• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    地史时期生物对冰室气候形成的作用

    殷鸿福 喻建新 罗根明 宋海军 徐珍

    殷鸿福, 喻建新, 罗根明, 宋海军, 徐珍, 2018. 地史时期生物对冰室气候形成的作用. 地球科学, 43(11): 3809-3822. doi: 10.3799/dqkx.2018.117
    引用本文: 殷鸿福, 喻建新, 罗根明, 宋海军, 徐珍, 2018. 地史时期生物对冰室气候形成的作用. 地球科学, 43(11): 3809-3822. doi: 10.3799/dqkx.2018.117
    Yin Hongfu, Yu Jianxin, Luo Genming, Song Haijun, Xu Zhen, 2018. Biotic Influence on the Formation of Icehouse Climates in Geologic History. Earth Science, 43(11): 3809-3822. doi: 10.3799/dqkx.2018.117
    Citation: Yin Hongfu, Yu Jianxin, Luo Genming, Song Haijun, Xu Zhen, 2018. Biotic Influence on the Formation of Icehouse Climates in Geologic History. Earth Science, 43(11): 3809-3822. doi: 10.3799/dqkx.2018.117

    地史时期生物对冰室气候形成的作用

    doi: 10.3799/dqkx.2018.117
    基金项目: 

    国家自然科学基金国际(地区)合作与交流项目 41661134047

    详细信息
      作者简介:

      殷鸿福(1935-), 男, 教授, 博士, 中国科学院院士, 主要从事古生物学与地层学和地球生物学方面的研究

    • 中图分类号: P52

    Biotic Influence on the Formation of Icehouse Climates in Geologic History

    • 摘要: 在地质历史时期的碳循环中,生物的作用很大.生物产氧光合作用消耗CO2而产生有机质与O2;有机质及生物成因碳酸盐岩埋藏又进一步固定CO2并减少O2消耗,所以生物产氧光合事件与冰期、成(增)氧期应存在因果关系.论述了5次事件,分别是:与产氧光合蓝细菌有关的古元古代初期大氧化事件(Early Proterozoic great oxygenation event,GOE)、与真核生物辐射事件有关的新元古代大成氧事件(Neoproterozoic oxidation event,NOE)、与早期陆生植物繁盛事件有关的晚奥陶世增氧和冰期事件、与维管植物繁盛事件有关的石炭纪-二叠纪增氧和冰期事件及与被子植物和浮游微植物繁盛有关的第四纪冰期事件.结果表明,5次成氧事件和冰期与生物事件有因果关系,主要表现为,都有冰期和成氧事件共存或相继出现的证据,反映大气CO2降低和O2增加同时或相继发生,而这只能由生物的光合作用及其产物的埋藏造成.这说明生物不仅仅是适应于环境,它也对环境产生重大影响,生物与环境的这种相互作用在漫长的地质历史中表现为协同演化.但是早期生物事件并不立刻产生成氧或冰期等环境效应,这种效应开始是微量的,逐渐积累,达到阈值后才发生质变,所以在时间上是滞后的.随着生物多样性和丰度的增加,这种效应越来越大,速率越来越快,滞后性逐渐减弱,耦合性日渐明显.生物与地球环境之间的相互作用构成了生物与地球系统的自我调节,使地球与其他星球不同,其表层始终保持在生命宜居的环境范围内.今天人类更要理智地、科学地善待地球,避免对地球造成重大的负面影响.

       

