Differences of Hydrocarbon Accumulation Periods in Silurian of Tazhong Northern Slope, Tarim Basin
-
摘要: 塔中顺托果勒地区经历了多期构造活动,使顺10和顺9井区油气成藏过程具有一定的差异性.前人采用多种技术方法对研究区志留系成藏时期进行了深入研究,但尚未达成共识.以储层成岩作用和成岩序次分析为基础,采用显微红外光谱、显微荧光、冷阴极光等手段,对储层沥青、原油和单个油包裹体进行了系统分析,并结合埋藏史投影法确定了研究区志留系柯坪塔格组顺10和顺9井区等油气充注序次和成藏时间.结果表明,顺9井区存在3期油和1期天然气充注,加里东晚期(419.6~398.1 Ma)、海西晚期(271.5~224.0 Ma)和喜山期(11.4~1.1 Ma);顺10井区可能只存在加里东晚期(419.6~408.4 Ma)和海西晚期(271.6~236.8 Ma)油充注,缺乏晚期油气充注.顺9井区3D地震剖面层位和断裂解释显示,塔中北坡NE向走滑断裂是志留系油气运移的重要输导体系,并控制了柯坪塔格组晚期油气充注,决定了该区工业油流.因此,塔中北坡志留系油气勘探的关键是寻找喜山期充注的油气藏.Abstract: Hydrocarbon accumulations of Silurian had obvious differences between shun 10 and shun 9 well blocks due to the influence of multi-cycle tectonic activity in Shuntuoguole area of Tarim basin. Researchers used a variety of technical methods to conduct an in-depth study of the Silurian accumulation period in the study area, but no consensus has yet been reached. On the basis of diagenesis and diagenetic sequences, hydrocarbon filling sequence and charging history in shun 10 and shun 9 well blocks are determined by fluid inclusion system analysis and burial history projection combined with micro FT-IR, microscopic fluorescence and cathodeluminescence analysis in this study. Results show that the shun 9 well block displays three oil-charging stages including Late Caledonian (419.6-398.1 Ma), Late Hercynian (271.5-224.0 Ma) and the Himalayan (11.4-1.1 Ma), while shun 10 well block displays only two oil-charging stages including Late Caledonian (419.6-408.4 Ma) and Late Hercynian (271.6-236.8 Ma). 3D seismic interpretation of strata section and faults in shun 9 well block shows that, NE strike-slip faults in Tazhong northern slope are important migration system for hydrocarbon migration in the Silurian, which determines the industrial oil output in this area. Hence, the key target for hydrocarbon exploration in the Silurian lies in reservoirs charged in the Himalayan.
-
Key words:
- Silurian /
- micro FT-IR /
- fluid inclusion /
- bitumen /
- Tarim basin /
- petroleum geology
-
图 5 顺托果勒地区柯坪塔格组成岩作用特征
a.顺904H井,5 371.73 m,正交光,×5;b1.顺901井,5 297.8~5 297.9 m,透射光;b2.顺901井,5 297.8~5 297.9 m,阴极光;c.顺903H井,5 346.5 m,阴极光;d.顺901井,5 500.75 m,扫描电镜;e.顺901井,5 296.92 m,透射光;f.顺901井,5 295.05 m,正交光,×5;g.顺903H井,5 574.35~5 574.45 m,阴极光;h.顺903H井,5 574.35~5 574.45 m,方解石交代石英
