Geochronology and Ore-Forming Material Source Constraints for Rouxianshan Pb-Zn Deposit in Huayuan Ore Concentration Area, Western Hunan
-
摘要: 花垣矿集区位于我国湘西-黔东成矿带,作为世界级的超大型铅锌矿床之一,预测储量超过千万吨,位于花垣矿集区中部渔塘矿田的柔先山铅锌矿床是区内典型的铅锌矿床.采用闪锌矿Rb-Sr分相法获得了柔先山铅锌矿床的Rb-Sr等时线年龄为412±6 Ma(MSWD=1.5,初始86Sr/87Sr=0.709 32),地质时代为早泥盆世,这一年龄限定了花垣地区铅锌矿床的时代.柔先山矿床的铅锌矿矿石流体包裹体、Sr-S-Pb同位素示踪研究显示,成矿流体可能是地层封存水与后期迁移流体的混合,成矿元素中的铅主要来源于围岩,硫由赋矿层位之上的含膏岩层经历热化学还原过程供给,铅和锶同位素特征都指示上地壳来源.Abstract: In Western Hunan-Eastern Guizhou metallogenetic belt, the Huayuan ore concentration area with ten-million-tons expected reserves of Pb and Zn, is one of the world-class super-large Pb-Zn ore deposits. Rouxianshan Pb-Zn deposit located in the center of Huayuan area, is a typical deposit in the Yutang ore field. This study carries out Rb-Sr geochronology study of sphalerites from Rouxianshan, and utilizes phase-seperation method to achieve an ideal Rb-Sr isochron line, yielding an Early Devonian age of 412±6 Ma (MSWD=1.5, initial 86Sr/87Sr=0.709 32), which is meaningful for constraining the ore-forming age in Huayuan area. The fluid inclusions, Sr-S-Pb isotopic composition of ore samples from Rouxianshan have also been analyzed. The results indicate that the ore-forming fluid may have originated from a mixture of strata-sealed water and transporting fluid, and the ore is characterized by Pb-Sr isotopic composition from upper crust. Further, the Pb in ores mainly comes from the wall rocks, and the S attributed to the thermo-chemical sulfate reduction (TSR) of overlying gypsum-bearing rock formation.
-
图 1 湘西黔东区域地质简图及矿床位置
1.白垩系;2.三叠系;3.二叠系;4.泥盆系;5.志留系;6.奥陶系;7.上寒武统牛蹄塘组黑色薄层状含碳质页岩和石牌组中-薄层状泥晶粉砂岩;8.中-上寒武统;9.中寒武统灰白色中-薄层状泥质白云岩;10.下寒武统层状灰岩、砂屑灰岩、藻灰岩、亮晶鲕粒灰岩、白云岩;11.震旦系;12.板溪群;13.地层界线;14.不整合接触界线;15.实测或推测藻礁界线;16.矿带界线;17.根据重磁资料解释的深大断裂;18.地表断层;19.县城;20.柔先山矿床;F1.保靖-花垣断裂;F2.松桃断裂;F3.玉屏-铜仁断裂.图 1据陈明辉等(2011)、湖南省地质调查院(2011)、蔡应雄等(2015)、匡文龙等(2015)、胡太平等(2017)修改
Fig. 1. Geological sketch of the ore deposits in western Hunan-eastern Guizhou area
图 2 花垣矿集区柔先山铅锌矿床矿体、矿石照片和薄片照片
a.网脉状方解石-闪锌矿石(浅黄色为闪锌矿,白色为方解石);b.细脉状闪锌矿矿体(方解石、浅黄色闪锌矿围绕灰岩角砾边缘分布);c.铅锌矿石(团块状闪锌矿、方铅矿分布于灰岩晶洞中的方解石边缘);d.方解石中成群分布的包裹体;e.方解石脉中的方解石和石榴石;f.脉石中的亮晶方解石(左)和泥晶方解石胶结物(右),中间为黄铁矿脉;g.矿石中的闪锌矿颗粒,裂隙被方解石和白云石充填;h.矿石中的自形闪锌矿、方解石和他形黄铁矿;sp.闪锌矿;G.方铅矿;py.黄铁矿;cc.方解石;dol.白云石
Fig. 2. The pictures of hand specimen, fluid inclusions and thin sections of the ores from Rouxianshan deposit
图 5 铅同位素构造模式
数据蔡应雄等(2014)、曹亮等(2017)、李堃等(2017)、付胜云等(2006)、周云等(2016)
Fig. 5. Tectonic model diagram of Pb isotope from Pb-Zn deposits in Huayuan area
表 1 花垣矿区下寒武统清虚洞组沉积相及含矿层位
Table 1. The sedimentary facies and ore-bearing strata in Qingxudong Formation, Lower Cambrian, Huayuan ore concentration area
