Zircon U-Pb Ages and Geochemical Characteristics of Youqiumi Porphyry Pluton in Cimabanshuo Area, Tibet
-
摘要: 西藏次玛班硕地区含矿斑岩体具备斑岩型铜矿成矿有利地质条件,结合本地区野外工作的新认识和新发现,展开该地区成岩成矿地质背景及成因等问题研究.对次玛班硕地区由秋米斑岩体开展了详细的锆石U-Pb测年及岩石地球化学研究,结果表明:花岗闪长斑岩LA-ICP-MS锆石U-Pb年龄为15.2±0.8 Ma~15.2±0.7 Ma,即形成时代为中新世.花岗闪长斑岩具有高硅(SiO2=65.08%~66.85%)、高钾(K2O=3.85%~4.58%)、富碱(K2O+Na2O=7.87%~8.90%)、贫镁(MgO=1.51%~1.84%)、准铝质(A/CNK=0.88~0.95)地球化学特征.稀土元素配分模式右倾,具有弱的铕负异常,(La/Yb)N=36.60~47.43,富集强不相容元素(Rb、Th、U、K)和亏损高场强元素(Nb、Ta、Ce、P、Ti);特殊地,岩石具有典型埃达克岩地球化学特征,即:高Sr(674×10-6~876×10-6)、低Yb(0.560×10-6~0.757×10-6)、低Y(7.97×10-6~9.98×10-6)、高Sr/Y比(73.84~109.98).全岩Sr-Nd同位素组成中(87Sr/86Sr)i=0.707 878、εNd(t)=-8.26,Nd二阶段模式年龄T2DM=1 503 Ma,说明其岩浆源于基性下地壳部分熔融.结合区域的火成岩,认为岩石形成于印度大陆与亚洲大陆后碰撞伸展构造背景.Abstract: The ore-bearing porphyry body has favorable geological conditions for porphyry copper mineralization in Cimabanshuo area, Tibet. Therefore, it is of great significance to study the geological background and genesis of diagenesis and mineralization in this area. In this paper, combined with their new understanding and new discoveries in the field works, the authors carried out a detailed research of zircon U-Pb dating and petrogeochemistry, for Youqiumi pluton in Cimabanshuo area.The results show that the granodiorite-poryphy yields an LA-ICP-MS zircon U-Pb age of 15.2±0.8 Ma to 15.2±0.7 Ma, namely the formation age of Miocene. Chemical analyses show that the granodiorite-poryphy has a characteristic of high SiO2 (65.08%-66.85%), high K2O (3.85%-4.58%), rich K2O+Na2O (7.87%-8.90%), depleted MgO (1.51%-1.84%), meta-aluminum (A/CNK=0.88-0.95). Chondrite-normalized REE distribution pattern diagrams display right-incline and weakly negative Eu anomalies, differentiated obviously (La/Yb)N=36.60-47.43. Enriched strongly in compatible elements such as Rb, Th, U, K and depleted in high field strength elements (HFSEs) such as Nb, Ta, Ce, P, Ti. Specifically, Youqiumi granitic pluton shows typical adakitic signatures:high Sr (674×10-6 to 876×10-6) and low Yb (0.560×10-6 to 0.757×10-6) and low Y (7.97×10-6 to 9.98×10-6), contents with high Sr/Y ratios (73.84-109.98). However, the whole-rock Sr, Nd isotopic compositions of granodiorite-poryphy have initial 87Sr/86Sr ratios and εNd(t) values are 0.707 878 and -8.26 respectively, with ancient Nd two-phase model ages of 1 503 Ma, which indicate that the magma sources may have contributed to partial melting of previous juvenile lower crust.Combined with igneous rocks in the studied area, it is proposed that Youqiumi granitic pluton was formed in post-collisional extension setting of India-Asia contional collision orogenic belt.
-
Key words:
- Tibet /
- Cimabanshuo /
- Youqiumi pluton /
- granodiorite porphyry /
- zircon U-Pb age /
- geochemistry
-
图 1 次玛班硕地区地质简图(a)、大地构造位置(b)及朱诺外围地质图(c)
1.帕那组二段;2.帕那组一段;3.年波组二段;4.年波组一段;5.典中组三段;6.花岗闪长斑岩;7.黑云花岗闪长斑岩;8.黑云花岗闪长岩;9.岩脉;10.断层;11.铜矿化体;12.孔雀石化区;13.铜矿体;14.褐铁矿化蚀变区;15.采样位置;16.朱诺铜矿.Ⅰ.喜马拉雅板块;Ⅱ.雅鲁藏布江缝合带;Ⅲ.日喀则弧前盆地;Ⅵ.冈底斯-念青唐古拉复合岩浆弧;Ⅳ-1.南冈底斯岩浆弧;Ⅳ-2.桑日火山弧;Ⅳ-3.叶巴火山弧;Ⅳ-4.隆格尔-念青唐古拉复合火山岩浆弧;Ⅳ-5.措勤-多瓦复合弧后前陆盆地;Ⅳ-6.则弄火山岩浆弧;Ⅴ.狮泉河-拉果错-阿索-永珠-纳术错-嘉黎-波密弧弧碰撞带;Ⅵ.昂龙岗日-班戈-伯舒拉岭岩浆弧;Ⅶ.班公湖-怒江缝合带;Ⅷ.南羌塘.图b李淼等(2015)
Fig. 1. Geological sketch (a) and tectonic location (b) of Cimabanshuo area, and geological map of Zhunuo outer area (c)
图 5 次玛班硕由秋米斑岩体TAS图(a)、SiO2-K2O图(b)和A/CNK-A/NK图(c)
图a底图据Le Maitre(1989); 图b底图据Peccerillo and Taylor(1976); 图c底图据Maniar and Piccoli(1989)
Fig. 5. TAS (a), SiO2-K2O (b) and A/CNK-A/NK (c) diagrams of the Youqiumi porphyry pluton in Cimabanshuo area
图 7 次玛班硕由秋米斑岩体Sr/Y-Y图(a)、MgO-SiO2图(b)和A/MF-C/MF图(c)
