na2O值近于1(0.70~1.04),Mg#为0.22~0.33,铝饱和指数A/CNK值介于0.99~1.02,在稀土和微量元素标准化图解上,富集LREE和LILEs(Rb、Ba),亏损HFSEs(Nb-Ta、P和Ti)元素,但表现出更为明显的LREE/HREE分异、弱的铕负异常或无异常(δEu=0.80~1.06),并具有较为宽泛的锆石Hf同位素组成(εHf(t)=+1.91~+15.63,TDM2(Hf)=0.53~1.28 Ga).区域地质研究表明,祁漫塔格地区在中泥盆世期间处于后碰撞伸展环境,阿确墩地区花岗质岩石为俯冲板片折返机制下,诱发的幔源基性岩浆同化混染古老地壳物质部分熔融形成,花岗闪长岩和英云闪长岩熔融压力条件随时间变化表明,中泥盆世期间区域仍然处于地壳厚度持续减薄的过程.Abstract: The geological setting of granite formation in A'quedun area of Qimantage Mountains has important constraits in the collision-extension process in the Caledonian of East Kunlun. The A'quedun intrusive rocks mainly consist of granodiorite and tonalite. Zircon LA-ICP-MS U-Pb dating results show that granodiorite and tonalite were formed at 385±5 Ma and 393±5 Ma respectively, which should be the product of magmatism in the Middle Devonian. The granodiorites have low SiO2 (63.56%-66.57%), Mg# (0.31-0.35), K2O/Na2O ratios (0.49-0.66) and A/CNK (0.95-1.02), characterized by moderate LREE/HREE fractionation, strong LILE enrichment and depleted Nb-Ta, P, Ti and Eu depletion (δEu=0.38-0.98). Relative to the granodiorites, the tonalities have high contents of SiO2 (67.93%-70.76%) and low Mg# (0.22-0.33), stronger LREE/HREE fractionation, Nb-Ta, Ti and weakly Eu depletion (δEu=0.80-1.06). The tonalites have positive εHf(t) values (+1.91 to +15.63), and broadly two stages Hf model ages (TDM2(Hf)=0.53-1.28 Ga). Based on the regional geological data, the East Kunlun Qimantage area was in post-collision extension stage during the Middle Devonian. The A'quedun granitic rocks derived from mantle magma assimilation contamination ancient crust in a mechanism for the exhumation of the subducted slab. The granodiorite and tonalite melt pressure changes with time, showing that the crustal thickness is still in continuous thinning process during the Middle Devonian.
-
Key words:
- granite /
- petrogenesis /
- Middle Devonian /
- Qimantage /
- East Kunlun /
- geochemistry
-
图 5 阿确墩花岗质岩石K2O-SiO2图解(a)和A/NK-A/CNK图解(b)
a.据Castro et al.(1999); b.据Maniar and Piccoli(1989)
Fig. 5. K2O-SiO2 (a) and A/NK-A/CNK (b) diagrams for the granitic rocks from A'quedun area
图 6 阿确墩花岗质岩石稀土元素球粒陨石标准化配分图解(a, c)与微量元素原始地幔标准化蛛网图(b, d)
标准化数值据Sun and McDonough(1989)
Fig. 6. Chondrite-normalized REE patterns (a, c) and primitive mantle-normalized spidergrams (b, d) for the granitic rocks from A'quedun area
图 7 花岗岩形成压力Sr-Yb判别图解
张旗等(2006).Ⅰ.高Sr低Yb型;Ⅱ.低Sr低Yb型;Ⅲ.高Sr高Yb型;Ⅳ.低Sr高Yb型;Ⅴ.非常低Sr高Yb型
Fig. 7. Granite formation pressure Sr vs.Yb discrimination diagram
图 8 SiO2-Mg#图解(a)和英云闪长岩锆石U-Pb年龄与εHf(t)图解(b)
Fig. 8. SiO2-Mg# diagram (a) and εHf(t) vs. U-Pb ages of zircons for the tonalite (b)
表 1 阿确墩地区英云闪长岩(D1602-1)锆石原位Hf同位素组成
Table 1. Zircon Hf isotopic data of the tonalite (D1602-1) from A'quedun area
测点号 年龄(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf ±2σ εHf(t) TDM(Ga) TDM2(Ga) fLu/Hf Hf-1602-1 401 0.030 770 0.001 127 0.282 719 0.000 021 6.64 0.76 0.97 -0.97 Hf-1602-2 375 0.032 074 0.001 181 0.282 719 0.000 018 6.09 0.76 0.98 -0.96 Hf-1602-3 402 0.023 307 0.000 823 0.282 647 0.000 018 4.20 0.85 1.12 -0.98 Hf-1602-4 404 0.075 319 0.002 355 0.282 844 0.000 024 10.81 0.60 0.71 -0.93 Hf-1602-5 396 0.081 269 0.002 871 0.282 824 0.000 024 9.82 0.64 0.76 -0.91 Hf-1602-6 413 0.032 299 0.000 976 0.282 577 0.000 021 1.91 0.96 1.28 -0.97 Hf-1602-7 380 0.112 975 0.003 418 0.283 002 0.000 036 15.63 0.38 0.38 -0.90 