Genesis and Geological Significance of Late Paleozoic Mantle-Derived Magmatism in Qimantag, East Kunlun: A Case Study of Intrusion in Yingzhuagou
-
摘要: 幔源岩浆活动的成因研究,对约束区域构造演化历史具有重要意义.东昆仑祁漫塔格鹰爪沟镁铁-超镁铁质层状岩体由橄榄辉长苏长岩、含长橄榄二辉岩及橄榄二辉岩组成.获得橄榄辉长苏长岩的LA-ICP-MS锆石U-Pb年龄为263±4 Ma,指示岩体形成于中二叠世晚期.岩石地球化学特征显示,鹰爪沟岩体具有低SiO2、高MgO、FeOt含量,富集LREE、LILE,亏损HREE以及Th、U、Nb、Ta、Ti等不相容元素等特征.全岩εNd(t)=0.73~0.92,锆石εHf(t)=8.33~13.50.综合区域地质背景资料,认为其形成于古特提斯洋俯冲作用下的活动大陆边缘裂谷,源自于受软流圈熔体和俯冲流体交代的岩石圈地幔.结合同期具有壳幔混源特征的花岗岩资料,认为东昆仑地区在中二叠世已有幔源岩浆底侵活动,主要形成于古特提斯洋俯冲体制下局部的伸展背景.Abstract: The study of the origin of mantle-derived magmatism is of great significance to the tectonic evolution history. Located in the Yingzhuagou area of Qimantag, East Kunlun, the mafic-ultramafic layered intrusion consists of olivine gabbro-norite, feldspar-olivine websterite and olivine websterite.The LA-ICP-MS zircon U-Pb dating results suggest that the olivine gabbro-norite intruded at 263±4 Ma, belonging to late Middle Permian. All the rocks are characterized by low SiO2, high MgO and FeOt, enrichment of LREE and LILE, depletion of HREE and incompatible elements (e.g.Th, U, Nb, Ta, Ti). εNd(t)=0.73-0.92, εHf(t)=8.33-13.50. Based on the regional geological background, it is suggested that the rocks were formed in an active continental margin rift setting with the subduction of Paleo-Tethys Ocean. The magma came from the lithospheric mantle metasomatized by subduction fluid and asthenosphere melt. Combining the data of granite that originated from mixing of crustal and mantle materials in the same period, it is concluded that underplating of mantle-derived magmas should have started before Middle Permian in East Kunlun area and should have been controlled by the regional extensional setting in the subduction of Paleo-Tethys Ocean.
-
图 7 稀土元素球粒陨石标准化配分模式图(a)和微量元素原始地幔标准化蛛网图(b)
Fig. 7. Chondrite-normalized REE patterns (a) and primitive mantle-normalized spider plots of trace elements (b) of samples
表 1 锆石U-Pb同位素分析结果
Table 1. Zircon U-Pb isotopic analysis compositions
编号 同位素比值 年龄(Ma) Th/U 含量(10-6) 谐和度 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ U Th Pb 038D301 0.050 6 0.002 9 0.287 6 0.016 9 0.041 3 0.001 3 0.012 7 0.000 3 221.0 125.77 256.7 13.33 260.7 8.01 254.3 6.26 2.56 276.50 706.63 78.52 0.98 039D302 0.052 5 0.004 6 0.301 1 0.026 4 0.041 6 0.001 4 0.012 6 0.000 4 308.0 187.02 267.3 20.64 262.8 8.78 253.0 7.47 2.24 151.68 340.28 45.33 1.02 040D303 0.050 9 0.003 3 0.294 4 0.019 4 0.042 0 0.001 3 0.012 4 0.000 3 236.4 141.78 262.0 15.23 265.0 8.30 248.5 6.42 2.47 223.37 551.27 73.69 0.99 041D304 0.060 4 0.007 6 0.325 0 0.040 8 0.039 0 0.001 5 0.011 8 0.000 5 619.5 250.81 285.8 31.23 246.8 9.07 237.1 10.39 1.53 60.95 93.11 20.76 1.16 042D305 0.051 9 0.004 0 0.298 2 0.023 1 0.041 7 0.001 4 0.011 6 0.000 4 278.8 165.29 2 650.0 18.04 263.6 8.39 233.2 6.97 1.73 181.41 314.47 42.20 1.01 046D306 0.052 1 0.005 2 0.295 3 0.029 4 0.041 2 0.001 4 0.010 9 0.000 4 289.0 211.17 262.7 23.02 260.0 8.63 219.7 8.46 1.21 130.11 157.66 28.11 1.01 047D307 0.050 4 0.004 0 0.291 1 0.023 2 0.041 9 0.001 4 0.012 3 0.000 4 212.4 172.70 259.4 18.25 264.8 8.49 246.9 7.38 1.64 180.75 296.77 42.22 0.98 048D308 0.057 7 0.009 9 0.333 8 0.056 7 0.042 0 