图a底图据Defant and Drummond(1990); 图b底图据Defant et al.(2002); 图c底图据Altherr et al.(2000)
Fig. 7. Sr/Y-Y (a), MgO-SiO2 (b) and A/MF-C/MF (c) diagrams of the Youqiumi porphyry pluton in Cimabanshuo area
图 8 次玛班硕由秋米斑岩体R1-R2构造判别图
Fig. 8. R1-R2 tectonic diagram of the Youqiumi porphyry pluton in Cimabanshuo area
表 1 样品采集位置与岩性
Table 1. Sampling position and lithology
序号 采样地点 样品号 北纬 东经 岩石名称 1 由秋米北 D1754/3 29°36′03″ 87°22′29″ 花岗闪长斑岩 2 由秋米北 D1755/2 29°36′01″ 87°22′10″ 花岗闪长斑岩 3 由秋米北 D1756/1 29°35′56″ 87°21′48″ 花岗闪长斑岩 4 由秋米西 16SGS-6a/b 29°35′23″ 87°21′20″ 花岗闪长斑岩 5 仁当勒 16SGS-7a/b 29°35′31″ 87°20′24″ 花岗闪长斑岩 6 仁当勒 16SGS-8a/b 29°35′27″ 87°20′23″ 花岗闪长斑岩 7 仁当勒 16SGS-9 29°35′18″ 87°20′18″ 花岗闪长斑岩 8 仁当勒 16SGS-12 29°35′19″ 87°20′17″ 花岗闪长斑岩 9 朗拉南 16SGS-13 29°35′18″ 87°21′18″ 花岗闪长斑岩 10 朗拉南 16SGS-14 29°35′17″ 87°21′16″ 花岗闪长斑岩 表 2 次玛班硕由秋米斑岩体LA-ICP-MS锆石U-Pb同位素分析结果
Table 2. LA-ICP-MS U-Pb data of zircon from the Youqiumi porphyry pluton in Cimabanshuo area
分析点号 Pb(10-6) Th(10-6) U(10-6) Th/U 同位素比值 年龄(Ma) 207Pb/206Pb±1σ 207Pb/235U±1σ 206Pb/238U±1σ 206Pb/238U±1σ D1756/1 1 2 365 547 0.67 0.048 3±0.004 3 0.016 6±0.001 5 0.002 5±0.000 05 16.0±0.3 2 2 427 510 0.84 0.049 7±0.005 1 0.016 3±0.001 7 0.002 4±0.000 05 15.3±0.3 3 5 2 367 1 341 1.77 0.068 7±0.002 4 0.021 0±0.000 7 0.002 2±0.000 03 14.3±0.2 4 14 1 955 1 520 1.29 0.075 1±0.001 7 0.062 3±0.001 3 0.006 0±0.000 07 38.6±0.4 5 13 365 1 484 0.25 0.061 4±0.002 5 0.062 5±0.002 5 0.007 4±0.000 09 47.5±0.6 6 3 595 746 0.80 0.067 0±0.006 7 0.023 9±0.002 4 0.002 6±0.000 05 16.7±0.3 7 3 381 458 0.83 0.046 1±0.007 6 0.013 5±0.002 2 0.002 1±0.000 04 13.6±0.3 8 3 657 583 1.13 0.048 3±0.006 5 0.015 3±0.002 0 0.002 3±0.000 05 14.8±0.3 9 3 620 797 0.78 0.047 3±0.003 9 0.016 3±0.001 3 0.002 5±0.000 05 16.2±0.3 10 4 1 215 873 1.39 0.063 7±0.009 0 0.020 9±0.002 9 0.002 4±0.000 04 15.3±0.3 11 3 754 771 0.98 0.049 0±0.005 4 0.016 3±0.001 8 0.002 4±0.000 05 15.6±0.3 16S-6 1 7.69 1 576 2 481 0.64 0.133 6±0.019 5 0.035 5±0.002 7 0.002 4±0.000 1 15.5±0.6 2 7.56 1 557 2 334 0.67 0.121 8±0.008 7 0.039 7±0.003 1 0.002 5±0.000 1 15.9±0.6 3 8.16 1 572 2 592 0.61 0.125 0±0.015 9 0.038 1±0.003 6 0.002 5±0.000 1 16.4±0.6 4 6.58 1 199 2 133 0.56 0.131 3±0.012 5 0.037 2±0.002 3 0.002 4±0.000 1 15.5±0.6 5 6.86 1 254 2 524 0.50 0.196 5±0.049 7 0.041 9±0.006 1 0.002 4±0.000 1 15.4±0.6 6 10.14 2 008 3 396 0.59 0.101 2±0.011 2 0.030 1±0.002 7 0.002 4±0.000 1 15.5±0.5 7 5.74 1 168 1 651 0.71 0.192 4±0.023 4 0.052 6±0.004 0 0.002 6±0.000 1 16.9±0.7 8 8.91 2 078 2 874 0.72 0.128 5±0.012 4 0.036 5±0.002 8 0.002 4±0.000 1 15.5±0.5 9 8.24 1 648 2 358 0.70 0.140 3±0.016 9 0.041 1±0.002 7 0.002 6±0.000 1 16.5±0.7 10 10.16 1 456 3 052 0.48 0.091 3±0.008 2 0.031 7±0.002 8 0.002 7±0.000 1 17.4±0.6 11 9.70 1 845 2 828 0.65 0.115 1±0.009 9 0.037 7±0.003 4 0.002 5±0.000 1 16.2±0.6 12 7.99 1 324 2 444 0.54 0.145 4±0.016 2 0.041 8±0.003 2 0.002 4±0.000 1 15.5±0.5 13 10.68 2 442 3 061 0.80 0.126 8±0.011 9 0.041 5±0.003 4 0.002 5±0.000 1 16.4±0.5 14 11.18 2 074 2 549 0.81 0.163 5±0.019 0 0.051 0±0.003 2 0.002 5±0.000 1 16.4±0.6 15 9.34 2 067 2 842 0.73 0.115 3±0.010 2 0.036 2±0.002 8 0.002 4±0.000 1 15.3±0.5 16 9.04 1 531 3 157 0.49 0.112 7±0.014 0 0.031 1±0.002 4 0.002 4±0.000 1 15.6±0.6 17 7.39 1 342 2 258 0.59 0.149 8±0.012 1 0.048 7±0.003 5 0.002 4±0.000 1 15.6±0.6 18 8.37 1 868 2 626 0.71 0.133 5±0.010 2 0.042 1±0.003 0 0.002 4±0.000 1 15.5±0.5 19 9.92 2 153 3 130 0.69 0.108 8±0.012 6 0.034 1±0.003 4 0.002 4±0.000 1 15.6±0.5 20 10.26 1 967 2 984 0.66 0.122 6±0.009 7 0.041 8±0.003 2 0.002 6±0.000 1 16.9±0.6 21 6.99 1 412 2 322 0.61 0.150 0±0.017 6 0.040 9±0.002 6 0.002 4±0.000 1 15.2±0.6 22 7.75 1 366 2 672 0.51 0.144 0±0.016 7 0.047 0±0.004 5 0.002 5±0.000 1 16.2±0.6 23 10.04 1 648 2 559 0.64 0.125 3±0.008 8 0.041 8±0.003 4 0.002 5±0.000 1 16.0±0.5 24 7.69 1 576 2 481 0.64 0.133 6±0.019 5 0.035 5±0.002 7 0.002 4±0.000 1 15.5±0.6 25 7.56 1 557 2 334 0.67 0.121 8±0.008 7 0.039 7±0.003 1 0.002 5±0.000 1 15.9±0.6 26 8.16 1 572 2 592 0.61 0.125 0±0.015 9 0.038 1±0.003 6 0.002 5±0.000 1 16.4±0.6 表 3 次玛班硕由秋米斑岩体岩石地球化学分析结果及特征参数
