Zircon U-Pb Dating, Geochemistry and Petrogenesis of Intrusive Rocks from A're Area, Zhongdian Arc
-
摘要: 中甸弧是中国西南"三江"特提斯构造带南段最重要的成矿区之一.前人的研究重点一直放在该带中北部含矿岩体中,对南部不含矿岩体却了解甚少.对南部阿热岩体进行了岩石学、主量和微量元素地球化学及锆石U-Pb年代学等研究,结果表明阿热岩体(216.3±1.8 Ma)与该地区其他岩体形成时代相同.岩石地球化学研究显示阿热石英二长岩具有高Sr(1 563×10-6~2 051×10-6)、低Y(15.0×10-6~22.4×10-6)含量及高Sr/Y值(86.0~120.5),富集大离子亲石元素(Rb、Ba、Th、U),亏损高场强元素(Nb、Ta、Ti),并具有轻微负Eu异常等特征,表明岛弧火成岩和埃达克质岩亲和性.同时,阿热岩体中MgO含量(1.97%~3.30%)和Mg#值(38.7~50.8,平均为43.03)较低,Ni(10.7×10-6~26.8×10-6)、Cr(18.0×10-6~75.8×10-6)、Co(12.4×10-6~17.4×10-6)等相容元素含量也较低,地球化学性质指示其可能由地壳部分熔融形成.晚三叠世甘孜-理塘俯冲洋壳由于温度和压力的改变发生脱水,释放的流体或熔体上升至下地壳,致使下地壳发生部分熔融,从而产生了阿热地区的这些花岗质岩浆.因此,晚三叠世阿热岩体形成于陆缘弧构造背景,是甘孜-理塘洋西向俯冲消减的产物,而此时很可能发生了大洋向残留海转化的过程.Abstract: Zhongdian arc, located in Sanjiang Tethyan Orogenic belt in Southwest China southern part of Tethys belt, is one of the most important districts for polymetallic ore deposits.Previous studies mainly focus on the ore-bearing intrusions in the central and northern part of Zhongdian arc, however, there are still limited knowledge about the barren intrusions in the southern part.In this paper, we present detailed petrology, major and trace elemental geochemistry and geochronology of A're granitoids, southern part of Zhongdian arc.Zircon U-Pb dating results show the timing of emplacement of A're intrusion (216.3±1.8 Ma) is comparable to those of the other intrusive rocks in Zhongdian arc.A're quartz monzonites have high Sr (mean 1810.24×10-6), low Y (mean 19.05×10-6) concentrations and thus high Sr/Y(86.0-120.5) ratios.In addition, they also display enrichment in LILE (Rb, Ba, Th, U), depletion in HFSE (Nb, Ta, Ti) and slightly Eu negative anomaly, which suggests that they have geochemical characteristics of both arc-related and adakitic affinities.The low MgO (1.97%-3.30%), Ni (10.7×10-6-26.8×10-6), Cr (18.0×10-6-75.8×10-6) and Co (12.4×10-6-17.4×10-6) contents of the A're granitoids support that they were, generated from partial melting of thicken lower crust.Therefore, the A're quartz monzonites belong to a part of the continental marginal arc during westward subduction of Ganzi-Litang ocean, which represents the products of transformation from widespread Tethys ocean to residual sea in Zhongdian arc.
-
Key words:
- Zhongdian arc /
- A're intrusive rocks /
- adakitic rocks /
- continental arc /
- Ganzi-Litang ocean /
- geochemistry /
- geochronology
-
图 1 中甸弧大地构造位置(a)及地质简图(b)和阿热岩体地质简图(c)
图a据任江波等(2011);图b据董毅(2013)
Fig. 1. Location of Zhongdian arc (a) and simplified geological maps of Zhongdian arc (b) and the study area (c)
图 4 中甸地区印支期侵入岩TAS图解
底图据Eric(1994).普朗复式岩体数据据任江波等(2011);红山石英闪长玢岩数据据黄肖潇等(2012);春都花岗闪长斑岩数据据吴静等(2011);雪鸡坪复式岩体数据据冷成彪等(2007);烂泥塘石英闪长玢岩数据据姜文涛等(2014).1.橄榄辉长岩;2a.碱性辉长岩;2b.亚碱性辉长岩;3.辉长闪长岩;4.闪长岩;5.花岗闪长岩;6.花岗岩;7.硅英岩;8.二长辉长岩;9.二长闪长岩;10.二长岩;11.石英二长岩;12.正长岩;13.副长石辉长岩;14.副长石二长闪长岩;15.副长石二长正长岩;16.副长正长岩;17.副长深成岩;18.霓方钠岩/磷霞岩/粗白榴岩
Fig. 4. TAS diagram of Indosinian intrusive rocks from Zhongdian arc
图 5 阿热石英二长岩K2O-SiO2图解(a)和A/NK-A/CNK图解(b)
图a据Peccerillo and Taylor (1976);图b据Rickwood (1989).数据来源和图例同图 4
Fig. 5. Plots of K2O-SiO2 (a) and A/NK-A/CNK (b) of quartz monzonite from A're area
图 6 中甸地区印支期中酸性岩球粒陨石标准化稀土元素配分模式(a)和原始地幔标准化微量元素蛛网图(b)
标准化数据引自Sun and McDonough (1989)
Fig. 6. Chondrite-normalized REE pattern (a) and primitive mantle-normalized trace elements spider diagram (b) of Indosinian intermediate-acid rocks from Zhongdian arc