0.001 7 0.014 0 0.000 7 517.3 336.77 292.4 43.14 265.2 10.32 249.0 13.91 1.39 53.79 74.79 12.33 1.10 049D309 0.048 6 0.006 8 0.283 5 0.039 3 0.042 3 0.001 5 0.010 6 0.000 5 129.2 297.43 253.4 31.07 267.2 9.54 213.7 9.76 1.38 73.13 100.83 16.37 0.95 050D310 0.051 9 0.006 3 0.300 3 0.036 1 0.042 0 0.001 5 0.011 9 0.000 5 279.4 254.23 266.7 28.18 265.4 9.51 239.6 9.31 1.62 101.01 163.67 34.96 1.00 052D311 0.072 3 0.006 4 0.422 0 0.037 1 0.042 4 0.001 5 0.013 7 0.000 5 994.5 169.74 357.5 26.52 267.4 9.38 274.6 10.21 1.42 124.02 176.56 49.94 1.34 053D312 0.052 9 0.003 5 0.303 6 0.020 6 0.041 7 0.001 3 0.011 7 0.000 3 322.4 143.75 269.2 16.06 263.3 8.31 235.9 6.47 2.18 248.02 541.31 73.41 1.02 054D313 0.052 5 0.003 8 0.299 5 0.022 2 0.041 4 0.001 4 0.012 0 0.000 3 306.3 157.63 266.0 17.35 261.6 8.36 241.0 6.71 2.19 186.15 408.11 59.27 1.02 055D314 0.049 8 0.004 7 0.279 5 0.026 6 0.040 8 0.001 4 0.012 5 0.000 4 183.9 206.36 250.2 21.10 257.6 8.40 251.3 8.52 1.27 136.08 172.55 37.71 0.97 056D315 0.053 3 0.004 2 0.302 8 0.024 0 0.041 3 0.001 4 0.012 0 0.000 4 340.8 167.74 268.6 18.69 260.6 8.39 240.2 7.43 1.62 167.28 271.54 47.81 1.03 060D316 0.051 9 0.007 0 0.296 7 0.040 0 0.041 5 0.001 6 0.013 0 0.000 6 282.7 283.27 263.8 31.29 261.9 9.65 260.0 11.00 1.54 94.21 144.85 35.62 1.01 061D317 0.052 5 0.006 2 0.304 1 0.035 6 0.042 0 0.001 5 0.013 9 0.000 6 308.7 247.61 269.6 27.72 265.3 9.51 278.1 11.00 1.36 119.52 162.32 42.03 1.02 062D318 0.047 9 0.007 3 0.271 2 0.041 1 0.041 1 0.001 5 0.012 2 0.000 5 95.0 326.63 243.6 32.86 259.4 9.55 244.1 10.68 1.39 68.09 94.63 22.17 0.94 063D319 0.051 7 0.012 3 0.291 0 0.068 6 0.040 9 0.001 8 0.013 9 0.000 8 271.1 468.03 259.4 53.95 258.3 10.94 279.6 15.78 1.30 51.22 66.40 21.86 1.00 064D320 0.051 7 0.004 9 0.295 3 0.028 2 0.041 4 0.001 4 0.012 6 0.000 5 273.9 203.58 262.7 22.07 261.7 8.74 253.9 8.95 1.44 119.14 172.01 36.33 1.00 066D321 0.050 5 0.004 0 0.292 2 0.023 2 0.042 0 0.001 4 0.014 1 0.000 5 217.9 171.81 260.3 18.20 265.2 8.48 283.3 10.00 0.78 183.97 144.03 47.76 0.98 067D322 0.053 7 0.005 1 0.307 1 0.029 5 0.041 5 0.001 4 0.011 9 0.000 5 356.5 203.16 271.9 22.92 262.4 8.80 238.3 9.22 1.30 138.81 179.86 46.95 1.04 068D323 0.051 6 0.004 8 0.303 0 0.028 4 0.042 6 0.001 5 0.013 0 0.000 4 268.3 200.40 268.7 22.11 269.0 9.01 260.5 8.70 1.55 134.38 208.22 39.67 1.00 069D324 0.053 1 0.004 5 0.304 2 0.026 0 0.041 6 0.001 4 0.012 6 0.000 4 334.0 181.65 269.7 20.23 262.6 8.68 253.7 7.79 1.83 176.00 322.07 52.42 1.03 070D325 0.054 2 0.003 9 0.305 5 0.022 3 0.040 9 0.001 3 0.011 6 0.000 4 377.8 153.78 270.7 17.34 258.7 8.21 233.3 6.96 1.66 223.83 371.44 62.79 1.05 表 2 锆石Hf同位素分析结果
Table 2. Zircon Hf isotopic analysis compositions
样品编号 t(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf ±2σ Hfi εHf(t) ±1σ TDM(Ga) ±1σ fs Hf-04-1 260.7 0.027 993 0.001 023 0.282 960 0.000 021 1 0.282 955 457 12.217 0.738 0.414 0.030 -0.969 Hf-04-2 262.8 0.024 318 0.000 881 0.282 892 0.000 023 4 0.282 887 649 9.864 0.819 0.509 0.033 -0.973 Hf-04-3 265.0 0.036 071 0.001 292 0.282 977 0.000 022 2 0.282 970 218 12.834 0.778 0.394 0.032 -0.961 Hf-04-4 246.8 0.013 888 0.000 532 0.282 870 0.000 024 0 0.282 867 210 8.788 0.839 0.536 0.034 -0.984 Hf-04-5 