    • 图  1  地质历史时期碳循环简图

      Fig.  1.  Schematic map of carbon cycle in earth history

      图  2  地史时期大气O2和CO2浓度、冰期与生物演化事件的关系

      4次成氧事件:GOE.大成氧事件(2 450~2 320 Ma);NOE.新元古成氧事件(800~550 Ma);OS.奥陶纪末成氧事件(445~400? Ma);CP.石炭纪-二叠纪成氧事件(340~240 Ma)(Kirschvink et al., 2000; Canfield, 2005; Och and Shields-Zhou, 2012; Lenton et al., 2012; 梅冥相,2016).PAL%.与当代大气水平之比; 蓝色线元古宙部分据Och and Shields-Zhou(2012),转录自Canfield(2005),显生宙部分据Berner(2006);绿线据Campbell and Allen(2008);CO2浓度:红色据Kasting(1987);紫线据Berner(2006);其纵坐标均转化为对数坐标,故与原图有异;5次冰期:太古宙及古元古代据Evans(2003); Kirschvink et al.(2000),与GOE对应的为Makganyene/Huronian冰期,其时代尚不确定,在其前后各有一次有疑问(带?号)的冰期;新元古代的冰期依次为Sturtian冰期(ca.720~660 Ma),Marinoan冰期(655~635 Ma),Gaskiers冰期(580 Ma),时代据Gradstein et al.(2012);显生宙冰期为奥陶纪-志留纪之交(OS),石炭纪-二叠纪(CP)及第四纪(Q),时代据Veizer et al.(2000); Isbell et al.(2003); Montanez et al.(2007);生物事件:元古宙生物据Knoll(2014); Maloof et al.(2010); Ye et al.(2015); Yuan et al.(2011);隐孢植物据Lenton et al.(2012, 2014);维管束植物据Cleal and Thomas(2005); Chaloner(2003).虚线表示不确定

      Fig.  2.  elationships among atmospheric pO2, pCO2, glaciations and biotic evolution events

      图  3  显生宙O2、CO2、冰期与生物的关系

      大气O2%据Berner(2006)(图 17);RCO2指某地质时期与近百万年(平均值)大气中CO2质量之比,据Berner(2006)(图 18);CO2曲线还可参阅IPCC(2007);碳埋藏量据Berner(2003);冰期与冰碛物频率据Gastaldo et al.(1996);植物据Lenton et al.(2012, 2016),Cleal and Thomas(2005);浮游微植物据Martin and Quigg(2013).其黑线代表丰度,红、绿色代表多样性

      Fig.  3.  Relationships among atmospheric pO2, pCO2, glaciations and evolution of organisms

      图  4  石炭纪-二叠纪植物盛衰与冰期间冰期的耦合

      气候、植物盛衰与冰期的耦合关系据Cleal and Thomas(2005);维管植物分布及冰碛物频率据Gastaldo et al.(1996);中国相应的海退、地层间断与海洋动物群转换据Wang et al.(2013);维-密期指维吉尔期-密苏里期

      Fig.  4.  The coupling relationships between the wax-wane of terrestrial plants and glacial-interglacial transitions in Carboniferous and Permian