层位分段 岩性 沉积相 厚度(m) 矿化 1 白云岩段 灰白色厚层-纹层白云岩 潮坪相 70~120 2 鲕粒灰岩段 灰白色厚层块状亮晶灰岩-鲕粒灰岩-碎屑灰岩 台缘浅滩相 6~70 次要矿化层位 3 藻灰岩段 灰白色厚层块状藻灰岩藻屑-砂屑灰岩顶部夹透镜状灰黑色泥质条带灰岩及角砾灰岩 丘-礁相礁间通道向 8~125 主要矿化层位 4 泥晶灰岩段 灰-绿灰色中厚层砂屑泥晶灰岩 上缓坡相 10~50 5 条带灰岩 深灰色中薄层泥质条带灰岩 下缓坡相 50~100 表 2 湘西北花垣柔先山铅锌矿床闪锌矿Rb-Sr同位素组成分析结果
Table 2. The Rb-Sr isotope composition analysis of the sphalerite in Rouxianshan Pb-Zn deposit
样号 样品性质 Rb(10-6) Sr(10-6) 87Rb/86Sr 87Sr/86Sr 2σ 14YT-08 闪锌矿矿物 0.162 2 2.257 0.207 2 0.710 53 0.000 05 14YT-17 闪锌矿矿物 0.120 1 4.163 0.083 2 0.709 82 0.000 03 14YT-19GRE 闪锌矿矿物 0.156 5 4.333 0.104 1 0.709 94 0.000 04 14YT-21GRE 闪锌矿矿物 0.155 2 5.467 0.081 9 0.709 82 0.000 02 14YT-23YEW 闪锌矿矿物 0.050 9 0.369 0.398 5 0.711 66 0.000 03 14YT-23GRE 闪锌矿矿物 0.099 8 1.361 0.211 4 0.710 58 0.000 02 14YT-20 闪锌矿矿物 0.074 3 4.613 0.046 5 0.709 59 0.000 02 14YT-25 闪锌矿矿物 0.144 7 6.897 0.060 5 0.709 66 0.000 01 表 3 渔塘柔先山矿床中硫化物的S同位素组成
Table 3. The S isotope composition in sulfides from Rouxianshan deposit
样品编号 测试对象 δ34SCDT(‰) 14YT-01 方铅矿 27.08 14YT-04 27.62 14YT-16 26.36 14YT-25 26.80 14YT-04 闪锌矿 32.51 14YT-16A 32.63 14YT-16B 33.54 14YT-25 33.19 注:CDT代表Canyon Diablo Troilite,国际标准物质迪亚布洛峡谷陨石中的陨硫铁,其δ34S值为0. 表 4 渔塘柔先山矿床中方铅矿的Pb同位素组成特征
Table 4. The Pb isotope composition in galena from Rouxianshan deposit
样品号 测定矿物 同位素比值 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb 14YT-2 方铅矿 18.114±0.003 15.698±0.002 38.306±0.004 14YT-20 方铅矿 18.102±0.003 15.682±0.003 38.283±0.007 表 5 柔先山铅锌矿床流体包裹体显微特征及均一温度
Table 5. Summary of fluid inclusion data of minerals in Rouxianshan Deposit
样品号 矿物 包裹体形态 包裹体类型 大小(μmm) 气液比(%) 均一温度(℃) 盐度(%) 14YT-01 方解石 成群分布形态规则 富液 2~10 10~30 71~348 14.25~22.38 14YT-08 闪锌矿 成群分布形态规则 富液 2~5 10 77~80 15.27 方解石 均匀分布形态规则 富液 4~10 10~30 71~348 15.27~23.18 14YT-09 闪锌矿 成群分布形态规则 富液 3~5 10 85~103 16.43~22.44 方解石 均匀分布形态规则 富液 2~6 10 80~90 13.9~14.04 14YT-12 方解石 均匀分布形态规则 富液 5~12 10~15 95~180 13.94~18.88 14YT-19 方解石 成群分布形态规则 富液 5~20 15~20 110~244 1.74~12.85 14YT-20 方解石 成群分布形态规则 富液 4~12 5~10 83~125 20.45~22.24 闪锌矿 均匀分布形态规则 富液 4~10 5 65~104 20.45~22.38 14YT-25 方解石 成群分布形态规则 富液 4~20 15~25 121~273 4.80~12.96 表 6 花垣地区部分铅锌矿床硫同位素组成特征
Table 6. Characteristics of the S isotope composition in sulfides from typical Pb-Zn deposits in Huayuan area
矿床 测定矿物 样品数 δ34S(‰) 资料来源 变化范围 平均值 柔先山 闪锌矿 5 33.19~33.54 32.97 本文 方铅矿 4 26.36~27.62 26.96 狮子山 闪锌矿 10 31.30~34.10 32.78 蔡应雄等,2014;曹亮等,2017 方铅矿 8 24.93~27.60 26.74 黄铁矿 2 32.80~33.00 32.90 李梅 闪锌矿 10 28.80~33.13 31.33 方铅矿 6 22.46~26.37 25.22 黄铁矿 2 25.70~34.66 30.18 耐子堡 闪锌矿 5 27.06~33.36 29.86 曹亮等,2017 方铅矿 2 23.96~26.59 25.27 黄铁矿 2 26.87~30.91 28.89 大石沟 闪锌矿 23 28.6~33.1 31.2 李堃等,2017 方铅矿 7 24.5~27.7 26.4 土地坪 闪锌矿 7 29.3~32.3 31.2 方铅矿 3 25.2~29.6 26.9 -