263.6 0.038 423 0.001 373 0.282 970 0.000 024 0 0.282 963 421 12.563 0.841 0.404 0.035 -0.959 Hf-04-6 260.0 0.012 570 0.000 460 0.282 884 0.000 022 6 0.282 881 728 9.593 0.790 0.515 0.032 -0.986 Hf-04-7 264.8 0.048 623 0.001 666 0.283 026 0.000 026 4 0.283 018 076 14.523 0.924 0.326 0.038 -0.950 Hf-04-8 265.2 0.009 791 0.000 366 0.282 845 0.000 022 5 0.282 842 703 8.327 0.786 0.569 0.031 -0.989 Hf-04-9 267.2 0.011 567 0.000 438 0.282 904 0.000 023 9 0.282 902 303 10.480 0.837 0.486 0.033 -0.987 Hf-04-10 265.4 0.023 397 0.000 861 0.282 940 0.000 028 5 0.282 935 303 11.608 0.996 0.442 0.040 -0.974 Hf-04-11 267.4 0.032 006 0.001 150 0.282 922 0.000 028 1 0.282 916 247 10.977 0.982 0.470 0.040 -0.965 Hf-04-12 263.3 0.027 358 0.000 941 0.282 926 0.000 026 4 0.282 921 634 11.078 0.923 0.461 0.037 -0.972 Hf-04-13 261.6 0.054 075 0.001 810 0.283 041 0.000 026 1 0.283 032 054 14.947 0.914 0.306 0.038 -0.945 Hf-04-14 257.6 0.013 925 0.000 501 0.282 897 0.000 022 8 0.282 894 281 9.984 0.799 0.498 0.032 -0.985 Hf-04-15 260.6 0.021 626 0.000 790 0.282 952 0.000 025 9 0.282 947 842 11.946 0.907 0.424 0.037 -0.976 Hf-04-16 261.9 0.015 951 0.000 600 0.282 920 0.000 023 5 0.282 917 002 10.883 0.823 0.466 0.033 -0.982 Hf-04-17 265.3 0.019 917 0.000 751 0.282 930 0.000 029 8 0.282 926 166 11.282 1.042 0.454 0.042 -0.977 Hf-04-18 259.4 0.024 285 0.000 906 0.282 905 0.000 023 3 0.282 900 871 10.257 0.817 0.491 0.033 -0.973 Hf-04-19 258.3 0.020 660 0.000 789 0.282 897 0.000 025 7 0.282 893 322 9.966 0.901 0.501 0.036 -0.976 Hf-04-20 261.7 0.020 204 0.000 769 0.282 867 0.000 025 3 0.282 863 003 8.968 0.886 0.543 0.036 -0.977 Hf-04-21 265.2 0.015 121 0.000 563 0.282 886 0.000 023 2 0.282 883 209 9.760 0.813 0.513 0.033 -0.983 Hf-04-22 262.4 0.028 083 0.001 034 0.282 955 0.000 022 9 0.282 949 531 12.045 0.803 0.422 0.033 -0.969 Hf-04-23 269.0 0.041 886 0.001 530 0.282 994 0.000 023 7 0.282 986 648 13.504 0.829 0.371 0.034 -0.954 Hf-04-24 262.6 0.035 270 0.001 289 0.282 982 0.000 026 6 0.282 975 672 12.974 0.930 0.386 0.038 -0.961 Hf-04-25 258.7 0.011 529 0.000 458 0.282 935 0.000 024 0 0.282 932 690 11.368 0.841 0.443 0.034 -0.986 表 3 样品全岩主量(%)及微量元素(10-6)分析结果
Table 3. Major element (%) and trace element (10-6) analysis data
样品 橄榄辉长苏长岩 含长橄榄二辉岩 橄榄二辉岩 PM04-1-1H PM04-2-1H PM04-4-1H PM04-7-1H PM04-9-1H PM04-3-1H PM04-10-1H PM04-5-1H PM04-6-1H PM04-8-1H SiO2 42.52 43.35 45.52 42.87 43.63 41.96 41.40 41.40 41.20 39.97 Al2O3 9.36 9.95 11.78 8.96 11.04 6.74 6.78 6.23 7.14 5.77 Fe2O3 2.68 2.43 1.23 3.05 2.26 3.46 3.89 2.66 3.25 3.53 FeO 9.06 8.98 9.42 8.22 8.45 8.90 9.45 10.00 8.95 8.65 CaO 4.57 4.71 5.75 4.84 5.26 3.23 3.42 3.71 3.51 2.98 MgO 23.92 23.32 20.44 24.71 22.35 28.18 27.62 28.75 28.02 30.41 K2O 0.44 0.45 0.47 0.29 0.36 0.41 0.38 0.35 0.32 0.39 Na2O 1.67 1.92 2.14 1.55 1.99 1.08 1.24 0.89 1.19 0.73 TiO2 0.63 0.63 0.71 0.60 0.62 0.47 0.61 0.62 0.66 0.28 P2O5 0.13 0.14 0.13 0.09 0.12 0.09 0.14 0.10 0.07 0.07 MnO 0.19 0.20 0.20 0.20 0.18 0.20 0.21 0.21 0.20 0.19 H2O+ 3.57 2.96 1.62 3.78 2.88 4.58 3.62 3.16 4.46 5.56 灼失量 4.52 3.59 1.95 4.26 3.45 4.89 4.54 4.66 5.08 6.60 Total 99.69 99.67 99.74 99.64 99.71 99.61 99.68 99.58 99.59 99.57 Mg# 81.39 81.41 80.28 82.54 81.72 83.11 