    • [1] Allison, C.W., Hilgert, J.W., 1986.Scale Microfossils from the Early Cambrian of Northwest Canada.Journal of Paleontology, 60(5):973-1015. https://doi.org/10.1017/s0022336000022538
      [2] Anbar, A.D., Duan, Y., Lyons, T.W., et al., 2007.A Whiff of Oxygen before the Great Oxidation Event? Science, 317(5846):1903-1906. https://doi.org/10.1126/science.1140325
      [3] Beerling, D.J., Woodward, F.I., 2003.Vegetation and the Terrestrial Carbon Cycle:Modelling the First 400 Million Years.Cambridge University Press, Cambridge, 405.
      [4] Belcher, C.M., McElwain, J.C., 2008.Limits for Combustion in Low O2 Redefine Paleoatmospheric Predictions for the Mesozoic.Science, 321(5893):1197-1200. https://doi.org/10.1126/science.1160978
      [5] Bergman, N.M., 2004.Copse:A New Model of Biogeochemical Cycling over Phanerozoic Time.American Journal of Science, 304(5):397-437. https://doi.org/10.2475/ajs.304.5.397
      [6] Berner, R.A., 2003.The Long-Term Carbon Cycle, Fossil Fuels and Atmospheric Composition.Nature, 426(6964):323-326. https://doi.org/10.1038/nature02131
      [7] Berner, R.A., 2006.Geocarbsulf:A Combined Model for Phanerozoic Atmospheric O2 and CO2.Geochimica et Cosmochimica Acta, 70(23):5653-5664. https://doi.org/10.1016/j.gca.2005.11.032
      [8] Brocks, J.J., Jarrett, A.J.M., Sirantoine, E., et al., 2017.The Rise of Algae in Cryogenian Oceans and the Emergence of Animals.Nature, 548(7669):578-581. https://doi.org/10.1038/nature23457
      [9] Buick, R., 2008.When did Oxygenic Photosynthesis Evolve? Philosophical Transactions of the Royal Society B, 363:2731-2743. doi: 10.1098/rstb.2008.0041
      [10] Butterfield, N.J., 2000.Bangiomorpha Pubescensn.gen., N.sp.:Implications for the Evolution of Sex, Multicellularity, and the Mesoproterozoic/Neoproterozoic Radiation of Eukaryotes.Paleobiology, 26(3):386-404.https://doi.org/10.1666/0094-8373(2000)026<0386:bpngns>2.0.co;2 doi: 10.1666/0094-8373(2000)026<0386:bpngns>2.0.co;2
      [11] Butterfield, N.J., Knoll, A.H., Swett, K., 1994.Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen.Lethaia, 27(1):76-76. https://doi.org/10.1111/j.1502-3931.1994.tb01558.x
      [12] Campbell, I.H., Allen, C.M., 2008.Formation of Supercontinents Linked to Increases in Atmospheric Oxygen.Nature Geoscience, 1(8):554-558. https://doi.org/10.1038/ngeo259
      [13] Campbell, I.H., Squire, R.J., 2010.The Mountains that Triggered the Late Neoproterozoic Increase in Oxygen:The Second Great Oxidation Event.Geochimica et Cosmochimica Acta, 74(15):4187-4206. https://doi.org/10.1016/j.gca.2010.04.064
      [14] Canfield, D.E., 1998.A New Model for Proterozoic Ocean Chemistry.Nature, 396(6710):450-453. doi: 10.1038/24839
      [15] Canfield, D.E., 2005.The Early History of Atmospheric Oxygen:Homage to Robert M.Garrels.Annual Review of Earth and Planetary Sciences, 33(1):1-36. https://doi.org/10.1146/annurev.earth.33.092203.122711
      [16] Canfield, D.E., Teske, A., 1996.Late Proterozoic Rise in Atmospheric Oxygen Concentration Inferred from Phylogenetic and Sulphur-Isotope Studies.Nature, 382(6587):127-132. https://doi.org/10.1038/382127a0
      [17] Cerling, T.E., Ehleringer, J.R., Harris, J.M., 1998.Carbon Dioxide Starvation, the Development of C4 Ecosystems, and Mammalian Evolution.Philosophical Transactions of the Royal Society B:Biological Sciences, 353(1365):159-171. https://doi.org/10.1098/rstb.1998.0198
      [18] Chaloner, W.G., 2003.The Role of Carbon Dioxide in Plant Evolution.Evolution on Planet Earth, 65-83.
      [19] Chen, X., Ling, H.F., Vance, D., et al., 2015.Rise to Modern Levels of Ocean Oxygenation Coincided with the Cambrian Radiation of Animals.Nature Communications, 6:7142. https://doi.org/10.1038/ncomms8142