图 8 中甸弧印支期侵入岩(La/Yb)N-YbN图解
底图据Defant and Drummond (1990).数据来源和图例同图 4
Fig. 8. (La/Yb)N-YbN diagram for Indosinian intermediate-acid intrusive rocks from Zhongdian arc
图 9 中甸地区印支期中酸性岩La/Yb-La图解(a)与La/Sm-La图解(b)
底图据Wang et al. (2011).数据来源和图例同图 4
Fig. 9. Plots of La/Yb-La (a) and La/Sm-La (b) for Indosinian intermediate-acid intrusive rocks from Zhongdian arc
图 10 阿热石英二长岩构造环境判别图解
底图据Pearce (1984).数据来源和图例同图 4
Fig. 10. Tectonic discrimination diagrams of quartz-monzonite from A're area
表 1 阿热岩体石英二长岩样品(15ZD-1)锆石U-Pb定年分析结果
Table 1. Zircon U-Pb dating results of A're quartz monzonite sample (15ZD-1)
测点号 元素含量(10-6) Th/U 同位素比值 年龄(Ma) Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 15ZD-1-1 2 212 1 038 2.13 0.058 81 0.003 39 0.275 13 0.015 54 0.034 33 0.000 60 560 92 247 12 218 4 15ZD-1-2 2 079 843 2.47 0.051 99 0.004 16 0.242 38 0.018 78 0.034 40 0.000 88 285 130 220 15 218 6 15ZD-1-3 3 848 1 249 3.08 0.047 94 0.002 61 0.221 21 0.011 67 0.033 81 0.000 74 96 78 203 10 214 5 15ZD-1-4 1 050 565 1.86 0.053 95 0.003 86 0.245 61 0.016 80 0.033 77 0.000 83 369 110 223 14 214 5 15ZD-1-5 2 982 1 053 2.83 0.049 66 0.003 88 0.230 97 0.014 02 0.034 48 0.000 77 179 98 211 12 219 5 15ZD-1-6 652 406 1.61 0.055 39 0.004 4 0.249 85 0.019 01 0.033 50 0.000 81 428 127 226 15 212 5 15ZD-1-7 2 007 863 2.33 0.050 01 0.003 75 0.237 86 0.018 65 0.034 53 0.000 74 195 137 217 15 219 5 15ZD-1-8 3 015 1 132 2.66 0.050 16 0.003 06 0.238 97 0.014 87 0.034 34 0.000 73 202 104 218 12 218 5 15ZD-1-9 476 328 1.45 0.055 63 0.005 55 0.248 71 0.021 73 0.034 04 0.000 88 437 149 226 18 216 5 15ZD-1-10 2 178 888 2.45 0.044 92 0.002 63 0.212 64 0.012 87 0.034 14 0.000 69 -23 91 196 11 216 4 15ZD-1-11 4 574 1 501 3.05 0.048 39 0.002 47 0.232 85 0.012 26 0.034 56 0.000 54 119 90 213 10 219 3 15ZD-1-12 1 663 739 2.25 0.050 65 0.003 30 0.231 87 0.014 87 0.033 35 0.000 67 225 110 212 12 211 4 15ZD-1-13 2 955 1 068 2.77 0.051 44 0.003 04 0.243 96 0.014 59 0.034 64 0.000 64 261 103 222 12 220 4 15ZD-1-14 2 422 920 2.63 0.051 47 0.003 32 0.240 53 0.014 51 0.034 19 0.000 66 262 103 219 12 217 4 15ZD-1-15 3 506 1 142 3.07 0.049 52 0.003 31 0.233 95 0.015 66 0.034 44 0.000 84 172 108 213 13 218 5 15ZD-1-16 485 337 1.44 0.051 83 0.004 87 0.235 14 0.022 99 0.033 45 0.000 86 278 174 214 19 212 5 15ZD-1-17 1 604 748 2.14 0.051 84 0.002 91 0.238 08 0.013 69 0.033 68 0.000 76 278 90 217 11 214 5 15ZD-1-18 1 766 776 2.28 0.136 48 0.009 90 0.766 09 0.059 92 0.039 57 0.000 83 2183 107 578 34 250 5 15ZD-1-19 3 627 1 121 3.24 0.051 36 0.003 06 0.237 98 0.014 55 0.033 78 0.000 70 257 103 217 12 214 4 15ZD-1-20 2 024 1 033 1.96 0.052 09 0.003 13 0.247 57 0.014 93 0.034 53 0.000 65 289 103 225 12 219 4 15ZD-1-21 4 380 1 444 3.03 0.051 37 0.002 99 0.243 54 0.015 64 0.034 20 0.000 76 257 106 221 13 217 5 15ZD-1-22 3 667 1 274 2.88 0.049 43 0.002 85 0.230 24 0.013 43 0.033 88 0.000 61 168 100 210 11 215 4 15ZD-1-23 1 991 8 65 2.30 0.049 56 0.003 67 0.233 25 0.017 03 0.034 39 0.000 79 174 123 213 14 218 5 15ZD-1-24 3 009 1 304 2.31 0.048 02 0.003 24 0.219 03 0.014 71 0.033 46 0.000 87 100 101 201 12 212 5 表 2 阿热石英二长岩主量元素(%)和微量元素(10-6)分析结果
Table 2. Major elements (%) and trace elements (10-6) results of A're quartz monzonite