81.73 82.95 83.19 84.36 FeOt 11.47 11.17 10.53 10.96 10.48 12.01 12.95 12.39 11.87 11.83 Fe2O3t 12.75 12.41 11.70 12.18 11.65 13.35 14.39 13.77 13.20 13.14 La 8.52 8.59 8.21 5.27 8.64 6.02 7.34 5.86 4.97 3.49 Ce 19.00 19.10 18.60 12.60 18.50 14.10 16.70 14.50 11.60 8.01 Pr 2.44 2.41 2.43 1.75 2.40 1.80 2.13 2.02 1.52 1.06 Nd 10.20 10.00 10.30 7.96 10.00 7.69 9.16 9.00 6.62 4.40 Sm 2.29 2.37 2.37 2.04 2.37 1.63 2.04 2.25 1.66 1.10 Eu 0.72 0.72 0.80 0.67 0.80 0.52 0.68 0.65 0.58 0.41 Gd 2.02 2.11 2.23 1.92 2.20 1.50 1.99 2.17 1.62 1.00 Tb 0.36 0.35 0.36 0.34 0.38 0.26 0.34 0.36 0.29 0.17 Dy 2.02 1.97 2.06 1.98 2.13 1.54 1.90 2.16 1.66 1.02 Ho 0.40 0.40 0.42 0.39 0.40 0.31 0.37 0.42 0.33 0.20 Er 1.09 1.05 1.16 1.07 1.10 0.86 1.04 1.15 0.91 0.53 Tm 0.16 0.16 0.17 0.16 0.16 0.13 0.16 0.17 0.14 0.08 Yb 1.08 1.06 1.10 1.05 1.06 0.84 0.97 1.10 0.91 0.52 Lu 0.16 0.16 0.17 0.15 0.16 0.12 0.15 0.16 0.14 0.08 Y 10.60 10.10 10.40 9.45 10.20 7.41 9.49 10.60 7.84 4.92 ∑REE 61.06 60.55 60.78 46.80 60.50 44.73 54.46 52.57 40.79 26.99 LREE 43.17 43.19 42.71 30.29 42.71 31.76 38.05 34.28 26.95 18.47 HREE 17.89 17.36 18.07 16.51 17.79 12.97 16.41 18.29 13.84 8.52 LREE/HREE 2.41 2.49 2.36 1.83 2.40 2.45 2.32 1.87 1.95 2.17 LaN/YbN 5.66 5.81 5.35 3.60 5.85 5.14 5.43 3.82 3.92 4.81 Cu 186 102 61.9 59.5 56.5 100 71.8 41.6 119 53.1 Pb 3.34 3.24 4.00 2.40 3.12 2.76 2.77 2.57 2.36 2.47 Zn 80.6 74.6 80.4 82.3 74.8 89.2 86.8 84.8 87.5 87.2 Cr 1 210 1 150 996 1 570 1 080 1 700 1 210 1 640 1 690 1 780 Ni 851 721 501 578 522 826 720 823 827 982 Co 105 99.0 86.0 99.5 89.0 113 117 111 110 120 Li 6.22 4.96 4.36 6.13 4.67 5.10 6.14 4.11 5.94 4.32 Rb 13.6 8.71 7.35 5.13 12.8 7.52 8.19 5.67 5.24 9.84 Cs 0.34 0.29 0.18 0.20 0.36 0.38 0.64 0.22 0.19 1.20 Sr 387 407 497 337 460 281 275 242 284 240 Ba 136 136 198 106 140 113 199 148 92.7 79.5 V 72.2 71.3 79.1 85.3 66.9 62.9 66.6 83.6 82.2 52.3 Sc 11.0 12.1 13.8 12.8 10.8 10.7 11.7 13.7 11.1 9.06 Nb 3.02 2.99 2.72 2.07 2.43 2.62 2.43 2.39 2.31 1.18 Ta 0.28 0.32 0.26 0.24 0.25 0.26 0.26 0.27 0.27 0.12 Zr 71.2 84.1 67.0 51.4 45.3 55.2 67.2 49.7 51.1 27.3 Hf 1.70 1.87 1.63 1.27 1.18 1.38 1.57 1.32 1.26 0.71 Be 1.02 0.93 0.42 0.64 0.70 0.82 0.84 0.59 0.66 0.64 Ga 8.95 9.22 10.8 9.24 9.78 7.81 7.34 7.28 7.95 5.95 Ge 1.05 1.08 1.01 1.18 1.17 1.35 1.22 1.28 1.17 1.02 U 0.18 0.21 0.12 0.15 0.12 0.12 0.23 0.096 0.089 0.034 Th 1.12 1.22 0.90 0.74 1.10 0.90 1.04 0.72 0.70 0.44 注:FeOt、Fe2O3t表示全铁,Mg#=100×(Mg2+/(Mg2++Fet2+),下标N为球粒陨石标准化. 表 4 全岩Sr-Nd同位素分析结果
Table 4. Sr-Nd isotope analysis data
岩性 编号 T(Ma) 87Rb/86Sr 87Sr/86Sr ±2σ (87Sr/86Sr)i 147Sm/144Nd 143Nd/144Nd ±2σ εNd(t) TDM1Nd(Ga) TDM2Nd(Ga) 含长橄榄二辉岩 PM04-3-1 263 0.077 491 0.706 848 0.000 007 0.706 558 0.128 145 0.512 567 0.000 007 0.92 1.04 0.96 橄榄苏长辉长岩 PM04-4-1 263 0.042 822 0.706 523 0.000 005 0.706 363 0.139 107 0.512 576 0.000 007 0.73 1.17 0.97 橄榄二辉岩 PM04-5-1 263 0.067 843 0.706 781 0.000 007 0.706 527 0.151 140 / / / / / -