Table 3. Geochemistry element analyses of results and characteristic parameters of the Youqiumi porphyry pluton in Cimabanshuo area
样品号 D1754/3 D1755/2 D1756/1 16SGS-6a/b 16SGS-7a/b 16SGS-8a/b 16SGS-9 16SGS-12 16SGS-13 16SGS-14 SiO2 66.36 65.36 65.08 65.12 66.38 66.36 65.62 66.32 66.85 66.05 TiO2 0.57 0.57 0.61 0.67 0.55 0.53 0.58 0.56 0.49 0.49 Al2O3 15.42 16.15 15.92 15.32 15.14 15.12 15.19 15.13 14.56 14.42 Fe2O3 1.41 1.38 1.50 0.93 1.69 1.89 1.84 1.79 0.10 0.04 FeO 1.68 1.70 1.85 2.72 1.94 1.99 1.85 2.22 2.59 2.68 MnO 0.05 0.05 0.05 0.04 0.05 0.06 0.05 0.06 0.03 0.03 MgO 1.58 1.64 1.84 1.83 1.58 1.51 1.69 1.56 1.51 1.51 CaO 2.86 3.48 3.50 2.47 2.77 2.76 3.02 3.16 2.01 2.40 Na2O 4.30 4.56 4.42 4.70 4.05 3.98 4.32 4.02 4.30 4.32 K2O 4.21 3.94 3.98 3.67 4.29 3.96 4.07 3.85 4.56 4.58 P2O5 0.19 0.21 0.22 0.24 0.19 0.20 0.22 0.20 0.17 0.18 H2O+ 0.84 0.55 0.63 1.23 0.92 0.87 0.96 0.75 1.63 1.85 LOI 0.24 0.10 0.10 1.86 1.06 1.04 1.37 0.93 2.33 2.76 Total 99.71 99.69 99.70 100.80 100.61 100.27 100.78 100.55 101.13 101.31 K2O/Na2O 0.98 0.86 0.90 0.78 1.06 0.99 0.94 0.96 1.06 1.06 K2O+Na2O 8.51 8.50 8.40 8.37 8.34 7.94 8.39 7.87 8.86 8.90 A/NK 1.326 1.373 1.375 1.309 1.339 1.396 1.319 1.403 1.212 1.195 A/CNK 0.916 0.893 0.887 0.946 0.926 0.954 0.893 0.916 0.930 0.878 AR 2.74 2.53 2.52 2.78 2.65 2.60 2.71 2.51 3.16 3.11 Rb 220.00 221.00 173.00 163.00 245.00 239.00 195.00 231.00 212.00 212.00 Th 29.20 25.30 27.20 15.20 28.60 29.20 27.30 31.50 30.40 31.20 U 4.80 4.10 3.90 2.89 2.56 2.65 2.71 2.63 10.30 12.20 Nb 8.90 8.90 8.20 5.91 10.20 10.10 9.75 10.00 5.69 6.89 Ta 0.88 0.87 0.77 0.56 0.98 0.95 0.97 0.92 0.52 0.63 Sr 703.00 876.00 852.00 795.00 714.00 774.00 812.00 815.00 685.00 674.00 Zr 139.00 141.00 127.00 178.00 182.00 184.00 189.00 182.00 189.00 180.00 Hf 4.00 3.40 4.10 5.26 5.25 5.02 4.96 5.12 5.65 5.71 Y 9.52 7.97 8.19 8.46 8.96 9.74 9.85 9.52 8.89 9.98 La 39.53 41.13 40.61 31.20 38.20 40.50 39.80 44.00 40.20 40.40 Ce 75.26 72.93 76.67 59.80 69.20 74.50 76.80 79.20 76.40 76.40 Pr 9.242 9.372 9.664 7.100 7.960 8.460 8.620 8.650 8.550 8.650 Nd 34.78 32.04 34.55 27.40 29.10 32.30 33.40 32.60 33.20 33.80 Sm 6.048 5.329 5.890 4.850 4.660 5.630 5.870 5.650 5.690 6.230 Eu 1.211 1.160 1.225 1.040 0.960 1.060 1.080 1.060 1.010 1.110 Gd 3.623 3.250 3.533 3.200 3.060 3.360 3.740 3.520 3.510 3.740 Tb 0.444 0.400 0.451 0.420 0.400 0.440 0.460 0.440 0.450 0.480 Dy 2.174 1.944 2.067 1.700 1.640 1.740 1.980 1.820 1.830 1.980 Ho 0.398 0.343 0.357 0.270 0.280 0.300 0.320 0.300 0.290 0.330 Er 0.968 0.805 0.862 0.700 0.760 0.820 0.880 0.820 0.760 0.900 Tm 0.133 0.109 0.118 0.090 0.100 0.110 0.120 0.110 0.100 0.120 Yb 0.757 0.622 0.636 0.560 0.680 0.700 0.780 0.730 0.630 0.730 Lu 0.109 0.090 0.087 0.070 0.090 0.090 0.100 0.100 0.090 0.100 Sr/Y 73.84 109.98 104.00 93.97 79.69 79.47 82.44 85.61 77.05 67.54 Nb/Ta 10.11 10.23 10.65 10.55 10.41 10.63 10.05 10.87 10.94 10.94 Zr/Hf 34.75 41.47 30.98 33.84 34.67 36.65 38.10 35.55 33.45 31.52 ∑REE 174.68 169.52 176.72 138.40 157.09 170.01 173.95 179.00 172.71 174.97 (La/Yb)N 37.46 47.43 45.80 39.96 40.30 41.50 36.60 43.23 45.77 39.70 δEu 0.73 0.79 0.76 0.76 0.73 0.69 0.66 0.68 0.64 0.65 δCe 0.93 0.88 0.92 0.95 0.92 0.94 0.97 0.94 0.96 0.95 注:A/CNK=Al2O3/(CaO+Na2O+K2O)(摩尔比值),主量元素单位为%,微量元素单位为10-6. 表 4 次玛班硕由秋米斑岩体Sr、Nd同位素组成