样品号 15ZD-1 15ZD-2 15ZD-3 15ZD-4 15ZD-5 SiO2 59.60 59.85 62.96 60.14 59.80 TiO2 0.81 0.81 0.78 0.96 0.80 Al2O3 15.38 15.52 14.44 14.12 14.05 Fe2O3 6.34 6.18 5.52 6.80 6.32 MnO 0.12 0.13 0.11 0.16 0.10 MgO 2.10 1.97 2.15 2.53 3.30 CaO 4.29 4.21 3.96 4.60 4.92 Na2O 3.90 3.96 3.53 3.13 3.40 K2O 5.40 5.39 4.46 4.89 4.34 P2O5 0.41 0.41 0.39 0.54 0.51 LOI 1.06 1.00 1.24 1.60 1.96 Total 99.41 99.43 99.54 99.47 99.50 Mg# 39.6 38.7 43.6 42.4 50.8 Sc 15.4 14.2 17.3 13.5 17.0 Ti 5 094 4 852 5 755 4 679 4 666 V 167 156 163 124 141 Cr 21.6 18.0 30.4 30.7 75.8 Mn 943 932 1 205 798 789 Co 13.5 12.4 17.4 13.4 17.2 Ni 12.4 10.7 20.2 16.3 26.8 Cu 22.7 36.2 64.1 39.8 55.6 Zn 66.6 69.3 81.5 50.5 70.0 Ga 20.7 19.7 19.1 18.7 18.1 Ge 2.68 2.54 2.61 2.24 2.28 Rb 112 105 109 100 109 Sr 2 052 1 747 1 878 1 563 1 812 Y 22.4 20.3 20.9 16.7 15.0 Zr 261 237 255 222 194 Nb 24.4 23.4 22.1 21.4 17.1 Cs 3.80 3.21 5.86 2.20 3.35 Ba 4 094 3 701 2 947 2 849 2 888 La 67.7 63.4 54.4 55.1 50.8 Ce 125 112 95.7 93.6 90.3 Pr 13.2 12.4 10.8 10.3 10.3 Nd 47.7 43.9 39.6 35.7 36.8 Sm 8.12 7.51 7.04 6.03 6.34 Eu 2.16 2.00 1.87 1.61 1.69 Gd 6.68 6.29 5.98 4.92 5.13 Tb 0.82 0.75 0.77 0.62 0.61 Dy 4.09 3.84 3.92 3.11 3.01 Ho 0.76 0.70 0.72 0.58 0.55 Er 2.01 1.83 1.93 1.54 1.39 Tm 0.29 0.26 0.28 0.22 0.20 Yb 1.80 1.67 1.72 1.42 1.26 Lu 0.28 0.26 0.27 0.22 0.19 Hf 6.68 6.25 6.81 6.04 5.49 Ta 1.33 1.31 1.31 1.35 1.05 Pb 45.5 49.3 60.0 49.0 66.6 Th 19.7 19.4 19.3 20.2 16.5 U 4.34 4.06 3.82 4.06 3.99 表 3 中甸地区印支期中酸性岩年龄统计
Table 3. Age statistics of intermediate-acid intrusive rocks from Zhongdian arc
位置 岩体 岩性 方法 年龄(Ma) 数据来源 西部岩体 烂泥塘 石英二长斑岩 LA-ICPMS 216.7 任江波等(2011) 烂泥塘 闪长玢岩 LA-ICPMS 225.2±3.5 欧剑杰(2014) 烂泥塘 石英闪长玢岩 LA-ICPMS 219.2±1.8 Leng et al. (2012) 雪鸡坪 石英闪长玢岩 SHRIMP 215.3±2.3 林清茶等(2006) 雪鸡坪 石英二长斑岩 SHRIMP 215.2±1.9 曹殿华等(2009) 雪鸡坪 石英二长斑岩 LA-ICPMS 213.4±1.5 任江波等(2011) 雪鸡坪 石英二长斑岩 SIMS 218.3±1.6 Leng et al. (2012) 春都 石英二长斑岩 SIMS 219.7±1.8 张兴春等(2009) 春都 闪长玢岩 LA-ICPMS 252.1±2.3 杨宪涛等(2012) 春都 花岗闪长斑岩 LA-ICPMS 217.2±2 杨帆等(2011) 春都 闪长玢岩 LA-ICPMS 212±3 杨帆等(2011) 春都 闪长玢岩 LA-ICPMS 246.1±3 邹国富等(2012) 春都 闪长玢岩 LA-ICPMS 260.8±2.5 邹国富等(2012) 春都 闪长玢岩 LA-ICPMS 252.3±3.4 邹国富等(2012) 春都 花岗闪长斑岩 LA-ICPMS 217.5±1.9 邹国富等(2012) 春都 花岗闪长斑岩 LA-ICPMS 217.3±1.8 邹国富等(2012) 阿热 角闪闪长玢岩 LA-ICPMS 228.5±1.1 董毅等(2012) 阿热 花岗闪长斑岩 LA-ICPMS 219.8±0.63 董毅等(2012) 阿热 石英二长岩 LA-ICPMS 216.3±1.8 本文 中部蛇绿岩混杂带 红山 石英闪长玢岩 LA-ICPMS 216.1±3.2 黄肖潇等(2012) 红山 闪长玢岩 LA-ICPMS 201.17±0.74 彭惠娟(2014) 红山 闪长玢岩 LA-ICPMS 198.95±0.58 彭惠娟(2014) 东部岩体 普朗 石英闪长玢岩 单颗粒锆石 221±1.0 庞振山等(2009) 普朗 石英二长斑岩 LA-ICPMS 215.3 任江波等(2011) 普朗 石英二长斑岩 单颗粒锆石 211.8±0.5 庞振山等(2009) 普朗 石英二长斑岩 SHRIMP 226.3±2 王守旭等(2008) 普朗 花岗闪长斑岩 单颗粒锆石 206.3±0.7 庞振山等(2009) 松诺 石英二长斑岩 SHRIMP 220.9±3.5 冷成彪等(2008) 松诺 石英二长斑岩 LA-ICPMS 204.7±1.4 赖安琦等(2016) 地苏嘎 石英闪长玢岩 LA-ICPMS 219.8±3.0 Wang et al. (2011) 地苏嘎 不含矿石英闪长玢岩 LA-ICPMS 203.3±0.54 刘学龙等(2014) 地苏嘎 含矿石英闪长玢岩 LA-ICPMS 217.25±0.89 刘学龙等(2014) 地苏嘎 含矿石英闪长玢岩 LA-ICPMS 208.5±1.0 刘学龙等(2014) 欠虽 石英闪长玢岩 LA-ICPMS 217.1±1.5 任江波等(2011) -