[1] Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses That do not Report 204Pb.Chemical Geology, 192(1-2):59-79. https://doi.org/10.1016/s0009-2541(02)00195-x [2] Ao, S.J., Xiao, W.J., Han, C.M., et al., 2010.Geochronology and Geochemistry of Early Permian Mafic-Ultramafic Complexes in the Beishan Area, Xinjiang, NW China:Implications for Late Paleozoic Tectonic Evolution of the Southern Altaids.Gondwana Research, 18(2-3):466-478. https://doi.org/10.1016/j.gr.2010.01.004 [3] Baker, J.A., Menzies, M.A., Thirlwall, M.F., et al., 1997.Petrogenesis of Quaternary Intraplate Volcanism, Sana'a, Yemen:Implications for Plume-Lithosphere Interaction and Polybaric Melt Hybridization.Journal of Petrology, 38(10):1359-1390. https://doi.org/10.1093/petroj/38.10.1359 [4] Day, J.M.D., Pearson, D.G., Hulbert, L.J., 2008.Rhenium-Osmium Isotope and Platinum-Group Element Constraints on the Origin and Evolution of the 1.27 Ga Muskox Layered Intrusion.Journal of Petrology, 49(7):1255-1295. https://doi.org/10.1093/petrology/egn024 [5] Deng, Y.F., Song, X.Y., Chen, L.M., et al., 2011.Features of the Mantle Source of the Huangshanxi Ni-Cu Sulfide-Bearing Mafic-Ultramafic Intrusion, Eastern Tianshan.Acta Petrologica Sinica, 27(12):3640-3652(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201112011 [6] DePaolo, D.J., 1981.Trace Element and Isotopic Effects of Combined Wallrock Assimilation and Fractional Crystallization.Earth and Planetary Science Letters, 53(2):189-202. https://doi.org/10.1016/0012-821x(81)90153-9 [7] Feng, C.Y., Wang, S., Li, G.C., et al., 2012.Middle to Late Triassic Granitoids in the Qimantage Area, Qinghai Province, China:Chronology, Geochemistry and Metallogenic Significances.Acta Petrologica Sinica, 28(2):665-678 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201202024 [8] Green, D.H., 1975.Genesis of Archean Peridotitic Magmas and Constraints on Archean Geothermal Gradients and Tectonics.Geology, 3(1):15-18.https://doi.org/10.1130/0091-7613(1975)3<15:goapma>2.0.co; 2 doi: 10.1130/0091-7613(1975)3<15:goapma>2.0.co;2 [9] Hanyu, T., Tatsumi, Y., Nakai, S., et al., 2006.Contribution of Slab Melting and Slab Dehydration to Magmatism in the NE Japan Arc for the Last 25 Myr:Constraints from Geochemistry.Geochemistry, Geophysics, Geosystems, 7(8):1-29. https://doi.org/10.1029/2005gc001220 [10] Hou, K.J., Li, Y.H., Zou, T.R., et al., 2007.Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications.Acta Petrologica Sinica, 23(10):2595-2604 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200710025 [11] Jiang, C.Y., Ling, J.L., Zhou, W., et al., 2015.Petrogenesis of the Xiarihamu Ni-Bearing Layered Mafic-Ultramafic Intrusion, East Kunlun:Implications for Its Extensional Island Arc Environment.Acta Petrologica Sinica, 31(4):1117-1136 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201504019.htm [12] Li, R.B., Pei, X.Z., Li, Z.C., et al., 2012.Geological Characteristics of Late Palaeozoic-Mesozoic Unconformities and Their Response to Some Significant Tectonic Events in Eastern Part of Eastern Kunlun.Earth Science Frontiers, 19(5):244-254 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201205024 [13] Liu, C.D., Mo, X.X., Luo, Z.H., et al., 2003.Pb-Sr-Nd-O Isotope Characteristics of Granitoids in East Kunlun Orogenic Belt.Acta Geoscientica Sinica, 24(6):584-588 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb200306020 [14] Liu, Y.C., Xie, Y.Y., Lin, Y.H., 2000.Magmatic Mixing in Bairiqili Rock