Table 4. Sr, Nd isotopic compositions of the Youqiumi porphyry pluton in Cimabanshuo area
样号 年龄(Ma) 87Rb/86Sr 87Sr/86Sr 2σ (87Sr/86Sr)i εSr(0) εSr(t) fRb/Sr 147Sm/144Nd 143Nd/144Nd 2σ (143Nd/144Nd)i εNd(t) fSm/Nd TDM2(Ma) D1756/1 15.2 0.571 400 0.708 002 4 0.707 878 49.709 48.213 5.909 0.103 100 0.512 205 6 0.512 195 -8.26 -0.48 1 503 注:计算所需的参数:λSr=1.39×10-11 a-1,λNd=6.54×10-12 a-1,87Sr/86Sr和143Nd/144Nd所示的2σ误差为小数点后的最后位数,为减少147Sm/144Nd变化对Nd模式年龄计算产生的影响,表中所列TDM2年龄统一采用二阶段模式计算,计算公式如下:TDM2=(1/λSm)ln(1+A),A={(143Nd/144Nd)m-(143Nd/144Nd)DM-[(147Sm/144Nd)m-(147Sm/144Nd)c](eλt-1)}/[(147Sm/144Nd)c-(147Sm/144Nd)DM],式中:下角标m代表样品现今测定值,下角标DM代表亏损地幔值(Miller and O'Nions,1985),(147Sm/144Nd)DM=0.213 6.(143Nd/144Nd)DM=0.513 151,下角标CHUR代表球粒陨石值( Bouvier et al., 2008 ),(147Sm/144Nd)CHUR=0.196 0;(143Nd/144Nd)CHUR=0.512 630,下角标c代表大陆壳平均值(Jahn and Condie, 1995),(147Sm/144Nd)c=0.118;岩石样品计算年龄采用项目所测对应样品锆石U-Pb年龄值.表 5 冈底斯成矿带典型矿床成岩成矿时代
Table 5. The typical deposits of diagenesis and ore-forming ages in Gangdese metallogenic belt
冈底斯段 典型矿床 成岩年龄 成矿年龄 资料来源 测试对象 方法 年龄(Ma) 测试对象 方法 年龄(Ma) 花岗闪长岩 LA-ICP-MS锆石U-Pb 17.6±0.4 辉钼矿 Re-Os 16~15 秦克章等(2014) 黑云母二长花岗岩 17.4±0.4 似斑状黑云母二长花岗岩 16.7±0.4 东段 驱龙 二长花岗斑岩 15.3±0.6 花岗闪长斑岩 15.0±0.3 石英闪长玢岩 13.1±0.3 二长花岗斑岩 LA-ICP-MS锆石U-Pb 16.6±0.3 中段 岗讲 花岗闪长斑岩 16.1±0.2 辉钼矿 Re-Os 13.24~13.33 杨震等(2017) 英云闪长玢岩 14.4±0.4 花岗斑岩 SHRIMP锆石U-Pb 15.6±0.6 郑有业等(2007)
黄勇等(2015)
Huang et al.(2017)
高成等(2014)花岗闪长斑岩 14.1±0.3 石英斑岩 14.4±0.3 中段之西 朱诺 闪长斑岩 LA-ICP-MS锆石U-Pb 16.2±0.3 辉钼矿 Re-Os 13.7±0.6 黑云花岗闪长岩 14.1±0.3 似斑状二长花岗岩 14.0±0.3 角闪闪长玢岩 14.1±0.3 斑状花岗岩 14.9~15.3 -
[1] Altherr, R., Holl, A., Hegner, E., et al., 2000.High-Potassium, Calc-Alkaline Ⅰ-Type Plutonism in the European Variscides:Northern Vosges (France) and Northern Schwarzwald (Germany).Lithos, 50(1-3):51-73. https://doi.org/10.1016/s0024-4937(99)00052-3 [2] Batchelor, R.A., Bowden, P., 1985.Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters.Chemical Geology, 48(1-4):43-55. https://doi.org/10.1016/0009-2541(85)90034-8 [3] Bouvier, A., Vervoort, J.D., Patchett, P.J., 2008.The Lu-Hf and Sm-Nd Isotopic Composition of CHUR:Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets.Earth and Planetary Science Letters, 273(1-2):48-57. https://doi.org/10.1016/j.epsl.2008.06.010 [4] Chen, X.J., Xu, Z.Q., Meng, Y.K., et al., 2014.Petrogenesis of Miocene Adakitic Diorite-Porphyrite in Middle Gangdese Batholith, Southern Tibet:Constraints from Geochemistry, Geochronology and Sr-Nd-Hf Isotopes.Acta Petrologica Sinica, 30(8):2253-2268(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201408010 [5] Chung, S.L., Liu, D.Y., Ji, J.Q., et al., 2003.Adakites from Continental Collision Zones:Melting of Thickened Lower Crust beneath Southern Tibet.Geology, 31(11):1021-1024. https://doi.org/10.1130/g19796.1 [6] Defant, M.J., Drummond, M.S., 1990.Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere.Nature, 347:662-665. doi: 10.1038/347662a0 [7] Defant, M.J., Xu, J.F., Kepezhinskas, P., et al., 2002.Adakites:Some Variations on a Theme.Acta Petrologica Sinica, 18(2):129-142. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200912005 [8] Gao, C., Li, D.W., Liu, D.M., et al., 2014.Petrogenesis of the Miocene Ore-Bearing Granite Porphyries in the Southern Gangdese, Tibet.Geotectonica et Metallogenia, 38(4):962-983(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201404020 [9] Gao, L.E., Zeng, L.S., Asimow, P.D., 2017.Contrasting Geochemical Signatures of Fluid-Absent versus Fluid-Fluxed Melting of Muscovite in Metasedimentary Sources:The Himalayan Leucogranites.Geology, 45(1):39-42. https://doi.org/10.1130/g38336.1 [10] Gao, Y.F., Hou, Z.Q., Kamber, B.S., et al., 2007.Adakite-Like Porphyries from the Southern Tibetan Continental Collision Zones:Evidence for Slab Melt Metasomatism.Contributions to Mineralogy and Petrology, 153(1):105-120. https://doi.org/10.1007/s00410-006-0137-9 [11] Gao, Y.F., Yang, Z.S., Santosh, M., et al., 2010.Adakitic Rocks from Slab Melt-Modified Mantle Sources in the Continental Collision Zone of Southern Tibet.Lithos, 119(3-4):651-663. https://doi.org/10.1016/j.lithos.2010.08.018 [12] Gao, Y.M., Chen, Y.C., Tang, J.X., et al., 2012.A Study of Diagenetic and Metallogenic Geochronology of the Dagbo Cu(Mo) Deposit in Quxur County of Tibet and Its Geological Implications.Acta Geoscientica Sinica, 33(4):613-623(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201204021 [13] Guo, C.L., Zeng, L.S., Gao, L.E., et al., 2017.Highly Fractionated Grantitic Minerals and Whole-Rock Geochemistry Prospecting Markers in Hetian, Fujian Province.Acta Geologica Sinica, 91(8):1796-1817(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201708010 [14] Guo, Z.F., Wilson, M., Liu, J.Q., 2007.Post-Collisional Adakites in South Tibet:Products of Partial Melting of Subduction-Modified Lower Crust.Lithos, 96(1-2):205-224. https://doi.org/10.1016/j.lithos.2006.09.011 [15] Hou, Z.Q., Gao, Y.F., Meng, X.J., et al., 2004.Genesis of Adakitic Porphyry and Tectonic Controls on the Gangdese Miocene Porphyry Copper Belt in the Tibetan Orogen.Acta Petrologica Sinica, 20(2):239-248(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200402006 [16] Hou, Z.Q., Gao, Y.F., Qu, X.M., et al., 2004.Origin of Adakitic Intrusives Generated during Mid-Miocene East-west Extension in Southern Tibet.Earth and Planetary Science Letters, 220(1-2):139-155. https://doi.org/10.1016/s0012-821x(04)00007-x [17] Hou, Z.Q., Qu, X.M., Wang, S.X., et al., 2003.Porphyry Copper Belt Molybdenite Re-Os Age:Duration of Mineralization and Dynamics Backgroud Application in Gangdese, Tibetan Plateau.Science in China(Series D:Earth Sciences), 33(7):609-618(in Chinese). [18] Hou, Z.Q., Yang, Z.M., Qu, X.M., et al., 2009.The Miocene Gangdese Porphyry Copper Belt Generated during Post-Collisional Extension in the Tibetan Orogen.Ore Geology Reviews, 36(1-3):25-51. https://doi.org/10.1016/j.oregeorev.2008.09.006 [19] Hou, Z.Q., Zheng, Y.C., Yang, Z.M., et al., 2012.Metallogenesis of Continental Collision Setting:Part Ⅰ.Gangdese Cenozoic Porphyry Cu-Mo Systems in Tibet.Mineral Deposits, 31(4):647-670(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201204003.htm [20] Hu, Y.B., Liu, J.Q., Hu, J.R., et al., 2015.Geochemical Studies on Ore-Bearing Rocks in Bangpu Porphyry Mo(Cu) Deposit, Tibet:Implications on the Magma Source and Metallogenic Mechanism.Acta Petrologica Sinica, 31(7):2038-2052(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201507018.htm [21] Huang, Y., Ding, J., Li, G.M., et al., 2015.U-Pb Dating, Hf Isotopic Characteristics of Zircons from Intrusions in the Zhuluo Porphyry Cu-Mo-Au Deposit and Its Mineralization Significance.Acta Geologica Sinica, 89(1):99-108(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201501008 [22] Huang, Y., Li, G.M., Ding, J., et al., 2017.Origin of the Newly Discovered Zhunuo Porphyry Cu-Mo-Au Deposit in the Western Part of the Gangdese Porphyry Copper Belt