[1] Cao, D.H., Wang, A.J., Huang, Y.F., et al., 2009.SHRIMP Geochronology and Hf Isotope Composition of Zircons from Xuejiping Porphyry Copper Deposit, Yunnan Province.Acta Geologica Sinica, 83(10):1430-1435 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=eef5b10f3b93695025f4242123a49778&encoded=0&v=paper_preview&mkt=zh-cn [2] Cao, K., Xu, J.F., Chen, J.L., et al., 2016.Double-Layer Structure of the Crust beneath the Zhongdian Arc, SW China:U-Pb Geochronology and Hf Isotope Evidence.Journal of Asian Earth Sciences, 115:455-467.https://doi.org/10.1016/J.Jseaes.2015.10.024 doi: 10.1016/j.jseaes.2015.10.024 [3] Chen, J.L., Xu, J.F., Ren, J.B., et al., 2014.Geochronology and Geochemical Characteristics of Late Triassic Porphyritic Rocks from the Zhongdian Arc, Eastern Tibet, andTheir Tectonic and Metallogenic Implications.Gondwana Research, 26(2):492-504. https://doi.org/10.1016/j.gr.2013.07.022 [4] Chen, J.L., Xu, J.F., Wang, B.D., et al., 2010.Origin of Cenozoic Alkaline Potassic Volcanic Rocks at Konglongxiang, Lhasa Terrane, Tibetan Plateau:Products of Partial Melting of a Mafic Lower-Crustal Source? Chemical Geology, 273(3-4):286-299. https://doi.org/10.1016/j.chemgeo.2010.03.003 [5] Chen, L., Xu, J.F., Chen, J.L., et al., 2013.The Geochemical Characteristics of Late-Triassic Volcanic Rocks from Wengshui in Zhongdian Area, Yunnan and Tectonic Significant.Acta Petrologica Sinica, 29(4):1156-1166 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201304005 [6] Chen, Y., 2016. Geological and Geochemical Characteristics and Metallogenic Charateristics of the A'Re Mass in Shangri-La County, Yunnan Province (Dissertation). Chengdu University of Technology, Sichuan (in Chinese with English abstract). [7] Defant, M.J., Drummond, M.S., 1990.Derivation of some Modern Arc Magmas by Melting of Young Subducted Lithosphere.Nature, 347:662-665. https://doi.org/10.1038/347662a0 [8] Deng, J. F., Zhao, H. L., Mo, X. X., et al., 1996. Root-Column Structure of Continental in China: The Key to Continental Dynamics. Geological Publishing House, Beijing (in Chinese). [9] Dong, Y., 2013. Geochronology and Geochemistry of A'Re Porphyry in Shangri-La, Northwest Yunnan: Petrogenesis and Implications(Dissertation). Chengdu University of Technology, Sichuan (in Chinese with English abstract). [10] Dong, Y., Liu, X.F., Deng, J.H., et al., 2012.Genesis and Metallogenic Significance of the Indosinian Intermediate-Acidic Intrusive Rocks in the West Porphyry Belt, Zhongdian Island Arc, Yunnan.Geology in China, 39(4):887-899 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201204005.htm [11] Eric, A.K.M., 1994.Naming Materials in the Magma/Igneous Rock System.Earth-Science Reviews, 37(3-4):215-224. doi: 10.1016/0012-8252(94)90029-9 [12] Hou, Z.Q., Qu, X.M., Zhou, J.R., et al., 2001.Collision-Orogenic Processes of the Yidun Arc in the Sanjiang Region:Record of Granites.Acta Geologica Sinica, 75(4):484-497 (in Chinese with English abstract). http://www.researchgate.net/publication/279562631_Collision-Orogenic_processes_of_the_Yidun_Arc_in_the_Sanjiang_Region_Record_of_granites [13] Hou, Z.Q., Yang, Y.Q., Qu, X.M., et al., 2004.Tectonic Evolution and Mineralization Systems of the Yidun Arc Orogen in Sanjiang Region, China. Acta Geologica Sinica, 78(1):109-120 (in Chinese with English abstract). http://www.researchgate.net/publication/281547368_Tectonic_evolution_and_mineralization_systems_of_the_Yidun_Arc_Orogen_in_Sanjiang_Region_China [14] Huang, X.X., Xu, J.F., Chen, J.L., et al., 2012.Geochronology, Geochemistry and Petrogenesis of Two Periods of Intermediate-Acid Intrusive Rocks from Hongshan Area in Zhongdian Arc.Acta Petrologica Sinica, 28(5):1493-1506 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201205012 [15] Jiang, W.T., Li, W.C., Liu, X.L., 2014.Geochemical Characteristics of Lannitang Porphyry Deposit in Porphyry Belt of Geza Island Arc, Southwest China.Mineral Deposits, 33(S1):205-206 (in Chinese). [16] Lai, A.Q., Li, W.C., Liu, X.L., et al., 2016.Zircon U-Pb Dating, Geochemical Characteristics of Songnuo Quartz Monzonite Porphyries in the Geza Arc, Yunnan Province, and Their Geological Significance.Geological Review, 62(4):955-969 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201604014.htm [17] Leng, C.B., Huang, Q.Y., Zhang, X.C., et al., 2014.Petrogenesis of the Late Triassic Volcanic Rocks in the Southern Yidun Arc, SW China:Constraints from the Geochronology, Geochemistry, and Sr-Nd-Pb-Hf Isotopes.Lithos, 190-191:363-382. https://doi.org/10.1016/j.lithos.2013.12.018 [18] Leng, C.B., Zhang, X.C., Hu, R.Z., et al., 2012.Zircon U-Pb and Molybdenite Re-Os Geochronology and Sr-Nd-Pb-Hf Isotopic Constraints on the Genesis of the Xuejiping Porphyry Copper Deposit in Zhongdian, Northwest Yunnan, China.Journal of Asian Earth Sciences, 60:31-48. https://doi.org/10.1016/j.jseaes.2012.07.019 [19] Leng, C.B., Zhang, X.C., Wang, S.X., et al., 2007.Geochemical Characteristics of Porphyry Copper Deposits in the Zhongdian Area, Yunnan as Exemplified by the Xuejiping and Pulang Porphyry Copper Deposits.Acta Mineralogica Sinica, 27(3-4):414-422 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB2007Z1027.htm [20] Leng, C.B., Zhang, X.C., Wang, S.X., et al., 2008.Shrimp Zircon U-Pb Dating of the Songnuo Ore-Hosted Porphyry, Zhongdian, Northwest Yunnan, China and Its Geological Implication.Geotectonica et Metallogenia, 32(1):124-130 (in Chinese with English abstact). doi: 10.1007/s11430-008-0067-7 [21] Leng, Q.F., Tang, J.X., Zheng, W.B., et al., 2016.Geochronology, Geochemistry and Zircon Hf Isotopic Compositions of the Ore-Bearing Porphyry in the Lakang'e Porphyry Cu-Mo Deposit, Tibet.Earth Science, 41(6):999-1015 (in Chinese with English abstract).https://doi.org/10.3799/dqkx.2016.083 [22] Li, S.C., Zhang, L.Y., Li, P.C., et al., 2017.Discovery and Tectonic Implications of Early Triassic O-Type Adakite in Middle of Great Xing'an Range.Earth Science, 42(12):2117-2128 (in Chinese with English abstract).https://doi.org/10.3799/dqkx.2017.136 http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201712002.htm [23] Lin, Q.C., Xia, B., Zhang, Y.Q., 2006.Zircon SHRIMP U-Pb Dating of the Syn-Collisional Xuejiping Quartz Diorite Porphyrite in Zhongdian, Yunnan, China, and Its Geological Implications.Geological Bulletin of China, 25(1-2):133-137 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD2006Z1020.htm [24] Liu, X.L., Li, W.C., Zhang, N., et al., 2014.Geochronological, Geochemical Characteristics of Disuga Ore-Forming I-Type Granitic Porphyries in the Geza Arc, Yunnan Province, and Their Geological Significance.Geological Review, 60(1):103-114 (in Chinese with English abstact). http://en.cnki.com.cn/Article_en/CJFDTotal-DZLP201401012.htm [25] Liu, Y., Gao, S., Hu, Z., et al., 2010.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082 [26] Ludwig, K. R., 2003. User's Manual for Isoplot 3. 