[1] Burke, W.H., Denison, R.E., Hetherington, E.A., et al., 1982.Variation of Seawater 87Sr/86Sr throughout Phanerozoic Time.Geology, 10(10):516. https://doi.org/10.1130/0091-7613(1982)10 [2] Cai, Y.X., Yang, H.M., Duan, R.C., et al., 2014.Fluid Inclusions and S, Pb, C Isotope Geochemistry of Pb-Zn Deposits Hosted by Lower Cambrian in Western Hunan-Eastern Guizhou Area.Geoscience, 28(1):29-41 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1000-8527.2014.01.003 [3] Cai, Y.X., Tan, J.J., Yang, H.M., et al., 2015.The Origin of Ore-Forming Material in the Tongshanling Cu-Polymetallic Ore Field in Hunan Province:Constrains from S-Pb-C Isotopes.Acta Geologica Sinica, 89(10):1792-1803 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.0001-5717.2015.10.007 [4] Cao, L., Duan, Q.F., Peng, S.G., et al., 2017.Sources of Metallogenic Materials of Lead-Zinc Deposits in Western Hu'nan Province:Evidence from S and Pb Isotopes.Geological Bulletin of China, 36(5):834-845 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1671-2552.2017.05.015 [5] Chen, M.H., Hu, X.Z., Bao, Z.X., et al., 2011.Geological Features and Metallogenesis of the Yutang Pb-Zn Ore Concentration Belt in Hunan Province.Geology and Exploration, 47(2):251-260 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=015761ef4517c359b869c036218251ca&encoded=0&v=paper_preview&mkt=zh-cn [6] Christensen, J.N., Halliday, A.N., 1995.Direct Dating of Sulfides by Rb-Sr:A Critical Test Using the Polaris Mississippi Valley-Type Zn-Pb Deposit.Geochemica et Cosmochimica Acta, 59(24):5191-5197. https://doi.org/10.1016/0016-7037(95)00345-2 [7] Du, G.M., Cai, H., Mei, Y.P., 2012.Application of Rb-Sr Isochron Dating Method in Sphalerite of Sulphide Deposit-A Case Study from Dagoudong Pb-Zn Deposit in Xinhuang, Western Hunan Province.Geology and Mineral Resources of South China, 28(2):175-180 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1007-3701.2012.02.011 [8] Duan, Q.F., Cao, L., Zeng, J.K., et al., 2014.Rb-Sr Dating of Sphalerites from Shizishan Pb-Zn Deposit in Huayuan Ore Concentration Area, Western Hunan, and Its Geological Significance.Earth Science, 39(8):977-999 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2014.089 [9] Fu, S.Y., Peng, Z.G., Liu, H.M., 2006.The Geological Characteristics in Zn-Pb Metallogenic Belt, Northwestern Hunan.Land and Resources Herald, 3(3):99-103 (in Chinese). http://cn.bing.com/academic/profile?id=9b671de3081ffe519e093887e8d79408&encoded=0&v=paper_preview&mkt=zh-cn [10] Gao, B.Y., Xue, C.J., Chi, G.X., et al., 2012.Re-Os Dating of Bitumen in the Giant Jinding Zn-Pb Deposit, Yunnan and Its Geological Significance.Acta Petrologica Sinica, 28(5):1561-1567 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=8a3c310f71d7da66ec8744a334cec61f&encoded=0&v=paper_preview&mkt=zh-cn [11] Han, Y.G., Li, X.H., Zhang, S.H., et al., 2007.Single Grain Rb-Sr Dating of Euhedral and