      [20] Chinese Academy of Sciences, 2015.Developling Stratiges of Disciplines in China:Geobiology.Science Press, Beijing, 368 (in Chinese).
      [21] Claussen, M., Fohlmeister, J., Ganopolski, A., et al., 2006.Vegetation Dynamics Amplifies Precessional Forcing.Geophysical Research Letters, 33:L09709. https://doi.org/10.1029/2006GL026111
      [22] Cleal, C.J., Thomas, B.A., 2005.Palaeozoic Tropical Rainforests and Their Effect on Global Climates:Is the Past the Key to the Present? Geobiology, 3(1):13-31. https://doi.org/10.1111/j.1472-4669.2005.00043.x
      [23] Cohen, P.A., Knoll, A.H., 2012.Scale Microfossils from the Mid-Neoproterozoic Fifteen Mile Group, Yukon Territory.Journal of Paleontology, 86(5):775-800. https://doi.org/10.1666/11-138.1
      [24] Corsetti, F.A., Olcott, A.N., Bakermans, C., 2006.The Biotic Response to Neoproterozoic Snowball Earth.Palaeogeography, Palaeoclimatology, Palaeoecology, 232(2-4):114-130. https://doi.org/10.1016/j.palaeo.2005.10.030
      [25] Costanza, R., d'Arge, R., de Groot, R., et al., 1997.The Value of the World's Ecosystem Services and Natural Capital.Nature, 387(6630):253-260. https://doi.org/10.1038/387253a0
      [26] Coxall, H.K., Pearson, P.N., 2007.The Eocene-Oligocene Transition.In: Williams, M., Haywood, A.M., Gregory, F.J., eds., Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies.The Micropalaeontological Society, Special Publications.The Geological Society, London, 351-387.
      [27] Crucifix, M., Hewitt, C.D., 2005.Impact of Vegetation Changes on the Dynamics of the Atmosphere at the Last Glacial Maximum.Climate Dynamics, 25:447-459. https://doi.org/10.1007/s00382-005-0013-8
      [28] Dahl, T.W., Hammarlund, E.U., Anbar, A.D., et al., 2010.Devonian Rise in Atmospheric Oxygen Correlated to the Radiations of Terrestrial Plants and Large Predatory Fish.Proceedings of the National Academy of Sciences, 107(42):17911-17915. https://doi.org/10.1073/pnas.1011287107
      [29] Edwards, D., Morris, J.L., Richardson, J.B., et al., 2014.Cryptospores and Cryptophytes Reveal Hidden Diversity in Early Land Floras.New Phytologist, 202(1):50-78. https://doi.org/10.1111/nph.12645
      [30] Evans, D.A.D., 2003.A Fundamental Precambrian-Phanerozoic Shift in Earth's Glacial Style? Tectonophysics, 375(1-4):353-385. https://doi.org/10.1016/s0040-1951(03)00345-7
      [31] Falkowski, P.G., Katz, M.E., Knoll, A.H., et al., 2004.The Evolution of Modern Eukaryotic Phytoplankton.Science, 305(5682):354-360. doi: 10.1126/science.1095964
      [32] Falkowski, P.G., Fenchel, T., Delong, E.F., 2008.The Microbial Engines that Drive Earth's Biogeochemical Cycles.Science, 320(5879):1034-1039. https://doi.org/10.1126/science.1153213
      [33] Falkowski, P.G., Katz, M.E., Milligan, A.J., et al., 2005.The Rise of Oxygen over the Past 205 Million Years and the Evolution of Large Placental Mammals.Science, 309(5744):2202-2204. https://doi.org/10.1126/science.1116047
      [34] Fielding, C.R., Frank, T.D., Isbell, J.L., 2008.The Late Paleozoic Ice Age-A Review of Current Understanding and Synthesis of Global Climate Patterns.In: Fielding, C.R., Frank, T.D., Isbell, J.L., eds., Resolving the Late Paleozoic Ice Age in Time and Space.Geological Society of America, Special Papers, 441: 343-354.
      [35] Friis, E.M., 1985.Structure and Function in Late Cretaceous Angiosperm Flowers.Kongl.Danske Vidensk Selskab Biol.Skrifter, 25:1-33. http://agris.fao.org/agris-search/search.do?recordID=US201301463173&sourceQuery=&query=&sortField=&sortOrder=&agrovocString=&advQuery=¢erString=