Body in Middle Sector of East Kunlun.Qinghai Geology, (1):26-32 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GTJL200001003.htm [15] Liu, Y.C., Ye, Z.F., 1998.A New Cognition on High-Grade Metamorphic Rocks in Jinshuikou Area, Eastern Kunlun.Qinghai Geology, (1):18-26 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GTJL199801002.htm [16] Luo, W.X., Qian, L.L., Li, D.W., et al., 2013.Petrogenesis of the Zhongzaohuo Ultramafic Pyroxenite Pluton, East Kunlun:Constraints from Petrology, Geochemistry and Genetic Mineralogy.Earth Science, 38(6):1214-1228 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201306005 [17] Luo, Z.H., Ke, S., Cao, Y.Q., et al., 2002.Late Indosinian Mantle-Derived Magmatism in the East Kunlun.Geological Bulletin of China, 21(6):292-297 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200206003 [18] MacDonald, R., Rogers, N.W., Fitton, J.G., et al., 2001.Plume-Lithosphere Interactions in the Generation of the Basalts of the Kenya Rift, East Africa.Journal of Petrology, 42(5):877-900. https://doi.org/10.1093/petrology/42.5.877 [19] Meschede, M., 1986.A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram.Chemical Geology, 56(3-4):207-218. https://doi.org/10.1016/0009-2541(86)90004-5 [20] Miyashiro, A., 1975.Classification, Characteristics, and Origin of Ophiolites.The Journal of Geology, 83(2):249-281. https://doi.org/10.1086/628085 [21] Mo, X.X., Luo, Z.H., Deng, J.F., et al., 2007.Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt.Geological Journal of China Universities, 13(3):403-414 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2011AGUFM.T51D2370M [22] Qi, S.S., Deng, J.F., Ye, Z.F., et al., 2013.LA-ICP-MS Zircon U-Pb Dating of Late Devonian Diabase Dike Swarms in Qimantag Area.Geological Bulletin of China, 32(9):1385-1393 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201309007 [23] Roeder, P.L., Emslie, R.F., 1970.Olivine-Liquid Equilibrium.Contributions to Mineralogy and Petrology, 29(4):275-289. https://doi.org/10.1007/bf00371276 [24] Sajona, F.G., Maury, R.C., Pubellier, M., et al., 2000.Magmatic Source Enrichment by Slab-Derived Melts in a Young Post-Collision Setting, Central Mindanao (Philippines).Lithos, 54(3-4):173-206. https://doi.org/10.1016/s0024-4937(00)00019-0 [25] Sun, J., Liu, C.Z., Wu, F.Y., 2012.Effects of Melt Refertilization on the Subcontinental Lithospheric Mantle.Geological Journal of China Universities, 18(1):52-61 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201201005 [26] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [27] Sun, Y., Pei, X.Z., Ding, S.P., et al., 2009.Halagatu Magma Mixing Granite in the East Kunlun Mountains-Evidence from Zircon U-Pb Dating.Acta Geologica Sinica, 83(7):1000-1010 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200907008 [28] Turner, S., Hawkesworth, C., Gallagher, K., et al., 1996.Mantle Plumes, Flood Basalts, and Thermal Models for Melt Generation beneath Continents:Assessment of a Conductive Heating Model and Application to the Paraná.Journal of Geophysical Research:Solid Earth, 101(B5):11503-11518. https://doi.org/10.1029/96jb00430 [29] Uyeda, S., 1982.Subduction Zones:An Introduction to Comparative