Cataclastic Pyrite from the Qiyugou Gold Deposit in Western Henan, Central China.Chinese Science Bulletin, 52(11):1307-1311 (in Chinese). https://doi.org/10.3321/j.issn:0023-074X.2007.11.015 [12] Hoefs, J., 2009.Stable Isotope Geochemistry.6th Edition.Springer Berling Heidelberg, Berlin, 123-146. [13] Holser, W.T., 1977.Catastrophic Chemical Events in the History of the Ocean.Nature, 267(5610):403-408. https://doi.org/10.1038/267403a0 [14] Hu, T.P., Wang, M.F., Ding, Z.J., et al., 2017.C, O, S and Pb Isotopic Characteristics and Sources of Metallogenic Materials of Limei Pb-Zn Deposit in Huayuan County, Western Hunan Province.Mineral Deposits, 36(3):623-642 (in Chinese with English abstract). https://doi.org/10.16111/j.0258-7106.2017.03.006 [15] Hu, Z.Q., Zhu, G., Zhang, B.L., et al., 2010.K-Ar Geochronology of the Caledonian Event in the Xuefeng Uplift.Geological Review, 56(4):490-500 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=7bffce2a9b3c8aeb8bc383112d313a67&encoded=0&v=paper_preview&mkt=zh-cn [16] Hunan Institute of Geological Survey, 2011. Survey Report of Pb-Zn deposits in Huayuan-Fenghuang Area, Hunan Province. [17] Kuang, W.L., Xiang, S.C., Xiao, W.Z., et al., 2015.Metallogenic Geological Characteristics and Genesis of Lead-Zinc Deposits in Northwestern Hunan.Mineral Deposits, 34(5):1072-1082 (in Chinese with English abstract). https://doi.org/10.16111/j.0258-7106.2015.05.014 [18] Li, K., Duan, Q.F., Zhao, S.R., et al., 2017.Material Sources and Ore-Forming Mechanism of the Huayuan Pb-Zn Ore Deposit in Hu'nan Province:Evidence from S, Pb, Sr Isotopes of Sulfides.Geological Bulletin of China, 36(5):811-822 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1671-2552.2017.05.013 [19] Li, R.X., Dong, S.W., Zhang, S.N., et al., 2012.Features and Formation of Organic Fluids during Dabashan Orogenesis.Journal of Nanjing University (Natural Sciences), 48(3):295-307 (in Chinese with English abstract). https://doi.org/10.13232/j.cnki.jnju.2012.03.005 [20] Li, W.B., Huang, Z.L., Xu, D.R., et al., 2002.Rb-Sr Isotopic Method on Zinc Lead Ore Deposits:A Review.Geotectonica et Metallogenia, 26(4):436-441 (in Chinese with English abstract). https://doi.org/10.16539/j.ddgzyckx.2002.04.015 [21] Liu, W.J., 1985.Evolution of Hunan-Guizhou Fault Zone and the Features of Mineralization.Geological Review, 31(3):224-231 (in Chinese with English abstract). https://doi.org/10.16509/j.georeview.1985.03.005 [22] Liu, W.J., Zheng, R.C., 1999.Research of Fluid Inclusion Gas Composition in Huayuan Lead-Zinc Deposits-Organic-Mineralization Study of MVT Lead-Zinc Deposit (Ⅱ).Acta Sedimentologica Sinica, 17(4):608-614 (in Chinese with English abstract). https://es.scribd.com/document/289176567/Geochemistry-Earths-System-Processes-D-Panagiotaras-2012-Geo-Pedia-Geo-Library [23] Liu, W.J., Zheng, R.C., 2000a.Characteristics and Movement of Ore-Forming Fluids in the Huayuan Lead-Zinc Deposit.Mineral Deposits, 19(2):173-181 (in Chinese with English abstract). https://doi.org/10.16111/j.0258-7106.2000.02.010 [24] Liu, W.J., Zheng, R.C., 2000b.Thermochemical Sulphate Reduction and Huayuan Lead-Zinc Ore Deposit in Hunan, China.Science in China (Series D), 30(5):456-464 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1674-7240.2000.05.002 [25] Lu, S.S., Qiu, X.F., Tan, J.J., et al., 2016.The Pb-Pb Isochron Age of the Kuangshishan Formation in Shennongjia Area on the Northern Margin of the Yangtze Craton and Its Geological Implications.Earth Science, 41(2):317-324 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.023 [26] Luo, W., Yin, Z., Kong, L., et al., 2009.Discussion on the Geological Features and Genesis of the Limei Pb-Zn Ore Concentration Belt in North-Western Hunan Province.Geological Survey and Research, 33(3):194-202 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1672-4135.2009.03.005 [27] McArthur, J.M., Kennedy, W.J., Gale, A.S., et al., 1992.Strontium Isotope Stratigraphy in the Late Cretaceous:Intercontinental Correlations for the Campanian/Maastrichtian Boundary.Terra Nova, 4(3):385-393. https://doi.org/10.1111/j.1365-3121.1992.tb00827.x [28] Nakai, S., Halliday, A.N., Kesler, S.E., et al., 1990.Rb-Sr Dating of Sphalerites from Tennessee and the Genesis of Mississippi Valley Type Ore Deposits.Nature, 346(6282):354-357. https://doi.org/10.1038/346354a0 [29] Ohmoto, H., 1972.Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits.Economic Geology, 67(5):551-578. https://doi.org/10.2113/gsecongeo.67.5.551 [30] Qiu, H., Jiang, Y., 2007.Sphalerite 40Ar/39Ar Progressive Crushing and Stepwise Heating Techniques.Earth and Planetary Science Letters, 256(1/2):224-232. https://doi.org/10.1016/j.epsl.2007.01.028 [31] Schneider, J., Boni, M., Lapponi, F., et al., 2002.Carbonate-Hosted Zinc-Lead Deposits in the Lower Cambrian of Hunan, South China:A Radiogenic (Pb, Sr) Isotope Study.Economic Geology, 97(8):1815-1827. https://doi.org/10.2113/gsecongeo.97.8.1815 [32] Wan, Y.S., Miao, P.S., Liu, D.Y., et al., 2010.Formation Ages and Source Regions of the Palaeoproterozoic Gaofan, Hutuo and Dongjiao Groups in the Wutai and Dongjiao Areas of the North China Craton from SHRIMP U-Pb Dating of Detrital Zircons:Resolution of Debates over their Stratigraphic Relationships.Chinese Science Bulletin, 55(7):572-582 (in Chinese). https://doi.org/10.1007/s11434-009-0615-3 [33] Xiong, S.F., Yao, S.Z., Gong, Y.J., et al., 2016.Ore-Forming Fluid and Thermochemical Sulfate Reduction in the Wusihe Lead-Zinc