in the Southern Tibetan Plateau, SW China.Acta Geologica Sinica(English Edition), 91(1):109-134. https://doi.org/10.1111/1755-6724.13066 [23] Jahn, B.M., Condie, K.C., 1995.Evolution of the Kaapvaal Craton as Viewed from Geochemical and Sm-Nd Isotopic Analyses of Intracratonic Pelites.Geochimica et Cosmochimica Acta, 59(11):2239-2258. https://doi.org/10.1016/0016-7037(95)00103-7 [24] Le Maitre, R.W., 1989.A Classification of Igneous Rocks and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks.Wiley-Blackwell, Boston. [25] Leng, C.B., Zhang, X.C., Zhou, W.D., 2010.A Primary Study of the Geological Characteristics and the Zircon U-Pb Age of the Gangjiang Porphyry Copper-Molybdenum Deposit in Nimu, Tibet.Earth Science Frontiers, 17(2):185-197(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201002017 [26] Li, G.M., Liu, B., Qu, W.J., et al., 2005.The Porphyry-Skarn Ore-Forming System in Gangdese Metallogenic Belt, Southern Xizang:Evidence from Molybdenite Re-Os Age of Porphyry-Type Copper Deposits and Skarn-Type Copper Polymetallic Deposits.Geotectonica et Metallogenia, 29(4):482-490(in Chinese with English abstract). [27] Li, J.X., Qin, K.Z., Li, G.M., et al., 2011.Post-Collisional Ore-Bearing Adakitic Porphyries from Gangdese Porphyry Copper Belt, Southern Tibet:Melting of Thickened Juvenile Arc Lower Crust.Lithos, 126(3-4):265-277. https://doi.org/10.1016/j.lithos.2011.07.018 [28] Li, M., Sun, X., Zheng, Y.Y., et al., 2015.Characteristic of Fluid Inclusions of the Zhunuo Porphyry Copper Deposit in the Gangdese Belt, Tibet.Acta Petrologica Sinica, 31(5):1335-1347(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201505011 [29] Li, S.C., Zhang, L.Y., Li, P.C., et al., 2017.Discovery and Tectonic Implications of Early Triassic O-Type Adakite in Middle of Great Xing'an Range.Earth Science, 42(12):2117-2128(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201712002 [30] Ling, H.F., Shen, W.Z., Sun, T., et al., 2006.Genesis and Source Characteristics of 22 Yanshanian Granites in Guangdong Province:Study of Element and Nd-Sr Isotopes.Acta Petrologica Sinica, 22(11):2687-2703(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-YSXB200611006.htm [31] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 [32] Ludwig, K.R., 2003.User's Manual for Isoplot 3.0:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center, Special Publication, 4:1-71. doi: 10.1016-j.immuni.2011.10.010/ [33] Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643.https://doi.org/10.1130/0016-7606(1989)101<0635:tdog<2.3.co;2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 [34] Miller, R.G., O'Nions, R.K., 1985.Source of Precambrian Chemical and Clastic Sediments.Nature, 314(6009):325-330. https://doi.org/10.1038/314325a0 [35] Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006.Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution.Acta Petrologica Sinica, 22(3):521-533(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603001 [36] Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey.Contributions to Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/bf00384745 [37] Pfänder, J.A., Münker, C., Stracke, A., et al., 2007.Nb/Ta and Zr/Hf in Ocean Island Basalts:Implications for Crust-Mantle Differentiation and the Fate of Niobium.Earth and Planetary Science Letters, 254(1-2):158-172. https://doi.org/10.1016/j.epsl.2006.11.027 [38] Qin, K.Z., Xia, D.X., Duo, J., et al., 2014.Porphyry-Skarn Type Cu-Mo Ore Deposits in Qulong, Tibet.Science Press, Beijing (in Chinese). [39] Rapp, R.P., Watson, E.B., 