Subductology.Tectonophysics, 81(3-4):133-159. https://doi.org/10.1016/0040-1951(82)90126-3 [30] Wang, B.Z., Chen, J., Luo, Z.H., et al., 2014.Spatial and Temporal Distribution of Late Permian-Early Jurassic Intrusion Assemblages in Eastern Qimantag, East Kunlun, and Their Tectonic Settings.Acta Petrologica Sinica, 30(11):3213-3228 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201411009 [31] Wang, K., Plank, T., Walker, J.D., et al., 2002.A Mantle Melting Profile across the Basin and Range, SW USA.Journal of Geophysical Research:Solid Earth, 107(B1):ECV 5-1-ECV 5-21. https://doi.org/10.1029/2001jb000209 [32] Wang, Y.J., Shen, Y.C., Lin, G., 2000.Preliminary Research on the Tectonostratigraphy in the Northern Central Kunlun Orogenic Belt.Journal of Stratigraphy, 24(1):55-59 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz200001008 [33] Woodhead, J.D., Hergt, J.M., Davidson, J.P., et al., 2001.Hafnium Isotope Evidence for 'Conservative' Element Mobility during Subduction Zone Processes.Earth and Planetary Science Letters, 192(3):331-346. https://doi.org/10.1016/s0012-821x(01)00453-8 [34] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007.Lu-Hf Isotopic Systematics and Their Applications in Petrology.Acta Petrologica Sinica, 23(2):185-220 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001 [35] Xia, C.L., Ren, E.F., Gao, L., et al., 2011.Analysis of the Geological Features and Tectonic Setting of Volcanic Lava in Elashan Group, Qinghai Rovince.Journal of Qinghai University (Nature Science), 29(6):48-53 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhdxxb-zr201106013 [36] Xiong, F.H., Ma, C.Q., Zhang, J.Y., et al., 2011.The Origin of Mafic Microgranular Enclaves and Their Host Granodiorites from East Kunlun, Northern Qinghai-Tibet Plateau:Implications for Magma Mixing during Subduction of Paleo-Tethyan Lithosphere.Mineralogy and Petrology, 104(3-4):211-224. https://doi.org/10.1007/s00710-011-0187-1 [37] Zhang, A.K., Liu, G.L., Mo, X.X., et al., 2012.Relationship between Tectonic Settings and Metallogenesis of Late Paleozoic-Early Mesozoic Intrusive Rock in Qimantage, Qinghai Province.Northwestern Geology, 45(1):9-19 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBDI201201005.htm [38] Zhang, C.L., Zhou, G., Wang, H.Y., et al., 2010.A Review on Two Types of Mantle Domains of the Permian Large Igneous Province in Tarim and the Western Section of Central Asian Orogenic Belt.Geological Bulletin of China, 29(6):779-794 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201006001 [39] Zhang, D.X., Zeng, X.P., Wei, X.L., et al., 2017.Geochemistry and Tectonic Setting of Late Triassic Volcanics in Elashan Formation in South of Nalingelehe River, East Kunlun.Contributions to Geology and Mineral Resources Research, 32(2):245-253 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzzklc201702011 [40] Zhang, H.F., 2006.Peridotite-Melt Interaction:An Important Mechanism for the Compositional Transformation of Lithospheric Mantle.Earth Science Frontiers, 13(2):65-75 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dxqy200602006.htm [41] Zhang, H.F., Gao, S., Zhong, Z.Q., et al., 2002.Geochemical and Sr-Nd-Pb Isotopic Compositions of