Deposit, Sichuan Province, China.Earth Science, 41(1):105-120 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.008 [34] Xue, C.J., Lü, G.X., Gao, W.L., et al., 2017.Lithofacies Paleogeographic Analysis of Ore-Bearing Layers in Qingxudong Period and Metallogenic Prediction in Limei Ore Field in Huayuan, Western Hunan, China.Earth Science Frontiers, 24(2):159-175 (in Chinese with English abstract). https://doi.org/10.13745/j.esf.yx.2016-12-7 [35] Yang, H.M., Cai, H., Duan, R.C., et al., 2012.Progress in Rb-Sr Isotopic Dating of Sulfide.Advances in Earth Science, 27(4):379-385 (in Chinese with English abstract). https://www.researchgate.net/profile/M_Borisov/publication/263189571_Rb-Sr_Dating_of_Gold-Sulfide_Mineralization_in_the_Shaukhokh_Orefield_North_Ossetia_Russia/links/5594fbe208ae793d1379b49d.pdf?origin=publication_detail [36] Yang, H.M., Liu, C.P., Cai, H., et al., 2018.Preliminary Research on the Rb-Sr Dating Mechanism of Sphalerites with Diluted Acid Leachating.Geology and Mineral Resources of South China, in Press (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=8279f36ffce1d322464879bbc0a23655&encoded=0&v=paper_preview&mkt=zh-cn [37] Yang, H.M., Liu, C.P., Duan, R.C., et al., 2015.Rb-Sr and Sm-Nd Isochron Ages of Bokouchang Pb-Zn Deposit in Tongren, Guizhou Province and their Geological Implication.Geotectonica et Metallogenia, 39(5):855-865. https://doi.org/10.16539/j.ddgzyckx.2015.05.009 (in Chinese with English abstract). [38] Yang, S.X., Lao, K.T., 2007.Geological Characteristics and Ore Indicators of Lead-Zinc Deposits in Northwestern Hunan, China.Geologcal Bulletin of China, 26(7):899-908 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=d61a932d9feb622637a1d7bd92f6718a&encoded=0&v=paper_preview&mkt=zh-cn [39] Yang, Z.J., 1987.A Paleo-Fault Zone Traversing Southeastern China.Chinese Journal of Geology, 22(3):221-230 (in Chinese with English abstract). doi: 10.1007/BF02842042 [40] Yin, F.G., Xu, X.S., Wan, F., et al., 2001.The Sedimentary Response to the Evolutionary Process of Caledonian Foreland Basin System in South China.Acta Geosicientia Sinica, 22(5):425-428 (in Chinese with English abstract). https://doi.org/10.3321/j.issn:1006-3021.2001.05.009 [41] Zartman, R.E., Doe, B.R., 1981.Plumbotectonics-The Model.Tectonophysics, 77(1/2):135-162. https://doi.org/10.1016/0040-1951(81)90213-4 [42] Zhang, X.P., Deng, H.L., 1984.On the Age of the Yutang Lead-Zinc Deposit and Trilobite Fossils of Lower-Middle Cambrian, Huayuan, Hunan Province.Hunan Geology, 3(3):36-44 (in Chinese with English abstract). [43] Zheng, Y.F., 2001.Theoretical Modeling of Stable Isotope Systems and Its Applications to Geochemistry of Hydrothermal Ore Deposits.Mineral Deposits, 20(1):57-70, 85 