1995.Dehydration Melting of Metabasalt at 8-32 kbar:Implications for Continental Growth and Crust-Mantle Recycling.Journal of Petrology, 36(4):891-931. https://doi.org/10.1093/petrology/36.4.891 [40] Shi, C.Y., Yan, M.C., Chi, Q.H., 2008.China Granite Chemical Element Abundance.Geological Publishing House, Beijing (in Chinese). [41] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [42] Taylor, S.R., McLennan, S.M., 1985.The Continental Crust:Its Composition and Evolution.Wiley-Blackwell, Boston. [43] Wang, B.D., Xu, J.F., Chen, J.L., et al., 2010.Petrogenesis and Geochronology of the Ore-Bearing Porphyritic Rocks in Tangbula Porphyry Molybdenum-Copper Deposit in the Eastern Segment of the Gangdese Metallogenic Belt.Acta Petrologica Sinica, 26(6):1820-1832(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YSXB201006016.htm [44] Wu, F.Y., Lin, Q., Jahn, B.M., 1997.Northern China Orogenic Belt Post-Tectonic of Granitic Isotope Characteristics and Crustal Growth's Significance.Chinese Science Bulletin, 42(20):2188-2192(in Chinese). [45] Xiao, C.D., Zhang, Z.L., Zhao, L.Q., 2004.Nd, Sr and Pb Isotope Geochemistry of Yanshanian Granitoids in Eastern Inner Mongolia and Their Origins.Geology in China, 31(1):57-63(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200401008 [46] Xiong, L., Shi, W.J., Li, H., et al., 2017.Geochemistry, Sr-Nd-Hf Isotopes and Petrogenesis of Mid-Late Triassic Baizhangzi Granitic Intrusive Rocks in Eastern Hebei-Western Liaoning Province.Earth Science, 42(2):207-222(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201702004 [47] Xu, W.C., Zhang, H.F., Guo, L., et al., 2010.Miocene High Sr/Y Magmatism, South Tibet:Product of Partial Melting of Subducted Indian Continental Crust and Its Tectonic Implication.Lithos, 114(3-4):293-306. https://doi.org/10.1016/j.lithos.2009.09.005 [48] Yang, Z., Jiang, H., Yang, M.G., et al., 2017.Zircon U-Pb and Molybdenite Re-Os Dating of the Gangjiang Porphyry Cu-Mo Deposit in Central Gangdese and Its Geological Significance.Earth Science, 42(3):339-356(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201703003 [49] Ying, L.J., Wang, D.H., Tang, J.X., et al., 2010.Re-Os Dating of Molybdenite from the Jiama Copper Polymetallic Deposit in Tibet and Its Metallogenic Significance.Acta Geologica Sinica, 84(8):1165-1174(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201008010.htm [50] Zeng, L.S., Gao, L., 2017.Cenozoic Crustal Anatexis and the Leucogranites in the Himalayan Collisional Orogenic Belt.Acta Petrologica Sinica, 33(5):1420-1444(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201705004 [51] Zeng, L.S., Gao, L., Guo, C.L., et al., 2017.Early Cretaceous Forearc Extension of the Gangdese Continental Arc, Southern Tibet.Acta Petrologica Sinica, 33(8):2377-2394(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201708004 [52] Zhao, Y.Y., Liu, X.F., Liu, Y.C., et al., 2017.Copper Metallogenic Condition of Cimabanshuo Area around Zhunuo Copper Mine in Tibet.Gansu Geology, 26(4):28-36(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-GSDZ201704005.htm [53] Zhao, Y.Y., Zhang, S.M., Tang, L., et al., 2016.Sr-Nd-Pb Isotopic Characteristics and Its Geological Significance of the Jiling Grantic Pluton in the Middle Longshou Mountains.Earth Science, 41(6):1016-1030(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201606008 [54] Zheng, Y.Y., Zhang, G.Y., Xu, R.K., et al., 2007.The Diagenetic Mineralization Time Constraints of Zhunuo Porphyry Copper Deposits in Gangdese, Tibet.Chinese Science Bulletin, 52(21):2542-2548(in Chinese). [55] 陈希节, 许志琴, 孟元库, 等, 2014.