      [36] Gallimore, R.G., Kutzbach, J.E., 1996.Role of Orbitally Induced Changes in Tundra Area in the Onset of Glaciation.Nature, 381(6582):503-505. https://doi.org/10.1038/381503a0
      [37] Gao, L.Z., Yin, C.Y., Xing, Y.S., 1999.Neoproterozoic Micropalaeophyta and Sequence Stratigraphy.Professional Papers of Stratigraphy and Palaeontology, 27:28-36 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199901376822
      [38] Gastaldo, R., DiMichele, W., Pfefferkorn, H.W., 1996.Out of Ice House into the Green House:A Late Paleozoic Analogue for the Modern Global Vegetational Changes.GSA Today, 6(10):1-7.
      [39] Gibbs, M.T., Barron, E.J., Kump, L.R., 1997.An Atmospheric pCO2 Threshold for Glaciation in the Late Ordovician.Geology, 25(5):447.https://doi.org/10.1130/0091-7613(1997)025<0447:aapctf>2.3.co;2 doi: 10.1130/0091-7613(1997)025<0447:aapctf>2.3.co;2
      [40] Gough, D.O., 1981.Solar Interior Structure and Luminosity Variations.Solar Physics, 74(1):21-34. https://doi.org/10.1007/bf00151270
      [41] Gradstein, F.M., Ogg, J.G., Schmitz, M.D., et al., 2012.The Geologic Time Scale 2012.Elsevier, Amsterdam, 1144.
      [42] Graham, L.E., Cook, M.E., Wilcox, L.W., et al., 2013.Resistance of Filamentous Chlorophycean, Ulvophycean, and Xanthophycean Algae to Acetolysis:Testing Proterozoic and Paleozoic Microfossil Attributions.International Journal of Plant Sciences, 174(6):947-957. https://doi.org/10.1086/670591
      [43] Herrmann, A.D., Patzkowsky, M.E., Pollard, D., 2003.Obliquity Forcing with 8-12 Times Preindustrial Levels of Atmospheric pCO2 during the Late Ordovician Glaciation.Geology, 31(6):485.https://doi.org/10.1130/0091-7613(2003)031<0485:ofwtpl>2.0.co;2 doi: 10.1130/0091-7613(2003)031<0485:ofwtpl>2.0.co;2
      [44] Holland, H.D., 2002.Volcanic Gases, Black Smokers, and the Great Oxidation Event.Geochimica et Cosmochimica Acta, 66(21):3811-3826. https://doi.org/10.1016/s0016-7037(02)00950-x
      [45] House, J.I., Colin Prentice, I., Le Quere, C., 2002.Maximum Impacts of Future Reforestation or Deforestation on Atmospheric CO2.Global Change Biology, 8(11):1047-1052. https://doi.org/10.1046/j.1365-2486.2002.00536.x
      [46] IPCC, 2007.Climate Change 2007: The Physical Science Basis: Contribution of Working Group 1 to the Fourth Assessment Report of IPCC.IPCC WGI Fourth Assessment Report, 18.
      [47] Isbell, J.L., Miller, M.F., Wolfe, K.L., et al., 2003.Timing of Late Paleozoic Glaciation in Gondwana: Was Glaciation Responsible for the Development of Northern Hemisphere Cyclothems?In: Chan, M.A., Archer, A.W., eds., Extreme Depositional Environments: Mega End Members in Geologic Time.Geological Society of America, Special Papers, 370: 5-24.
      [48] Jahn, A., Claussen, M., Ganopolski, A., et al., 2005.Quantifying the Effect of Vegetation Dynamics on the Climate of the Last Glacial Maximum.Climate of the Past Discussions, 1(1):1-7. https://doi.org/10.5194/cpd-1-1-2005
      [49] Jiao, N.Z., Azam, F., 2011.Microbial Carbon Pump and Its Significance for Carbon Sequestration in the Ocean.In: Jiao, N.Z., Azam, F., Sanders, S., eds., Microbial Carbon Pump in the Ocean (Supplement to Science).Science/AAAS.Washington, D.C., 43-45. Microbial Carbon Pump and Its Significance for Carbon Sequestration in the Ocean.
      [50] Kasting, J.F., 1987.Theoretical Constraints on Oxygen and Carbon Dioxide Concentrations in the Precambrian Atmosphere.Precambrian Research, 34(3-4):205-229. https://doi.org/10.1016/0301-9268(87)90001-5
      [51] Kenrick, P., Wellman, C.H., Schneider, H., et al., 2012.A Timeline for Terrestrialization:Consequences for the Carbon Cycle in the Palaeozoic.Philosophical Transactions of the Royal Society B:Biological Sciences, 367(1588):519-536. https://doi.org/10.1098/rstb.2011.0271