0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley. [27] Ou, J. J., 2014. Geological Significance and Ore Prospecting for Porphyry Copper Deposit in Lannitang, Shangri-La, Yunnan (Dissertation). Chengdu University of Technology, Sichuan, 67-69 (in Chinese with English abstract). [28] Pan, G.T., Zhu, D.C., Yin, F.G., et al., 2005.The 32nd Session of the international Geological Conference:Focused on the Development of Tethys Geology.Sedimentary Geology and Tethyan Geology, 25(4):99-107, 94 (in Chinese). [29] Pang, Z.S., Du, Y.S., Wang, G.W., et al., 2009.Geological and Geochemical Feature and Petrogenesis of Pulang Complex, Yannan Province, China.Geological Bulletin of China, 28(4):531-537 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=29db2a0333fb1212054f6a503bff3ef1&encoded=0&v=paper_preview&mkt=zh-cn [30] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956 [31] Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey.Contributions to Mineralogy and Petrology, 58(1):63-81.https://doi.org/10.1007/bf00384745 doi: 10.1007/BF00384745 [32] Peng, H. J., 2014. Metallogeny of Hongniu-Hongshan Porphyry-Skarn Copper Deposit and the Porphyry-Skarn Metallogenic System of the Yidun Island Arc, Yunnan, SW China (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract). [33] Peng, T.P., Zhao, G.C., Fan, W.M., et al., 2014.Zircon Geochronology and Hf Isotopes of Mesozoic Intrusive Rocks from the Yidun Terrane, Eastern Tibetan Plateau:Petrogenesis and Their Bearings with Cu Mineralization.Journal of Asian Earth Sciences, 80:18-33. https://doi.org/10.1016/j.jseaes.2013.10.028 [34] Ren, J.B., Xu, J.F., Chen, J.L., et al., 2011.Geochemistry and Petrogenesis of Pulang Porphyries in Sanjiang Region.Acta Petrologica et Mineralogica, 30(4):581-592 (in Chinese with English abstract). http://www.researchgate.net/publication/303158091_Geochemistry_and_petrogenesis_of_Pulang_porphyries_in_Sanjiang_region [35] Rickwood, P.C., 1989.Boundary Lines within Petrologic Diagrams which Use Oxides of Major and Minor Elements.Lithos, 22(4):247-263. https://doi.org/10.1016/0024-4937(89)90028-5 [36] Sha, J.Z., Luo, C.D., Wang, P., 2016.Tectonic Environment and Metallogenic Significance of Magmatite in Xuejiping Copper Mine, Northwest Yunnan.Mineral Resources and Geology, 30(5):703-711 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCYD201605001.htm [37] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345.https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/GSL.SP.1989.042.01.19 [38] Tang, G.J., Wang, Q., Zhao, Z.H., et al., 2009.Geochronology and Geochemistry of the Ore-Bearing Porphyries in the Baogutu Area (Western Junggar):Petrogenesis and Their Implications for Tectonics and Cu-Au Mineralization.Earth Science, 34(1):56-74 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx200901007 [39] Wang, B.Q., Zhou, M.F., Li, J.W., et al., 2011.Late Triassic Porphyritic Intrusions and Associated Volcanic Rocks from the Shangri-La Region, Yidun Terrane, Eastern Tibetan Plateau:Adakitic Magmatism and Porphyry Copper Mineralization.Lithos, 127(1-2):24-38. https://doi.org/10.1016/j.lithos.2011.07.028 [40] Wang, S.X., Zhang, X.C., Leng, C.B., et al., 2008.Zircon SHRIMP U-Pb Dating of the Pulang Porphyry Copper Deposit, Northwestern Yunnan, China:The Ore-Forming Time Limitation and Geological Significance.Acta Petrologica Sinica, 24(10):2313-2321 (in Chinese with English abstract). http://www.oalib.com/paper/1471850 [41] Wu, J., Li, F., Jiang, Y.G., et al., 2011.A Study on