冈底斯带中段中新世埃达克质岩浆作用的年代学、地球化学及Sr-Nd-Hf同位素制约.岩石学报, 30(8):2253-2268. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201408010 [56] 高成, 李德威, 刘德民, 等, 2014.西藏冈底斯南缘中新世含矿斑岩源区组成与成因.大地构造与成矿学, 38(4):962-983. doi: 10.3969/j.issn.1001-1552.2014.04.020 [57] 高一鸣, 陈毓川, 唐菊兴, 等, 2012.西藏曲水县达布斑岩铜(钼)矿床成岩成矿年代学研究.地球学报, 33(4):613-623. doi: 10.3975/cagsb.2012.04.21 [58] 郭春丽, 曾令森, 高利娥, 等, 2017.福建河田高分异花岗岩的矿物和全岩地球化学找矿标志研究.地质学报, 91(8):1796-1817. doi: 10.3969/j.issn.0001-5717.2017.08.010 [59] 侯增谦, 高永丰, 孟祥金, 等, 2004.西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制.岩石学报, 20(2):239-248. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200402006 [60] 侯增谦, 曲晓明, 王淑贤, 等, 2003.西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄:成矿作用时限与动力学背景应用.中国科学(D辑:地球科学), 33(7):609-618. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200307001 [61] 侯增谦, 郑远川, 杨志明, 等, 2012.大陆碰撞成矿作用:Ⅰ.冈底斯新生代斑岩成矿系统.矿床地质, 31(4):647-670. doi: 10.3969/j.issn.0258-7106.2012.04.002 [62] 胡永斌, 刘吉强, 胡敬仁, 等, 2015.西藏邦铺钼铜多金属矿床含矿斑岩的地球化学:对成岩源区与成矿机制的启示.岩石学报, 31(7):2038-2052. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201507018 [63] 黄勇, 丁俊, 李光明, 等, 2015.西藏朱诺斑岩铜-钼-金矿区侵入岩锆石U-Pb年龄、Hf同位素组成及其成矿意义.地质学报, 89(1):99-108. doi: 10.3969/j.issn.1006-0995.2015.01.022 [64] 冷成彪, 张兴春, 周维德, 2010.西藏尼木地区岗讲斑岩铜-钼矿床地质特征及锆石U-Pb年龄.地学前缘, 17(2):185-197. http://d.old.wanfangdata.com.cn/Periodical/dxqy201002017 [65] 李光明, 刘波, 屈文俊, 等, 2005.西藏冈底斯成矿带的斑岩-矽卡岩成矿系统:来自斑岩矿床和矽卡岩型铜多金属矿床的Re-Os同位素年龄证据.大地构造与成矿学, 29(4):482-490. doi: 10.3969/j.issn.1001-1552.2005.04.008 [66] 李淼, 孙祥, 郑有业, 等, 2015.西藏冈底斯朱诺斑岩型铜矿床流体包裹体特征.岩石学报, 31(5):1335-1347. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201505011 [67] 李世超, 张凌宇, 李鹏川, 等, 2017.大兴安岭中段早三叠世O型埃达克岩的发现及其大地构造意义.地球科学, 42(12):2117-2128. http://earth-science.net/WebPage/Article.aspx?id=3709 [68] 凌洪飞, 沈渭洲, 孙涛, 等, 2006.广东省22个燕山期花岗岩的源区特征及成因:元素及Nd-Sr同位素研究.岩石学报, 22(11):2687-2703. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200611007 [69] 潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001 [70] 秦克章, 夏代祥, 多吉, 等, 2014.西藏驱龙斑岩-矽卡岩铜钼矿床.北京:科学出版社. [71] 史长义, 鄢明才, 迟清华, 2008.中国花岗岩类化学元素丰度.北京:地质出版社. [72] 王保弟, 许继峰, 陈建林, 等, 2010.冈底斯东段汤不拉斑岩Mo-Cu矿床成岩成矿时代与成因研究.岩石学报, 26(6):1820-1832. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201006016 [73] 吴福元, 林强, 江博明, 1997.中国北方造山带造山后花岗岩的同位素特点与地壳生长意义.科学通报, 42(20):2188-2192. doi: 10.3321/j.issn:0023-074X.1997.20.017 [74] 肖成东, 张忠良, 赵利青, 2004.东蒙地区燕山期花岗岩Nd、Sr、Pb同位素及其岩石成因.中国地质, 31(1):57-63. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200401008 [75] 熊乐, 石文杰, 李欢, 等, 2017.冀东-辽西中-晚三叠世柏杖子花岗质侵入岩地球化学、Sr-Nd-Hf同位素特征及岩石成因.地球科学, 42(2):207-222. http://earth-science.net/WebPage/Article.aspx?id=3431 [76] 杨震, 姜华, 杨明国, 等, 2017.冈底斯中段岗讲斑岩铜钼矿床锆石U-Pb和辉钼矿Re-Os年代学及其地质意义.地球科学, 42(3):339-356. http://earth-science.net/WebPage/Article.aspx?id=3545 [77] 应立娟, 王登红, 唐菊兴, 等, 2010.西藏甲玛铜多金属矿辉钼矿Re-Os定年及其成矿意义.地质学报, 84(8):1165-1174. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201008009 [78] 曾令森, 高利娥, 2017.喜马拉雅碰撞造山带新生代地壳深熔作用与淡色花岗岩.岩石学报, 33(5):1420-1444. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201705004 [79] 曾令森, 高利娥, 郭春丽, 等, 2017.西藏南部冈底斯大陆弧早白垩纪弧前伸展作用.岩石学报, 33(8):2377-2394. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201708004 [80] 赵亚云, 刘晓峰, 刘远超, 等, 2017.西藏朱诺矿区外围次玛班硕地区铜成矿有利条件分析.甘肃地质, 26(4):28-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172018020100000852 [81] 赵亚云, 张树明, 汤琳, 等, 2016.龙首山中段芨岭花岗岩体Sr-Nd-Pb同位素特征及意义.地球科学, 41(6):1016-1030. http://earth-science.net/WebPage/Article.aspx?id=3313 [82] 郑有业, 张刚阳, 许荣科, 等, 2007.西藏冈底斯朱诺斑岩铜矿床成岩成矿时代约束.科学通报, 52(21):2542-2548. doi: 10.3321/j.issn:0023-074x.2007.21.013