Hf-1602-8 404 0.048 708 0.001 565 0.282 710 0.000 022 6.26 0.78 1.00 -0.95 Hf-1602-9 412 0.064 566 0.002 026 0.282 830 0.000 023 10.57 0.62 0.73 -0.94 Hf-1602-10 410 0.053 500 0.001 810 0.282 736 0.000 024 7.27 0.75 0.94 -0.95 Hf-1602-11 392 0.024 891 0.000 830 0.282 648 0.000 018 4.03 0.85 1.13 -0.98 Hf-1602-12 389 0.035 046 0.001 113 0.282 665 0.000 019 4.49 0.84 1.10 -0.97 Hf-1602-13 401 0.056 838 0.001 827 0.282 782 0.000 023 8.69 0.68 0.84 -0.94 Hf-1602-14 403 0.068 442 0.002 067 0.282 757 0.000 021 7.79 0.72 0.90 -0.94 Hf-1602-15 387 0.088 779 0.002 809 0.282 854 0.000 021 10.70 0.59 0.70 -0.92 Hf-1602-16 402 0.030 900 0.000 979 0.282 679 0.000 020 5.30 0.81 1.05 -0.97 Hf-1602-17 376 0.050 713 0.001 555 0.282 773 0.000 023 7.91 0.69 0.87 -0.95 Hf-1602-18 390 0.037 764 0.001 203 0.282 707 0.000 020 5.95 0.78 1.00 -0.96 Hf-1602-19 382 0.048 429 0.001 536 0.282 735 0.000 021 6.72 0.74 0.95 -0.95 Hf-1602-20 386 0.054 063 0.001 639 0.282 723 0.000 021 6.32 0.76 0.98 -0.95 Hf-1602-21 385 0.066 333 0.002 116 0.282 822 0.000 027 9.69 0.63 0.76 -0.94 Hf-1602-22 413 0.093 557 0.002 968 0.282 925 0.000 020 13.67 0.49 0.53 -0.91 Hf-1602-23 396 0.053 420 0.001 685 0.282 788 0.000 024 8.82 0.67 0.83 -0.95 Hf-1602-24 396 0.030 949 0.001 039 0.282 692 0.000 018 5.61 0.80 1.03 -0.97 Hf-1602-25 396 0.044 868 0.001 501 0.282 706 0.000 016 5.99 0.78 1.01 -0.95 表 2 阿确墩地区花岗岩的主量(%)、微量(10-6)元素分析结果
Table 2. Major (%) and trace (10-6) element concentrations of the granitic rocks from A'quedun area
样号 花岗闪长岩 英云闪长岩 D1601-1H D1601-2H D1601-3H D1601-4H D1601-5H D1601-6H D1602-1H D1602-2H D1602-3H D1602-4H D1602-5H D1602-6H SiO2 62.53 64.61 64.56 65.72 65.26 64.18 67.97 66.53 66.85 70.00 66.71 67.41 Al2O3 17.21 16.36 16.68 16.32 16.50 16.82 15.33 15.22 15.49 14.62 15.54 15.59 Fe2O3 1.55 1.30 1.53 1.44 1.30 1.27 0.75 1.01 1.17 1.06 0.92 0.98 FeO 3.15 3.70 2.70 2.29 2.70 3.15 2.45 2.92 2.70 2.00 2.75 2.55 CaO 4.06 2.84 3.76 3.56 3.65 3.83 2.63 2.09 3.08 1.97 2.59 2.63 MgO 1.56 1.41 1.36 1.24 1.29 1.40 0.92 1.17 1.09 0.53 0.89 0.97 K2O 2.49 2.81 2.96 2.68 2.56 2.32 3.78 4.08 2.89 4.19 3.63 3.79 Na2O 4.90 4.79 4.50 4.70 4.79 4.75 3.79 4.08 4.15 4.03 4.21 3.86 TiO2 0.62 0.56 0.56 0.55 0.53 0.58 0.42 0.58 0.53 0.36 0.46 0.44 P2O5 0.17 0.17 0.16 0.14 0.15 0.17 0.12 0.14 0.14 0.09 0.11 0.13 MnO 0.14 0.12 0.10 0.08 0.10 0.13 0.09 0.12 0.11 0.08 0.10 0.10 LOI 1.55 1.26 1.06 1.23 1.13 1.35 1.70 1.98 1.74 0.97 1.99 1.48 Total 99.93 99.93 99.93 99.95 99.96 99.95 99.95 99.92 99.94 99.90 99.90 99.93 A/CNK 0.95 1.02 0.96 0.95 0.95 0.97 1.01 1.02 1.00 0.99 1.00 1.02 A/NK 1.60 1.50 1.57 1.54 1.55 1.63 1.48 1.37 1.56 1.31 1.43 1.49 Na2O+K2O 7.51 7.70 7.55 7.48 7.44 7.17 7.70 8.33 7.17 8.31 8.01 7.77 K2O/Na2O 0.51 0.59 0.66 0.57 0.53 0.49 1.00 1.00 0.70 1.04 0.86 0.98 Mg# 0.35 0.31 0.34 0.35 0.34 0.34 0.32 0.33 0.31 0.22 0.28 0.31 M 1.76 1.60 1.70 1.67 1.69 1.68 1.51 1.53 1.57 1.52 1.56 1.52 TZr(℃) 816 830 813 809 757 799 775 806 828 830 810 788 La 35.6 32.3 33.2 30.6 28.3 27.7 30.3 55.3 22.0 39.3 22.0 39.1 Ce 67.2 63.5 77.4 55.2 62.6 60.3 58.0 105.0 41.8 58.3 35.6 71.5 Pr 9.22 8.66 10.80 7.04 8.00 7.76 6.69 10.90 5.25 8.97 4.69 8.09 Nd 34.9 33.9 50.0 24.8 29.3 29.6 23.1 34.2 19.7 31.2 16.8 27.8 Sm 6.98 7.58 13.20 4.54 6.24 6.76 4.27 4.78 4.06 6.27 3.26 5.21 Eu 1.34 1.15 1.70 1.38 1.39 1.32 1.32 1.54 1.01 1.61 1.03 1.37 Gd 6.50 7.36 13.60 3.90 5.64 6.27 3.45 