Cretaceous Granitoids:Constraints on Tectonic Framework and Crustal Structure of the Dabieshan Ultrahigh-Pressure Metamorphic Belt, China.Chemical Geology, 186(3-4):281-299. https://doi.org/10.1016/s0009-2541(02)00006-2 [42] Zheng, J., Griffin, W.L., O'Reilly, S.Y., et al., 2006.Mineral Chemistry of Peridotites from Paleozoic, Mesozoic and Cenozoic Lithosphere:Constraints on Mantle Evolution beneath Eastern China.Journal of Petrology, 47(11):2233-2256. https://doi.org/10.1093/petrology/egl042 [43] 邓宇峰, 宋谢炎, 陈列锰, 等, 2011.东天山黄山西含铜镍矿镁铁-超镁铁岩体岩浆地幔源区特征研究.岩石学报, 27(12):3640-3652. http://d.old.wanfangdata.com.cn/Conference/7413103 [44] 丰成友, 王松, 李国臣, 等, 2012.青海祁漫塔格中晚三叠世花岗岩:年代学、地球化学及成矿意义.岩石学报, 28(2):665-678. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201202024 [45] 侯可军, 李延河, 邹天人, 等, 2007.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报, 23(10):2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025 [46] 姜常义, 凌锦兰, 周伟, 等, 2015.东昆仑夏日哈木镁铁质-超镁铁质岩体岩石成因与拉张型岛弧背景.岩石学报, 31(4):1117-1136. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201504019 [47] 李瑞保, 裴先治, 李佐臣, 等, 2012.东昆仑东段晚古生代-中生代若干不整合面特征及其对重大构造事件的响应.地学前缘, 19(5):244-254. http://d.wanfangdata.com.cn/Periodical/dxqy201205024 [48] 刘成东, 莫宣学, 罗照华, 等, 2003.东昆仑造山带花岗岩类Pb-Sr-Nd-O同位素特征.地球学报, 24(6):584-588. doi: 10.3321/j.issn:1006-3021.2003.06.020 [49] 刘永成, 解玉月, 林义恒, 2000.东昆仑中段白日其利岩体岩浆混合作用的初步研究.青海地质, (1):26-32. http://www.cnki.com.cn/Article/CJFDTotal-GTJL200001003.htm [50] 刘永成, 叶占福, 1998.对东昆仑金水口地区高级变质岩的新认识.青海地质, (1):18-26. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800141245 [51] 罗文行, 钱莉莉, 李德威, 等, 2013.东昆仑中灶火地区超镁铁质辉石岩的成因.地球科学, 38(6):1214-1228. http://earth-science.net/WebPage/Article.aspx?id=2803 [52] 罗照华, 柯珊, 曹永清, 等, 2002.东昆仑印支晚期幔源岩浆活动.地质通报, 21(6):292-297. doi: 10.3969/j.issn.1671-2552.2002.06.003 [53] 莫宣学, 罗照华, 邓晋福, 等, 2007.东昆仑造山带花岗岩及地壳生长.高校地质学报, 13(3):403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010 [54] 祁生胜, 邓晋福, 叶占福, 等, 2013.青海祁漫塔格地区晚泥盆世辉绿岩墙群LA-ICP-MS锆石U-Pb年龄及其构造意义.地质通报, 32(9):1385-1393. doi: 10.3969/j.issn.1671-2552.2013.09.007 [55] 孙晶, 刘传周, 吴福元, 2012.熔体再富集作用对大陆岩石圈地幔的影响.高校地质学报, 18(1):52-61. doi: 10.3969/j.issn.1006-7493.2012.01.005 [56] 孙雨, 裴先治, 丁仨平, 等, 2009.东昆仑哈拉尕吐岩浆混合花岗岩:来自锆石U-Pb年代学的证据.地质学报, 83(7):1000-1010. doi: 10.3321/j.issn:0001-5717.2009.07.008 [57] 王秉璋, 陈静, 罗照华, 等, 2014.东昆仑祁漫塔格东段晚二叠世-早侏罗世侵入岩岩石组合时空分布、构造环境的讨论.岩石学报, 30(11):3213-3228. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201411009 [58] 王岳军, 沈远超, 林舸, 2000.中昆仑北部地区构造地层学初步研究.地层学杂志, 24(1):55-59. doi: 10.3969/j.issn.0253-4959.2000.01.008 [59] 吴福元, 李献华, 郑永飞, 等, 2007.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001 [60] 夏楚林, 任二峰, 高莉, 等, 2011.青海喀雅克登塔格晚三叠世鄂拉山组火山熔岩地球化学特征及构造环境探析.青海大学学报(自然科学版), 29(6):48-53. doi: 10.3969/j.issn.1006-8996.2011.06.013 [61] 张爱奎, 刘光莲, 莫宣学, 等, 2012.青海祁漫塔格晚古生代-早中生代侵入岩构造背景与成矿关系.西北地质, 45(1):9-19. doi: 10.3969/j.issn.1009-6248.2012.01.003 [62] 张传林, 周刚, 王洪燕, 等, 2010.塔里木和中亚造山带西段二叠纪大火成岩省的两类地幔源区.地质通报, 29(6):779-794. doi: 10.3969/j.issn.1671-2552.2010.06.001 [63] 张得鑫, 曾小平, 魏小林, 等, 2017.东昆仑那陵格勒河南上三叠统鄂拉山组火山岩地球化学特征及构造环境.地质找矿论丛, 32(2):245-253. http://d.old.wanfangdata.com.cn/Periodical/dzzklc201702011 [64] 张宏福, 2006.橄榄岩-熔体的相互作用:岩石圈地幔组成转变的重要方式.地学前缘, 13(2):65-75. doi: 10.3321/j.issn:1005-2321.2006.02.005