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=0d1a7237f7ac3b13bd290390a58202c9&encoded=0&v=paper_preview&mkt=zh-cn [44] Zhou, Y., Duan, Q.F., Chen, Y.C., et al., 2016.C, O, H, S, Pb and Sr Isotope Constraints on the Metals Sources of Huayuan Pb-Zn Deposits in Western Hunan.Acta Geologica Sinica, 90(10):2786-2802 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=35ed95d22ba3539f711e6b62f88f5ed3&encoded=0&v=paper_preview&mkt=zh-cn [45] 蔡应雄, 谭娟娟, 杨红梅, 等, 2015.湘南铜山岭铜多金属矿床成矿物质来源的S、Pb、C同位素约束.地质学报, 89(10):1792-1803. doi: 10.3969/j.issn.0001-5717.2015.10.007 [46] 蔡应雄, 杨红梅, 段瑞春, 等, 2014.湘西-黔东下寒武统铅锌矿床流体包裹体和硫、铅、碳同位素地球化学特征.现代地质, 28(1):29-41. http://www.cnki.com.cn/Article/CJFDTOTAL-ZXDB201408077.htm [47] 曹亮, 段其发, 彭三国, 等, 2017.湘西地区铅锌矿成矿物质来源——来自S、Pb同位素的证据.地质通报, 36(5):834-845. http://www.cnki.com.cn/Article/CJFDTotal-KWXB2015S1157.htm [48] 陈明辉, 胡祥昭, 鲍振襄, 等, 2011.湖南渔塘铅锌矿集中区地质特征及成矿问题讨论.地质与勘探, 47(2):251-260. http://www.oalib.com/paper/4321730 [49] 杜国民, 蔡红, 梅玉萍, 2012.硫化物矿床中闪锌矿Rb-Sr等时线定年方法研究——以湘西新晃打狗洞铅锌矿床为例.华南地质与矿产, 28(2):175-180. http://xueshu.baidu.com/s?wd=paperuri%3A%286ec84872232d4b5fe3ba1438887431e8%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fkns.cnki.net%2FKCMS%2Fdetail%2Fdetail.aspx%3Ffilename%3Dhnkc201202012%26dbname%3DCJFD%26dbcode%3DCJFQ&ie=utf-8&sc_us=13303092994492823705 [50] 段其发, 曹亮, 曾健康, 等, 2014.湘西花垣矿集区狮子山铅锌矿床闪锌矿Rb-Sr定年及地质意义.地球科学, 39(8):977-999. [51] 付胜云, 彭志刚, 刘红梅, 2006.湘西北铅锌矿带成矿地质特征.国土资源导刊, 3(3):99-103. https://doi.org/10.3969/j.issn.1672-5603.2006.03.026 [52] 高炳宇, 薛春纪, 池国祥, 等, 2012.云南金顶超大型铅锌矿床沥青Re-Os法测年及地质意义.岩石学报, 28(5):1561-1567. https://www.wenkuxiazai.com/word/5ef2b51fbb68a98271fefa21-1.doc [53] 韩以贵, 李向辉, 张世红, 等, 2007.豫西祁雨沟金矿单颗粒和碎裂状黄铁矿Rb-Sr等时线定年.科学通报, 52(11):1307-1311. https://doi.org/10.3321/j.issn:0023-074X.2007.11.015 [54] 胡太平, 王敏芳, 丁振举, 等, 2017.湘西花垣李梅铅锌矿床C、O、S、Pb同位素特征及成矿物质来源.矿床地质, 36(3):623-642. https://doi.org/10.16111/j.0258-7106.2017.03.006 [55] 胡召齐, 朱光, 张必龙, 等, 2010.雪峰隆起北部加里东事件的K-Ar年代学研究.地质论评, 56(4):490-500. https://doi.org/10.16509/j.georeview.2010.04.003 [56] 湖南地质调查院, 2011. 湖南花垣-凤凰地区铅锌矿调查报告. [57] 匡文龙, 向世超, 肖文舟, 等, 2015.湘西北地区铅锌矿床成矿地质特征及矿床成因研究.矿床地质, 34(5):1072-1082. https://doi.org/10.16111/j.0258-7106.2015.05.014 [58] 李堃, 段其发, 赵少瑞, 等, 2017.湖南花垣铅锌矿床成矿物质来源与成矿机制——来自S、Pb、Sr同位素的证据.地质通报, 36(5):811-822. http://www.cnki.com.cn/Article/CJFDTotal-KWXB2015S1157.htm [59] 李荣西, 董树文, 张少妮, 等, 2012.大巴山造山过程有机流体研究.南京大学学报(自然科学版), 48(3):295-307. http://www.cqvip.com/QK/95251X/201203/42358507.html [60] 李文博, 黄智龙, 许德如, 等, 2002.铅锌矿床Rb-Sr定年研究综述.大地构造与成矿学, 26(4):434-441. http://www.irgrid.ac.cn/handle/1471x/178587?mode=full&submit_simple=Show+full+item+record [61] 刘文均, 1985.湘黔断裂带的演化及其成矿作用特点.地质论评, 31(3):224-231. https://doi.org/10.16509/j.georeview.1985.03.005 [62] 刘文均, 郑荣才, 2000a.花垣铅锌矿床成矿流体特征及动态.