3.88 3.62 5.67 2.85 4.34 Tb 1.06 1.26 2.35 0.72 0.98 1.11 0.59 0.61 0.58 0.91 0.49 0.66 Dy 6.33 7.75 15.80 4.33 6.32 6.94 3.08 2.76 3.60 5.46 2.58 3.68 Ho 1.24 1.58 3.26 0.95 1.33 1.41 0.61 0.51 0.74 1.11 0.51 0.69 Er 3.56 4.22 9.16 2.72 3.79 3.99 1.64 1.44 1.98 3.02 1.40 1.86 Tm 0.54 0.63 1.32 0.42 0.59 0.62 0.24 0.23 0.30 0.43 0.21 0.28 Yb 3.60 4.04 8.08 2.79 3.92 4.26 1.55 1.46 1.96 2.91 1.38 1.76 Lu 0.54 0.60 1.14 0.43 0.55 0.64 0.24 0.22 0.29 0.41 0.21 0.27 Y 37.4 44.4 95.2 25.8 37.6 39.2 15.0 13.0 17.8 27.4 12.7 17.4 Rb 99.7 96.1 120.0 45.8 100.0 98.3 73.1 107.0 38.0 78.3 41.5 70.7 Ba 569 441 826 802 742 572 1 030 999 494 1 090 663 971 Th 15.60 11.50 11.00 8.15 8.79 7.32 5.86 11.30 5.20 10.10 5.25 7.65 U 2.55 1.84 2.22 1.50 1.80 1.85 1.31 1.84 1.45 1.16 1.41 1.55 Ta 1.14 1.08 1.81 1.04 1.02 1.14 0.59 0.67 0.62 0.81 0.47 0.66 Nb 13.30 13.30 18.60 16.40 12.00 12.60 6.66 6.80 8.95 10.40 7.50 7.51 Ge 1.26 1.36 1.47 1.18 1.30 1.47 1.20 1.25 1.37 1.31 1.30 1.16 Sr 369 236 416 308 356 303 215 231 198 150 156 188 Zr 304 307 280 260 144 234 155 224 293 288 240 180 Hf 7.86 7.84 7.47 6.76 4.05 6.53 4.24 5.97 7.37 7.48 6.02 4.82 Ga 21.3 21.2 21.9 18.2 20.6 21.3 16.8 18.7 16.2 17.4 16.1 17.6 Nb 13.30 13.30 18.60 16.40 12.00 12.60 6.66 6.80 8.95 10.40 7.50 7.51 Ta 1.14 1.08 1.81 1.04 1.02 1.14 0.59 0.67 0.62 0.81 0.47 0.66 ∑REE 178.60 174.50 241.00 139.80 159.00 158.70 135.10 222.80 106.90 165.60 93.01 166.60 ∑LREE 155.20 147.10 186.30 123.60 135.80 133.40 123.70 211.70 93.82 145.70 83.38 153.10 ∑HREE 23.37 27.44 54.71 16.26 23.12 25.24 11.40 11.11 13.07 19.92 9.63 13.54 LREE/HREE 6.64 5.36 3.41 7.60 5.88 5.29 10.85 19.06 7.18 7.31 8.66 11.31 (La/Yb)N 7.09 5.73 2.95 7.87 5.18 4.66 14.02 27.17 8.05 9.69 11.44 15.94 (La/Sm)N 3.29 2.75 1.62 4.35 2.93 2.65 4.58 7.47 3.50 4.05 4.36 4.84 (Gd/Yb)N 1.49 1.51 1.39 1.16 1.19 1.22 1.84 2.20 1.53 1.61 1.71 2.04 δEu 0.61 0.47 0.39 1.00 0.72 0.62 1.05 1.09 0.81 0.83 1.03 0.88 Nb/Ta 11.67 12.31 10.28 15.77 11.76 11.05 11.29 10.15 14.44 12.84 15.96 11.38 Zr/Hf 38.68 39.16 37.48 38.46 35.56 35.83 36.56 37.52 39.76 38.50 39.87 37.34 注:FeOT= FeO+Fe2O3×0.899 8;Mg#=(MgO/40.304 4)/100((MgO/40.304 4)+(FeOT/71.844));δEu =2EuN/(SmN+GdN);全岩岩石化学参数M(阳离子比率)=(Na+K+2Ca)/(Si×Al). -
[1] Andersen, T., 2002.Correction of Common Lead in U-Pb Analyse That do not Report 204Pb.Chemical Geology, 192(1-2):59-79. doi: 10.1016/S0009-2541(02)00195-X [2] Belousova, E.A., Griffin, W.L., O'Reilly, S.Y., et al., 2002.Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type.Contributions to Mineralogy and Petrology, 143(5):602-622. doi: 10.1007/s00410-002-0364-7 [3] Bian, Q.T., Zhao, D.S., Ye, Z.R., et al., 2002.A Preliminary Study of the Kunlun-Qilian-Qinling Sutuer System.Acta Geoscientia Sinica, 23(6):501-508(in Chinese with English abstract). http://www.oalib.com/paper/1559832 [4] Calvin, F.M., McDowell, S.M., Mapes, R.W., 2003.Hot and Cold Granites Implication of Zircon Saturation Temperatures and Preservation of Inheritance.Geology, 31(6):529-532. doi: 10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2 [5] Castro, A., Patino Douce, A.E., Corretge, L.C., et al., 1999.Origin of Peraluminous Granites and Granodiortes, Iberian Massif, Spain:An Experimental Test of Granite Petrogenesis.Contributions to Mineralogy and Petrology, 135(2):255-276. doi: 10.1007/s004100050511 [6] Chappell, B.W., Stephens, W.E., 1988.Origin of Infracrustal (I-Type) Granite Magmas.Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 79(2-3):71-86. doi: 10.1017/S0263593300014139 [7] Chen, J.J., Fu, L.B., Wei, J.H., et al., 2016.Geochemical Characteristics of Late Ordovician Granodiorite in Gouli Area, Eastern Kunlun Orogenic Belt, Qinghai Province:Implications on the Evolution of Proto-Tethys Ocean.Earth Science, 41(11):1863-1882 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.129 [8] Defant, M.J., Drummond, M.S., 1990.Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere.Nature, 347(6294):662-665. https://doi.org/10.1038/347662a0 [9] Du, W., Jiang, C.Y., Tang, Z.L., et al., 2017.Discovery of the Dagele Eclogite in East Kunlun, Western China and Its Zircon SHRIMP U-Pb Ages:New Constrains on the Central Kunlun Suture Zone.Acta Geologica Sinica (English Edition), 91(3):1153-1154. doi: 10.1111/acgs.2017.91.issue-3 [10] Eiler, J.M., 2007."Clumped-Isotope" Geochemistry-The Study of Naturally-Occurring, Multiply-Substituted Isotopologues.Earth and Planetary Science Letters, 262(3):309-327. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e8f53eb2a09fe4ca7d4b4f58acde3a42 [11] Fan, Y.Z., Meng, F.C., Duan, X.P., 2018.The Protoliths of the Xiarihamu Eclogites from the Western Part of East Kunlun and Continent/Arc-Continent Collision.Acta Geologica Sinica, 92(3):482-502 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201803005 [12] Gao, X.F., Guo, F., Xiao, P.X., et al., 2016.Geochemical and Sr-Nd-Pb Isotopic Evidence for Ancient Lower Continental Crust beneath the Xi Ujimqin Area of NE China.Lithos, 252-253:173-184. https://doi.org/10.1016/j.lithos.2016.02.012 [13] Gao, X.F., Xiao, P.X., Xie, C.R., et al., 2010.Zircon LA-ICP-MS U-Pb Dating and Geological Significance of Bashierxi Granite in the Eastern Kunlun Area, China.Geological Bulletin of China, 29(7):1001-1008 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201007005 [14] Green, T.H., 1995.Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System.Chemical Geology, 120(3-4):347-359. doi: 10.1016/0009-2541(94)00145-X [15] Guo, C.L., Wang, D.H., Chen, Y.C., et al., 2007.SHRIMP U-Pb Zircon Ages and Major Element, Trace Element and Nd-Sr Isotope Geochemical Studies of a Neoproterozoic Granitic Complex in Western Sichuan:Petrogenesis and Tectonic Significance.Acta Petrologica Sinica, 23(10):2457-2470. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200710015.htm [16] Guo, X.Z., Jia, Q.Z., Qian, B., et al., 2017.Geochemical Characteristics of Eclogites and Garnet-Amphibolites in East Kunlun High Pressure Metamorphic Belt and Their Geodynamic Setting.Journal of Earch Sciences and Environment, 39(6):735-750 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201706005 [17] Hofmann, A.W., 1998.Chemical Differentiation of the Earth:The Relationships between Mantle, Continental Crust, and Oceanic Crust.Earth and Planetary Science Letters, 90(3):297-314. http://www.sciencedirect.com/science/article/pii/0012821X8890132X [18] Hou, K.J., Li, Y.H., Zou, T.R., et al., 2007.Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications.Acta Petrologica Sinica, 23(10):2595-2604 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200710025 [19] Kaygusuz, A., Siebel, W., Sen, C., et al., 2008.Petrochemistry and Petrology of I-Type Granitoids in an Arc Setting:The Composite Torul Pluton, Eastern Pontides, NE Turkey.International Journal of Earth Sciences, 97(4):739-764. doi: 10.1007/s00531-007-0188-9 [20] Kemp, A., Hawkesworth, C., Foster, G., et al., 2007.Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon.Science, 315(5814):980-983. doi: 10.1126/science.1136154 [21] Li, C.S., Zhang, Z.W., Li, W.Y., et al., 2015.Geochronology, Petrology and Hf-S Isotope Geochemistry of the Newly-Discovered Xiarihamu Magmatic Ni-Cu Sulfide Deposit in the Qinghai-Tlibet Plateau, Western China.Lithos, 216-217:224-240. doi: 10.1016/j.lithos.2015.01.003 [22] Li, D.P., Li, J., Zhang, H.J., et al., 2003.The Turbidite of the Silurian Baiganhu Formation in the Qimantage Mountain Eastern Kunlun.Geology of Shaanxi, 21(2):39-44 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sxdizhi200302005 [23] Li, R.S., Ji, W.H., Yang, Y.C., 2008.The Geology of Kunlun Mountains and Adjacent Areas.Geological Publishing House, Beijing (in Chinese). [24] Li, R.S., Ji, W.H., Zhao, Z.M., et al., 2007.Progress in the Study of the Early Paleozoic Kunlun Orogenic Belt.Geological Bulletin of China, 26(4):373-382 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200704002 [25] Liu, B., Ma, C.Q., Guo, P., et al., 2013.Discovery of the Middle Devonian A-Type Granite from the Eastern Kunlun Orogen and Its Tectonic Implications.Earth Science, 38(5):947-962 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2013.093 [26] Liu, B., Ma, C.Q., Zhang, J.Y., et al., 2012.Petrogenesis of Early Devonian Intrusive Rocks in the East Part of Eastern Kunlun Orogen and Implication for Early Palaeozoic Orogenic Processes.Acta Petrologica Sinica, 28(6):1785-1807 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201206007 [27] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010a.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571. doi: 10.1093/petrology/egp082 [28] Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010b.Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS.Chinese Science Bulletin, 55(15):1535-1546. doi: 10.1007/s11434-010-3052-4 [29] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43. doi: 10.1016/j.chemgeo.2008.08.004 [30] Lu, L., Wu, Z.H., Hu, D.G., et al., 2010.Zircon U-Pb Age for Rhyolite of the Maoniushan Formation and Its Tectonic Significance in the East Kunlun Mountains.Acta Petrologica Sinica, 26(4):1150-1158 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201004012 [31] Ludwig, K.R., 1991.Isoplot:A Plotting and Regression Program for Radiogenic-Isotope Data.US Geological Survey Open-File Report, 39:91-445. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232722161/ [32] Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 [33] Meng, E., Liu, F.L., Liu, P.H., et al., 2014.Petrogenesis and Tectonic Significance of Paleoproterozoic Meta-Mafic Rocks from Central Liaodong Peninsula, Northeast China:Evidence from Zircon U-Pb Dating and In-Situ Lu-Hf Isotopes, and Whole-Rock Geochemistry.Precambrian Research, 247:92-109. doi: 10.1016/j.precamres.2014.03.017 [34] Meng, F.C., Cui, M.H., Jia, L.H., et al., 2015.Paleozoic Continental Collision of the East Kunlun Orogen:Evidence from Protoliths of the Eclogites.Acta Petrologica Sinica, 31(12):3581-3594 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201512006 [35] Meng, F.C., Zhang, J.X., Cui, M.H., 2013.Discovery of Early Paleozoic Eclogite from the East Kunlun, Western China and Its Tectonic Significance.Gondwana Research, 23(2):825-836. doi: 10.1016/j.gr.2012.06.007 [36] Meng, F.C., Zhang, J.X., Yang, J.S., et al., 2003.Geochemical Characteristics of Eclogites in Xitieshan Area, North Qaidam of Northwestern China.Acta Petrologica Sinica, 19(3):435-442 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200303007 [37] Mo, X.X., Luo, Z.H., Deng, J.F., et al., 2007.Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt.Geological Journal of China Universities, 13(3):403-414 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2011AGUFM.T51D2370M [38] Pan, G.T., Li, X.Z., Wang, L.Q., et al., 2002.Preliminary Division of Tectonic Units of the Qinghai-Tibet Plateau and Its Adjacent Regions.Geological Bulletin of China, 21(11):701-707 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200211002 [39] Qi, S.S., Deng, J.F., Ye, Z.F., et al., 2013.LA-ICP-MS Zircon U-Pb Dating of Late Devonian Diabase Dike Swarms in Qimantag Area.Geological Bulletin of China, 32(9):1385-1393 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201309007 [40] Qi, S.S., Song, S.G., Shi, L.C., et al., 2014.Discovery and Its Geological Significance of Early Paleozoic Eclogite in Xiarihamu-Suhaitu Area, Western Part of the East Kunlun.Acta Petrologica Sinica, 30(11):3345-3356 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201411018 [41] Qi, X.P., Fan, X.G., Yang, J., et al., 2016.The Discovery of Early Paleozoic Eclogite in the Upper Reaches of Langmuri in Eastern East Kunlun Mountains and Its Significance.Geological Bulletin of China, 35(11):1771-1783 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201611002 [42] Ren, E.F., Zhang, G.L., Qiu, W., et al., 2012.Study on Geochemistry of Gabbro in East Kunlun Kayakedengtage and Their Tectonic Significances.Mineral Resources and Geology, 26(4):334-338, 343 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcydz201204012 [43] Ren, J.H., Liu, Y.Q., Feng, Q., et al., 2009.LA-ICP-MS U-Pb Zircon Dating and Geochemical Characteristics of Diabase-Dykes from the Qingshuiquan Area, Eastern Kunlun Orogenic Belt.Acta Petrologica Sinica, 25(5):1135-1145 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200905008 [44] Shi, B., Zhu, Y.H., Zhong, Z.Q., et al., 2016.Petrological, Geochemical Characteristics and Geological Significance of the Caledonian Peraluminous Granites in Heihai Region, Eastern Kunlun.Earth Science, 41(1):35-54 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.003 [45] Streck, M.J., 2007.Mineral Textures and Zoning as Evidence for Open System Process.Reviews in Mineralogy and Geochemistry, 69(1):595-622. http://adsabs.harvard.edu/abs/2008RvMG...69..595S [46] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processed.Geological Society, London, Special Publication, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19 [47] Taylor, S.R., McLennan S.S., 1985.The Continental Crust:Its Composition and Evolution.Blackwell Scientific Publications, Oxford, 1-328. [48] Wang, T., Wang, X.X., Tian, W., et al., 2009.North Qinling Paleozoic Granite Associations and Their Variation in Space and Time:Implications for Orogenic Processes in the Orogens of Central China.Science in China (Series D:Earth Sciences), 39(7):949-971 (in Chinese). doi: 10.1007/s11430-009-0129-5 [49] Watson, E.B., Harrison, T.M., 1983.Zircon Saturation Revisited:Temperature and Composition Effects in a Variety of Crustal Magma Types.Earth and Planetary Science Letters, 64(2):295-304. doi: 10.1016/0012-821X(83)90211-X [50] Watson, E.B., Harrison, T.M., 2005.Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth.Science, 308(5723):841-844. doi: 10.1126/science.1110873 [51] Wu, F.Y., Li, X.H., Yang, J.H., et al., 2007a.Discussions on the Petrogenesis of Granites.Acta Petrologica Sinica, 23(6):1217-1238 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200706001 [52] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007b.Lu-Hf Isotopic Systematics and Their Applications in Petrology.Acta Petrologica Sinica, 23(2):185-220 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001 [53] Xu, Z.Q., Yang, J.S., Li, H.B., et al., 2006.The Early Palaeozoic Terrene Framework and the Formation of the High-Pressure (HP) and Ultra-High Pressure (UHP) Metamorphic Belts at the Central Orogenic Belt (COB).Acta Geologica Sinica, 80(12):1793-1806 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200612002 [54] Yang, J.S., Robinson, P.T., Jiang, C.F., et al., 1996.Ophiolites of the Kunlun Mountains, China and Their Tectonic Implications.Tectonophysics, 258(1-4):215-231. doi: 10.1016/0040-1951(95)00199-9 [55] Yin, H.F., Zhang, K.X., 1997.Characteristics of the Eastern Kunlun Orogenic Belt.Earth Science, 22(4):339-342(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzlp201803019 [56] Yu, M., Feng, C.Y., Santosh, M., 2017.The Qiman Tagh Orogen as a Window to the Crustal Evolution in Northern Qinghai-Tibet Plateau.Earth-Science Reviews, 167:103-123. https://doi.org/10.1016/j.earscirev.2017.02.008 [57] Zha, X.F., Ji, W.H., Zhang, H.D., et al., 2012.A Discussion on the Deformation Phases and Tectonic Process of the Southern Kunlun Accretionary Complex Belt, in Central Qinghai.Geological Bulletin of China, 31(12):2015-2024 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201212010 [58] Zhang, J., 2013.Petrological and Geochemical Characteristics of Basement Dikes in the Little Basin, Qimantag, East Kunlun.China Science and Technology Information, (9):45-46, 48(in Chinese). [59] Zhang, Q., Wang, Y., Li, C.D., et al., 2006.Granite Classification on the Basis of Sr and Yb Contents and Its Implications.Acta Petrologica Sinica, 22(9):2249-2269 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200609001 [60] Zhang, Q., Wang, Y., Pan, G.Q., et al., 2008.Sources of Granites:Some Crucial Questions on Granite Study (4).Acta Petrologica Sinica, 24(6):1193-1204(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200810003.htm [61] Zhong, Y.F., Ma, C.Q., She, Z.B., 2006.Geochemical Characteristics of Zircon and Its Applications in Geosciences.Geological Science and Technology Information, 25(1):27-34, 40 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb200601005 [62] 边千韬, 赵大升, 叶正仁, 等, 2002.初论昆祁秦缝合系.地球学报, 23(6):501-508. doi: 10.3321/j.issn:1006-3021.2002.06.004 [63] 陈加杰, 付乐兵, 魏俊浩, 等, 2016.东昆仑沟里地区晚奥陶世花岗闪长岩地球化学特征及其对原特提斯洋演化的制约.地球科学, 41(11):1863-1882. http://earth-science.net/WebPage/Article.aspx?id=3384 [64] 范亚洲, 孟繁聪, 段雪鹏, 2018.东昆仑西段夏日哈木榴辉岩原岩属性及陆(弧)陆碰撞.地质学报, 92(3):482-502. doi: 10.3969/j.issn.0001-5717.2018.03.005 [65] 高晓峰, 校培喜, 谢从瑞, 等, 2010.东昆仑阿牙克库木湖北巴什尔希花岗岩锆石LA-ICP-MS U-Pb定年及其地质意义.地质通报, 29(7):1001-1008. doi: 10.3969/j.issn.1671-2552.2010.07.005 [66] 国显正, 贾群子, 钱兵, 等, 2017.