      [52] Kirschvink, J., 1992.Late Proterozoic Low-Latitude Global Glaciation: The Snowball Earth.In: Schopf, J.W., Klein, C., eds., The Proterozoic Biosphere.Cambridge University Press, New York, 51-52.
      [53] Kirschvink, J.L., Gaidos, E.J., Bertani, L.E., et al., 2000.Paleoproterozoic Snowball Earth:Extreme Climatic and Geochemical Global Change and Its Biological Consequences.Proceedings of the National Academy of Sciences, 97(4):1400-1405. https://doi.org/10.1073/pnas.97.4.1400
      [54] Knoll, A.H., 2003.The Geological Consequences of Evolution.Geobiology, 1(1):3-14. https://doi.org/10.1046/j.1472-4669.2003.00002.x
      [55] Knoll, A.H., 2014.Paleobiological Perspectives on Early Eukaryotic Evolution.Cold Spring Harbor Perspectives in Biology, a016121.https://doi.org/10.1101/cshperspect.a016121
      [56] Kopp, R.E., Kirschvink, J.L., Hilburn, I.A., et al., 2005.The Paleoproterozoic Snowball Earth:A Climate Disaster Triggered by the Evolution of Oxygenic Photosynthesis.National Academy of Sciences of the USA, 102(32):11131-11136. doi: 10.1073/pnas.0504878102
      [57] Kubatzki, C., Claussen, M., Calov, R., et al., 2006.Sensitivity of the Last Glacial Inception to Initial and Surface Conditions.Climate Dynamics, 27(4):333-344. https://doi.org/10.1007/s00382-006-0136-6
      [58] Kump, L.R., 2008.The Rise of Atmospheric Oxygen.Nature, 451(7176):277-278. https://doi.org/10.1038/nature06587
      [59] Lenton, T.M., Boyle, R.A., Poulton, S.W., et al., 2014.Co-Evolution of Eukaryotes and Ocean Oxygenation in the Neoproterozoic Era.Nature Geoscience, 7(4):257-265. https://doi.org/10.1038/ngeo2108
      [60] Lenton, T.M., Crouch, M., Johnson, M., et al., 2012.First Plants Cooled the Ordovician.Nature Geoscience, 5(2):86-89. https://doi.org/10.1038/ngeo1390
      [61] Lenton, T.M., Dahl, T.W., Daines, S.J., et al., 2016.Earliest Land Plants Created Modern Levels of Atmospheric Oxygen.National Academy of Sciences of the USA, 113(35):9704. doi: 10.1073/pnas.1604787113
      [62] Li, Z.X., Bogdanova, S.V., Collins, A.S., et al., 2008.Assembly, Configuration, and Break-up History of Rodinia:A Synthesis.Precambrian Research, 160(1-2):179-210, 179-210. https://doi.org/10.1016/j.precamres.2007.04.021
      [63] Love, G.D., Grosjean, E., Stalvies, C., et al., 2009.Fossil Steroids Record the Appearance of Demospongiae during the Cryogenian Period.Nature, 457(7230):718-721. https://doi.org/10.1038/nature07673
      [64] Lovelock, J., 1979.Gaia:A New Look at Life on Earth.Oxford University Press, Oxford.
      [65] Luo, G., Ono, S., Beukes, N.J., et al., 2016.Rapid Oxygenation of Earths Atmosphere 2.33 Billion Years Ago.Science Advances, 2(5):1600134-1600134. https://doi.org/10.1126/sciadv.1600134
      [66] Maloof, A.C., Rose, C.V., Beach, R., et al., 2010.Possible Animal-Body Fossils in Pre-Marinoan Limestones from South Australia.Nature Geoscience, 3(9):653-659. https://doi.org/10.1038/ngeo934
      [67] Martin, R., Quigg, A., 2013.Tiny Plants That once Ruled the Seas.Scientific American, 308(6):40-45. https://doi.org/10.1038/scientificamerican0613-40
      [68] McElwain, J.C., 1998.Do Fossil Plants Signal Palaeoatmospheric CO2 Concentration in the Geological Past? Philosophical Transactions of the Royal Society, B353:83-96. http://www.bioone.org/servlet/linkout?suffix=i0883-1351-25-5-339-McElwain1&dbid=16&doi=10.2110%2Fpalo.2009.p09-107r&key=10.1098%2Frstb.1998.0193
      [69] Mei, M.X., 2016.Great Oxidation Event in History of the Earth:An Important Clue for the Further Understanding of Evolution of Palaeogeographical Background.Journal of Palaeogeography, 18(3):315-334 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GDLX201603003.htm