Petrological Geochemistry Features of Chundu Porphyry Body, Xianggelila, Yunnan Province, China.Acta Mineralogica Sinica, 31(3):550-559 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KWXB201103034.htm [42] Xiong, L., Shi, W.J., Li, H., et al., 2017.Geochemistry, Sr-Nd-Hf Isotopes and Petrogenesis of Mid-Late Triassic Baizhangzi Granitic Intrusive Rocks in Eastern Hebei-Western Liaoning Province.Earth Science, 42(2):207-222 (in Chinese with English abstract).https://doi.org/10.3799/dqkx.2017.016 [43] Yang, F., Zou, G.F., Wu, J., et al., 2011.Ages and Geological Significance of the Porphyries in the Chundu Copper Mining Area in Zhongdian, Yunnan Province.Geotectonica et Metallogenia, 35(2):307-314 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dgyk201102017.htm [44] Yang, X. T., 2012. Geological Characteristics and Genesis Discusstion of Chundu Porphyry Cu Deposit, Zhongdian, Yunnan Province (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [45] Yang, Y.Q., Hou, Z.Q., Huang, D.H., et al., 2002.Collision Orogenic Process and Magmatic Metallogenic System in Zhongdian Arc.Acta Geosicientia Sinica, 23(1):17-24 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB200201003.htm [46] Zeng, P.S., Li, W.C., Wang, H.P., et al., 2006.The Indosinian Pulang Superlarge Porphyry Copper Deposit in Yunnan, China:Petrology and Chronology.Acta Petrologica Sinica, 22(4):989-1000 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200604022.htm [47] Zhang, X.C., Leng, C.B., Yang, C.Z., et al., 2009.SHRIMP Geochronology and Geological Significance of Chundu Copper Mining Area in Zhongdian, Yunnan Province.Acta Mineralogica Sinica, 29(S1):359-360 (in Chinese). http://www.researchgate.net/publication/281307222_Geochronology_study_of_copper-mineralized_Chundu_porphyry_intrusion_Zhongdian_SW_Yunnan_Province_China_SIMS_U-Pb_zircon_age_and_its_geological_significance [48] Zhao, Z.D., Mo, X.X., Dilek, Y., et al., 2009.Geochemical and Sr-Nd-Pb-O Isotopic Compositions of the Post-Collisional Ultrapotassic Magmatism in SW Tibet:Petrogenesis and Implications for India Intra-Continental Subduction beneath Southern Tibet.Lithos, 113(1-2):190-212. https://doi.org/10.1016/j.lithos.2009.02.004 [49] Zhao, Z.H., 1985.Computing Method for Some Commonly Used REE Geochemistry Parameters and Geochemical Significance.Geology-Geochemistry, 13(S1):11-14 (in Chinese). [50] Zou, G.F., Li, B., Xu, G.R., et al., 2012.Chronology and Geological Implications of Porphyries and Porphyry Copper Deposits in Chundu Area, Northwestern Yunnan.Mineral Deposits, 31(S1):643-644 (in Chinese). [51] 曹殿华, 王安建, 黄玉凤, 等, 2009.中甸弧雪鸡坪斑岩铜矿含矿斑岩锆石SHRIMP U-Pb年代学及Hf同位素组成.地质学报, 83(10):1430-1435. doi: 10.3321/j.issn:0001-5717.2009.10.007 [52] 陈玲, 许继峰, 陈建林, 等, 2013.云南中甸地区翁水晚三叠世火山岩地球化学特征及其构造意义.岩石学报, 29(4):1156-1166. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=YSXB201304005&dbname=CJFD&dbcode=CJFQ [53] 陈阳, 2016. 云南香格里县拉阿热岩体地质地球化学特征及成矿性分析(硕士学位论文). 四川: 成都理工大学. [54] 邓晋福, 赵海玲, 莫宣学, 等, 1996.大陆根柱构造——大陆动力学的钥匙.北京:地质出版社. [55] 董毅, 2013. 云南香格里拉阿热岩体年代学与地球化学(硕士论文). 四川: 成都理工大学. http://cdmd.cnki.com.cn/Article/CDMD-10616-1013288834.htm [56] 董毅, 刘显凡, 邓江红, 等, 2012.中甸弧西斑岩带印支期中酸性侵入岩成因与成矿意义.中国地质, 39(4):887-899. doi: 10.3969/j.issn.1000-3657.2012.04.004 [57] 侯增谦, 曲晓明, 周继荣, 等, 2001.三江地区义敦岛弧碰撞造山过程:花岗岩记录.地质学报, 75(4):484-497. doi: 10.3321/j.issn:0001-5717.2001.04.008 [58] 侯增谦, 杨岳清, 曲晓明, 等, 2004.