东昆仑高压变质带榴辉岩和榴闪岩地球化学特征及形成动力学背景.地球科学与环境学报, 39(6):735-750. doi: 10.3969/j.issn.1672-6561.2017.06.005 [67] 侯可军, 李延河, 邹天人, 等, 2007.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报, 23(10):2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025 [68] 黎敦朋, 李静, 张汉军, 等, 2003.东昆仑祁漫塔格山志留系白干湖组浊积岩特征.陕西地质, 21(2):39-44. doi: 10.3969/j.issn.1001-6996.2003.02.005 [69] 李荣社, 计文化, 杨永成, 2008.昆仑山及邻区地质.北京:地质出版社. [70] 李荣社, 计文化, 赵振明, 等, 2007.昆仑早古生代造山带研究进展.地质通报, 26(4):373-382. doi: 10.3969/j.issn.1671-2552.2007.04.002 [71] 刘彬, 马昌前, 郭盼, 等, 2013.东昆仑中泥盆世A型花岗岩的确定及其构造意义.地球科学, 38(5):947-962. http://earth-science.net/WebPage/Article.aspx?id=2780 [72] 刘彬, 马昌前, 张金阳, 等, 2012.东昆仑造山带东段早泥盆世侵入岩的成因及其对早古生代造山作用的指示.岩石学报, 28(6):1785-1807. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201206007 [73] 陆露, 吴珍汉, 胡道功, 等, 2010.东昆仑牦牛山组流纹岩锆石U-Pb年龄及构造意义.岩石学报, 26(4):1150-1158. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201004012 [74] 孟繁聪, 崔美慧, 贾丽辉, 等, 2015.东昆仑造山带早古生代的大陆碰撞:来自榴辉岩原岩性质的证据.岩石学报, 31(12):3581-3594. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201512006 [75] 孟繁聪, 张建新, 杨经绥, 等, 2003.柴北缘锡铁山榴辉岩的地球化学特征.岩石学报, 19(3):435-442. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200303007 [76] 莫宣学, 罗照华, 邓晋福, 等, 2007.东昆仑造山带花岗岩及地壳生长.高校地质学报, 13(3):403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010 [77] 潘桂棠, 李兴振, 王立全, 等, 2002.青藏高原及邻区大地构造单元初步划分.地质通报, 21(11):701-707. doi: 10.3969/j.issn.1671-2552.2002.11.002 [78] 祁生胜, 邓晋福, 叶占福, 等, 2013.青海祁漫塔格地区晚泥盆世辉绿岩墙群LA-ICP-MS锆石U-Pb年龄及其构造意义.地质通报, 32(9):1385-1393. doi: 10.3969/j.issn.1671-2552.2013.09.007 [79] 祁生胜, 宋述光, 史连昌, 等, 2014.东昆仑西段夏日哈木-苏海图早古生代榴辉岩的发现及意义.岩石学报, 30(11):3345-3356. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201411018 [80] 祁晓鹏, 范显刚, 杨杰, 等, 2016.东昆仑东段浪木日上游早古生代榴辉岩的发现及其意义.地质通报, 35(11):1771-1783. doi: 10.3969/j.issn.1671-2552.2016.11.002 [81] 任二峰, 张桂林, 邱炜, 等, 2012.东昆仑喀雅克登塔格辉长岩体地球化学研究及大地构造意义.矿产与地质, 26(4):334-338, 343. doi: 10.3969/j.issn.1001-5663.2012.04.012 [82] 任军虎, 柳益群, 冯乔, 等, 2009.东昆仑清水泉辉绿岩脉地球化学及LA-ICP-MS锆石U-Pb定年.岩石学报, 25(5):1135-1145. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200905008 [83] 施彬, 朱云海, 钟增球, 等, 2016.东昆仑黑海地区加里东期过铝质花岗岩岩石学、地球化学特征及地质意义.地球科学, 41(1):35-54. http://earth-science.net/WebPage/Article.aspx?id=3217 [84] 王涛, 王晓霞, 田伟, 等, 2009.北秦岭古生代花岗岩组合、岩浆时空演变及其对造山作用的启示.中国科学(D辑:地球科学), 39(7):949-971. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200901195408 [85] 吴福元, 李献华, 杨进辉, 等, 2007a.花岗岩成因研究的若干问题.岩石学报, 23(6):1217-1238. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200706001 [86] 吴福元, 李献华, 郑永飞, 等, 2007b.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702001 [87] 许志琴, 杨经绥, 李海兵, 等, 2006.中央造山带早古生代地体构架与高压/超高压变质带的形成.地质学报, 80(12):1793-1806. doi: 10.3321/j.issn:0001-5717.2006.12.002 [88] 殷鸿福, 张克信, 1997.东昆仑造山带的一些特点.地球科学, 22(4):339-342. doi: 10.3321/j.issn:1000-2383.1997.04.001 [89] 查显锋, 计文化, 张海迪, 等, 2012.青海中部昆南增生杂岩带变形分期及构造过程.地质通报, 31(12):2015-2024. doi: 10.3969/j.issn.1671-2552.2012.12.010 [90] 张健, 2013.东昆仑祁漫塔格地区小盆地基性岩墙岩石地球化学特征.中国科技信息, (9):45-46, 48. doi: 10.3969/j.issn.1001-8972.2013.09.008 [91] 张旗, 王焰, 李承东, 等, 2006.花岗岩的Sr-Yb分类及其地质意义.岩石学报, 22(9):2249-2269. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200609001 [92] 张旗, 王焰, 潘国强, 等, 2008.花岗岩源岩问题——关于花岗岩研究的思考之四.岩石学报, 24(6):1193-1204. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200806004 [93] 钟玉芳, 马昌前, 佘振兵, 2006.锆石地球化学特征及地质应用研究综述.地质科技情报, 25(1):27-34, 40. doi: 10.3969/j.issn.1000-7849.2006.01.005