      [70] Meissner, K.J., Weaver, A.J., Matthews, H.D., et al., 2003.The Role of Land Surface Dynamics in Glacial Inception:A Study with the UVic Earth System Model.Climate Dynamics, 21(7-8):515-537. https://doi.org/10.1007/s00382-003-0352-2
      [71] Montanez, I.P., McElwain, J.C., Poulsen, C.J., et al., 2016.Climate, pCO2 and Terrestrial Carbon Cycle Linkages during Late Palaeozoic Glacial-Interglacial Cycles.Nature Geoscience, 9:824-828. doi: 10.1038/ngeo2822
      [72] Montanez, I.P., Tabor, N.J., Niemeier, D., et al., 2007.CO2-Forced Climate and Vegetation Instability during Late Paleozoic Deglaciation.Science, 315(5808):87-91. https://doi.org/10.1126/science.1134207
      [73] Nie, D.P., Xu, D.Y., Wang, B., 1997.The Relation between Global CO2 Balance and Forests-Problems and Developments.World Forestry Research, 5:33-40 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SJLY705.005.htm
      [74] Nisbet, E.G., Grassineau, N.V., Howe, C.J., et al., 2007.The Age of Rubisco:The Evolution of Oxygenic Photosynthesis.Geobiology, 5(4):311-335. https://doi.org/10.1111/j.1472-4669.2007.00127.x
      [75] Och, L.M., Shields-Zhou, G.A., 2012.The Neoproterozoic Oxygenation Event:Environmental Perturbations and Biogeochemical Cycling.Earth-Science Reviews, 110(1-4):26-57. https://doi.org/10.1016/j.earscirev.2011.09.004
      [76] Ohmoto, H., Watanabe, Y., Kumazawa, K., 2004.Erratum:Evidence from Massive Siderite Beds for a CO2-Rich Atmosphere before~1.8 Billion Years Ago.Nature, 429(6990):395-399. https://doi.org/10.1038/nature03166
      [77] Pavlov, A.A., Hurtgen, M.T., Kasting, J.F., 2003.Methane-Rich Proterozoic Atmosphere? Geology, 31:87-90.https://doi.org/10.1130/0091-7613(2003)031<0087:mrpa>2.0.co;2 doi: 10.1130/0091-7613(2003)031<0087:mrpa>2.0.co;2
      [78] Porter, S.M., Meisterfeld, R., Knoll, A.H., 2003.Vase-Shaped Microfossils from the Neoproterozoic Chuar Group, Grand Canyon:A Classification Guided by Modern Testate Amoebae.Journal of Paleontology, 77(3):409-429. https://doi.org/10.1017/s0022336000044140
      [79] Porter, S.M., Knoll, A.H., 2000.Testate Amoebae in the Neoproterozoic Era:Evidence from Vase-Shaped Microfossils in the Chuar Group, Grand Canyon.Paleobiology, 26(3):360-385.https://doi.org/10.1666/0094-8373(2000)026<0360:taitne>2.0.co;2 doi: 10.1666/0094-8373(2000)026<0360:taitne>2.0.co;2
      [80] Pufahl, P.K., Hiatt, E.E., 2012.Oxygenation of the Earth's Atmosphere-Ocean System:A Review of Physical and Chemical Sedimentologic Responses.Marine and Petroleum Geology, 32(1):1-20. https://doi.org/10.1016/j.marpetgeo.2011.12.002
      [81] Rosing, M.T., Dennis, K.B., Norman, H.S., et al., 2010.No Climate Paradox under the Faint Early Sun.Nature, 464(7289):744-747. doi: 10.1038/nature08955
      [82] Song, H., Jiang, G., Poulton, S.W., et al., 2017.The Onset of Widespread Marine Red Beds and the Evolution of Ferruginous Oceans.Nature Communications, 8(1):399. doi: 10.1038/s41467-017-00502-x
      [83] Sperling, E.A., Wolock, C.J., Morgan, A.S., et al., 2015.Statistical Analysis of Iron Geochemical Data Suggests Limited Late Proterozoic Oxygenation.Nature, 523(7561):451-454. https://doi.org/10.1038/nature14589
      [84] Steemans, P., Herisse, A.L., Melvin, J., et al., 2009.Origin and Radiation of the Earliest Vascular Land Plants.Science, 324(5925):353-353. https://doi.org/10.1126/science.1169659
      [85] Sun, G., Guo, S.X., Xheng, S.L., et al., 1993.First Discovery of the Earliest Angiospermous Megafossil Flora in the World.Science in China:Chemistry, 36(2):250-256. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=JBXG199302013&dbname=CJFD&dbcode=CJFQ