三江地区义敦岛弧造山带演化和成矿系统.地质学报, 78(1):109-120. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200401013 [59] 黄肖潇, 许继峰, 陈建林, 等, 2012.中甸岛弧红山地区两期中酸性侵入岩的年代学、地球化学特征及其成因.岩石学报, 28(5):1493-1506. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201205012 [60] 姜文涛, 李文昌, 刘学龙, 2014.西南格咱岛弧斑岩带烂泥塘斑岩铜矿床岩石地球化学特征.矿床地质, 33(增刊):205-206. http://d.old.wanfangdata.com.cn/Conference/8450593 [61] 赖安琦, 李文昌, 刘学龙, 等, 2016.云南格咱岛弧松诺石英二长斑岩锆石U-Pb年龄、地球化学特征及地质意义.地质论评, 62(4):955-969. http://d.old.wanfangdata.com.cn/Periodical/dzlp201604013 [62] 冷成彪, 张兴春, 王守旭, 等, 2007.云南中甸地区两个斑岩铜矿容矿斑岩的地球化学特征——以雪鸡坪和普朗斑岩铜矿床为例.矿物学报, 27(3-4):414-422. http://d.wanfangdata.com.cn/Periodical/kwxb200703028 [63] 冷秋锋, 唐菊兴, 郑文宝, 等, 2016.西藏拉抗俄斑岩Cu-Mo矿床含矿斑岩地球化学、锆石U-Pb年代学及Hf同位素组成.地球科学, 41(6):999-1015.https://doi.org/10.3799/dqkx.2016.083 http://earth-science.net/WebPage/Article.aspx?id=3312 [64] 李世超, 张凌宇, 李鹏川, 等, 2017.大兴安岭中段早三叠世O型埃达克岩的发现及其大地构造意义.地球科学, 42(12):2117-2128.https://doi.org/10.3799/dqkx.2017.136 http://earth-science.net/WebPage/Article.aspx?id=3709 [65] 林清茶, 夏斌, 张玉泉, 2006.云南中甸地区雪鸡坪同碰撞石英闪长玢岩锆石SHRIMP U-Pb定年及其意义.地质通报, 25(1-2):133-137. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200601020 [66] 欧剑杰, 2014. 云南香格里拉烂泥塘斑岩型铜矿床地质特征及找矿方向(硕士学位论文). 四川: 成都理工大学. http://cdmd.cnki.com.cn/article/cdmd-10616-1015532262.htm [67] 潘桂棠, 朱弟成, 尹福光, 等, 2005.第32届国际地质大会聚焦特提斯地质研究进展.沉积与特提斯地质, 25(4):99-107, 94. doi: 10.3969/j.issn.1009-3850.2005.04.017 [68] 庞振山, 杜杨松, 王功文, 等, 2009.云南普朗复式岩体地质地球化学特征及成因.地质通报, 28(4):531-537. doi: 10.3969/j.issn.1671-2552.2009.04.015 [69] 彭惠娟, 2014. 云南中甸红牛-红山斑岩-矽卡岩型铜矿床成矿过程及义敦岛弧斑岩-矽卡岩成矿系统研究(博士学位论文). 北京: 中国地质科学院. [70] 任江波, 许继峰, 陈建林, 等, 2011."三江"地区中甸弧普朗成矿斑岩地球化学特征及其成因.岩石矿物学杂志, 30(4):581-592. doi: 10.3969/j.issn.1000-6524.2011.04.003 [71] 沙建泽, 罗朝德, 王朋, 2016.滇西北雪鸡坪铜矿区岩浆岩大地构造环境及成矿意义.矿产与地质, 30(5):703-711. doi: 10.3969/j.issn.1001-5663.2016.05.001 [72] 唐功建, 王强, 赵振华, 等, 2009.西准噶尔包古图成矿斑岩年代学与地球化学:岩石成因与构造、铜金成矿意义.地球科学, 34(1):56-74. doi: 10.3321/j.issn:1000-2383.2009.01.007 [73] 王守旭, 张兴春, 冷成彪, 等, 2008.滇西北普朗斑岩铜矿锆石离子探针U-Pb年龄:成矿时限及地质意义.岩石学报, 24(10):2313-2321. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200810012 [74] 吴静, 李峰, 姜永果, 等, 2011.云南香格里拉春都斑岩体岩石地球化学特征研究.矿物学报, 31(3):550-559. http://d.old.wanfangdata.com.cn/Periodical/kwxb201103033 [75] 熊乐, 石文杰, 李欢, 等, 2017.冀东-辽西中-晚三叠世柏杖子花岗质侵入岩地球化学、Sr-Nd-Hf同位素特征及岩石成因.地球科学, 42(2):207-222.https://doi.org/10.3799/dqkx.2017.016 http://earth-science.net/WebPage/Article.aspx?id=3431 [76] 杨帆, 邹国富, 吴静, 等, 2011.中甸春都铜矿区岩体成岩时代及地质意义.大地构造与成矿学, 35(2):307-314. doi: 10.3969/j.issn.1001-1552.2011.02.016 [77] 杨岳清, 侯增谦, 黄典豪, 等, 2002.中甸弧碰撞造山作用和岩浆成矿系统.地球学报, 23(1):17-24. doi: 10.3321/j.issn:1006-3021.2002.01.004 [78] 杨宪涛, 2012. 云南中甸春都斑岩铜矿床地质特征及矿床成因讨论(硕士学位论文). 北京: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-11415-1012364689.htm [79] 曾普胜, 李文昌, 王海平, 等, 2006.云南普朗印支期超大型斑岩铜矿床:岩石学及年代学特征.岩石学报, 22(4):989-1000. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200604022 [80] 张兴春, 冷成彪, 杨朝志, 等, 2009.滇西北中甸春都斑岩铜矿含矿斑岩的锆石SIMS U-Pb年龄及地质意义.矿物学报, 29(增刊):359-360. http://d.old.wanfangdata.com.cn/Conference/7298293 [81] 赵振华, 1985.某些常用稀土元素地球化学参数的计算方法及其地球化学意义.地质地球化学, 13(S1):11-14. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DZDQ1985S1003&dbname=CJFD&dbcode=CJFQ [82] 邹国富, 李波, 徐国端, 等, 2012.滇西北春都斑岩铜矿床侵入岩成岩时代及地质意义.矿床地质, 31(增刊):643-644. http://d.old.wanfangdata.com.cn/Conference/7864994