矿床地质, 19(2):173-181. https://doi.org/10.3969/j.issn.0258-7106.2000.02.009 [63] 刘文均, 郑荣才, 1999.花垣铅锌矿床包裹体气象组份研究:MVT矿床有机成矿作用研究(Ⅱ).沉积学报, 17(4):608-614. http://xueshu.baidu.com/s?wd=paperuri%3A%28203e79f65381d13a28256d6d6a59eb46%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fkns.cnki.net%2FKCMS%2Fdetail%2Fdetail.aspx%3Ffilename%3Dcjxb199904016%26dbname%3DCJFD%26dbcode%3DCJFQ&ie=utf-8&sc_us=5601715543433358137 [64] 刘文均, 郑荣才, 2000b.硫酸盐热化学反应与花垣铅锌矿床.中国科学(D辑), 30(5):456-464. https://doi.org/10.3969/j.issn.1674-7240.2000.05.002 [65] 卢山松, 邱啸飞, 谭娟娟, 等, 2016.扬子克拉通北缘神农架地区矿石山组Pb-Pb等时线年龄及其地质意义.地球科学, 41(2):317-324. https://www.researchgate.net/publication/299345042_yangzikelatongbeiyuanshennongjiadequkuangshishanzu_P_b_-_P_bdengshixiannianlingjiqidezhiyiyi [66] 罗卫, 尹展, 孔令, 等, 2009.花垣李梅铅锌矿集区地质特征及矿床成因探讨.地质调查与研究, 33(3):194-202. http://www.cqvip.com/QK/92480B/200903/31628570.html [67] 万渝生, 苗培森, 刘敦一, 等, 2010.华北克拉通高凡群、滹沱群和东焦群的形成时代和物质来源:碎屑锆石SHRIMP U-Pb同位素年代学制约.科学通报, 55(7):572-582. http://xueshu.baidu.com/s?wd=paperuri%3A%283dd09087f2d00358c1376cf594de2fc7%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fwww.cqvip.com%2FQK%2F94252X%2F201007%2F33424483.html&ie=utf-8&sc_us=14072337795658920000 [68] 熊索菲, 姚书振, 宫勇军, 等, 2016.四川乌斯河铅锌矿床成矿流体特征及TSR作用初探.地球科学, 41(1):105-120. https://doi.org/10.3799/dqkx.2016.008 [69] 薛长军, 吕古贤, 高伟利, 等, 2017.湘西花垣李梅矿田含矿层清虚洞期岩相古地理分析及成矿预测.地学前缘, 24(2):159-175. https://doi.org/10.13745/j.esf.yx.2016-12-7 [70] 杨红梅, 蔡红, 段瑞春, 等, 2012.硫化物Rb-Sr同位素定年研究进展.地球科学进展, 27(4):379-385. http://mall.cnki.net/magazine/Article/DXJZ201204008.htm [71] 杨红梅, 刘重芃, 蔡红, 等, 2018.闪锌矿分相Rb-Sr体系定年机理初探.华南地质与矿产, 待刊. http://www.cnki.com.cn/Article/CJFDTotal-HNKC201202012.htm [72] 杨红梅, 刘重芃, 段瑞春, 等, 2015.贵州铜仁卜口场铅锌矿床Rb-Sr与Sm-Nd同位素年龄及其地质意义.大地构造与成矿学, 39(5):855-865. https://doi.org/10.16539/j.ddgzyckx.2015.05.009 [73] 杨绍祥, 劳可通, 2007.湘西北铅锌矿床的地质特征及找矿标志.地质通报, 26(7):899-908. https://doi.org/10.3969/j.issn.1671-2552.2007.07.015 [74] 杨志坚, 1987.横贯中国东南部的一条古断裂带.地质科学, 22(3):221-230. http://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200303000.htm [75] 尹福光, 许效松, 万方, 等, 2001.华南地区加里东期前陆盆地演化过程中的沉积响应.地球学报, 22(5):425-428. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201205007.htm [76] 张欣平, 邓华龙, 1984.花垣县渔塘铅锌矿含矿层时代及早、中寒武世的三叶虫.湖南地质, 3(3):36-44. http://xueshu.baidu.com/s?wd=paperuri%3A%28689310cd725e556043b3e3a4f8305dc7%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fkns.cnki.net%2FKCMS%2Fdetail%2Fdetail.aspx%3Ffilename%3Dhndz198403003%26dbname%3DCJFD%26dbcode%3DCJFQ&ie=utf-8&sc_us=10629076303524176405 [77] 郑永飞, 2001.稳定同位素体系理论模式及其矿床地球化学应用.矿床地质, 20(1):57-70, 85. https://doi.org/10.3969/j.issn.0258-7106.2001.01.007 [78] 周云, 段其发, 陈毓川, 等, 2016.湘西花垣铅锌矿田成矿物质来源的C、O、H、S、Pb、Sr同位素制约.地质学报, 90(10):2786-2802. doi: 10.3969/j.issn.0001-5717.2016.10.017