      [86] Takhtajan, A., 1969.Flowering Plants: Origin and Dispersal.Quarterly Review of Biology.
      [87] Veizer, J., Godderis, Y., François, L.M., 2000.Evidence for Decoupling of Atmospheric CO2 and Global Climate during the Phanerozoic Eon.Nature, 408(6813):698-701. https://doi.org/10.1038/35047044
      [88] Wallace, M.W., Hood, A.V., Shuster, A., et al., 2017.Oxygenation History of the Neoproterozoic to Early Phanerozoic and the Rise of Land Plants.Earth and Planetary Science Letters, 466:12-19. https://doi.org/10.1016/j.epsl.2017.02.046
      [89] Wang, X.D., Qie, W.K., Sheng, Q.Y., et al., 2013.Carboniferous and Lower Permian Sedimentological Cycles and Biotic Events of South China.Geological Society, London, Special Publications, 376(1):33-46. https://doi.org/10.1144/sp376.11
      [90] Wellman, C.H., Gray, J., 2000.The Microfossil Records of Early Land Plants.Philosophical Transactions of the Royal Society B:Biological Sciences, 355(1398):717-732. doi: 10.1098/rstb.2000.0612
      [91] Xing, Y.S., Liu, G.Z., 1973.Sinian Microflora of Yan-Liao Area and Its Geological Significance.Acta Geologica Sinica, 47(1):1-31, 138 (in Chinese).
      [92] Yapp, C.J., Poths, H., 1992.Ancient Atmospheric CO2 Pressures Inferred from Natural Goethites.Nature, 355(6358):342-344. https://doi.org/10.1038/355342a0
      [93] Ye, Q., Tong, J.N., Xiao, S.H., et al., 2015.The Survival of Benthic Macroscopic Phototrophs on a Neoproterozoic Snowball Earth.Geology, 43(6):507-510. https://doi.org/10.1130/g36640.1
      [94] Yin, C.Y., Gao, L.Z., 1997.New Discovery of Macropalaeophyta in the Neoproterozoic Luoyukou Fm. of the Luoyukou Group in Lushan Area, Western Henan Province.Geological Review, 43(4):355 (in Chinese).
      [95] Yin, L.M., Yuan, X.L., 2007.Radiation of Meso-Neoproterozoic and Early Cambrian Protists Inferred from the Microfossil Record of China.Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2):350-361. https://doi.org/10.1016/j.palaeo.2007.03.028
      [96] Yuan, X., 2005.Lichen-Like Symbiosis 600 Million Years Ago.Science, 308(5724):1017-1020. https://doi.org/10.1126/science.1111347
      [97] Yuan, X.L., Chen, Z., Xiao, S.H., et al., 2011.An Early Ediacaran Assemblage of Macroscopic and Morphologically Differentiated Eukaryotes.Nature, 470(7334):390-393. https://doi.org/10.1038/nature09810
      [98] Zachos, J., 2001.Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present.Science, 292(5517):686-693. https://doi.org/10.1126/science.1059412
      [99] Zhang, H.B., Guan, D.S., Zheng, S.Y., 2001.Carbon Cycling of Tropical-Rain Forest and Its Implication.Tropical Geography, 21(2):178-182 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rddl200102018
      [100] 高林志, 尹崇玉, 邢裕盛, 1999.新元古代微古植物组合序列与层序地层学.地层古生物论文集, 27:28-36. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ199900001004.htm
      [101] 梅冥相, 2016.地球历史中的巨型氧化作用事件:了解古地理背景演变的重要线索.古地理学报, 18(3):315-334. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201603002
      [102] 聂道平, 徐德应, 王兵, 1997.全球碳循环与森林关系的研究——问题与进展.世界林业研究, 5:33-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700489988
      [103] 邢裕盛, 刘桂芝, 1973.燕辽地区震旦纪微古植物群及其地质意义.地质学报, 47(1):1-31, 138. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000377444
      [104] 尹崇玉, 高林志, 1997.豫西鲁山新元古界洛峪群洛峪口组宏观后生植物新发现.地质论评, 43(4):355. doi: 10.3321/j.issn:0371-5736.1997.04.016
      [105] 张洪波, 管东生, 郑淑颖, 2001.热带雨林的碳循环及其意义.热带地理, 21(2):178-182. doi: 10.3969/j.issn.1001-5221.2001.02.018
      [106] 中国科学院, 2015.中国学科发展战略:地球生物学.北京:科学出版社, 368.
    • 加载中
    图(4)
    计量
    • 文章访问数:  3225
    • HTML全文浏览量:  1621
    • PDF下载量:  72
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-05-10
    • 刊出日期:  2018-11-15

    目录

      /

      返回文章
      返回