Fig. 5. Diagenesis characteristics of Kepingtage Formation in Shuntuoguole
图 6 顺托果勒地区柯坪塔格组油包裹体的典型产状
a.顺901井,5 301.44 m,石英颗粒内裂纹中发黄绿色荧光油包裹体;b.顺10井,5 692.90 m,石英颗粒内裂纹中发蓝绿色荧光油包裹体;c.顺903H井,5 346.50 m,石英颗粒次生加大边中发蓝色荧光油包裹体;d.顺904H井,5 369.06 m,穿石英颗粒裂纹中发橙色荧光油包裹体;e.顺901井,5 497.00 m,方解石胶结物中发蓝绿色荧光油包裹;f.顺901井,5 499.66 m,穿石英颗粒裂纹不发荧光纯气相天然气包裹体
Fig. 6. Fluid inclusion occurrences of Kepingtage Formation in Shuntuoguole
图 7 柯坪塔格组油包裹体和同期盐水包裹体均一温度分布直方图
由于加里东晚期-海西早期流体充注的流体来自于奥陶系和寒武系,该期充注的流体具有高温特征,注入志留系的流体温度比志留系自身温度高很多,且该期充注的油主要以高成熟度为主.在有机包裹体的荧光分析中,石英颗粒内裂纹见发蓝绿色荧光高成熟度的油和发黄绿色低成熟度的油,由此笔者推测发蓝绿色荧光油包裹体为加里东晚期-海西早期充注的油被捕获的结果.因此,该幕油包裹体的均一温度和与其伴生盐水包裹体的均一温度均应减去一个差值,根据古地温梯度和深度算出的实际地层温度和测得的盐水包裹体的均一温度(陈红汉等,2017),这个差值△T=45 ℃,文中该期油包裹体和同期盐水包裹体的均一温度均为校正后的结果
Fig. 7. Homogenization temperature histogram of oil and coeval aqueous inclusions of Kepingtage Formation
表 1 塔中北坡顺9井区原油族组成特征
Table 1. Group composition of crude oil from shun 9 well block, northern slope of middle Tarim basin
井号 样品类型 深度(m) 层位 族组分(%) 非烃+沥青质(%) 饱芳比 饱和烃 芳烃 总烃 非烃 沥青质 顺9b 原油 5 560~5 589 S1k 76.3 15.9 92.2 4.9 2.9 7.8 4.8 顺9b 油砂 5 587 S1k 63.4 16.7 80.1 9.7 10.2 19.9 3.8 顺901b 油砂 5 500 S1k 57.4 25.7 83.0 9.1 7.9 16.9 2.2 顺902Ha 油砂 5 517.1 S1k 54.8 23.0 77.8 11.2 11.1 22.2 2.4 顺904Ha 油砂 5 568.1 S1k 61.2 21.0 82.2 11.0 6.8 17.8 2.9 注:a表示数据来自马中远等(2013),b表示数据来自项目报告《塔里木盆地重点探区油气成藏地球化学研究》,中石化西北油田分公司,2012. 表 2 顺托果勒地区柯坪塔格组包裹体显微测温数据
Table 2. Homogenization temperatures of fluid inclusions in Kepingtage Formation of Shuntuoguole
井区 充注幕次 油包裹体均一温度(℃) 同期盐水包裹体(℃) 顺9 第一幕 10.3~38.5 41.2~68.4 第二幕 49.2~78.0 73.0~109.8 第三幕 75.3~99.4 100.5~118.5 第四幕 96.3~124.1 115.9~142.1 第四幕 纯气相包裹体 126.1~136.5 顺10 第一幕 14.4~19.8 38.5~70.6 第二幕 56.7~75.3 98.6~110.9 第三幕 74.6~93.9 102.0~115.7 表 3 顺托果勒地区志留系柯坪塔格组单个油包裹体显微荧光参数
Table 3. Micro-fluorescence parameters of individual oil inclusion in the Silurian Kepingtage Formation
井区 油包裹体荧光颜色 λmax(nm) QF-535 顺9 橙红色 642~649 3.39~6.79 橙黄色 577~589 2.04~3.72 黄绿色 520~553 1.21~2.34 蓝绿色 480~519 0.50~1.42 亮蓝色 448~469 0.47~0.60 顺10 黄绿色 518~537 1.38~2.04 蓝绿色 493~509 0.74~1.19 表 4 顺托果勒地区柯坪塔格组(S1k)单个油包裹体显微红外光谱参数和显微测温数据
Table 4. Micro FT-IR analysis and homogenization temperatures of individual oil inclusion in Kepingtage Formation of Shuntuoguole
井号 深度(m) Xinc Xstd CH2a/CH3a 油包裹体均一温度(℃) 同期盐水包裹体均一温度(℃) 充注年龄(Ma) 顺9 5 600.46 3.16 4.39 0.99 26.9 58.8 410.0 顺9 5 599.59 3.61 4.54 1.02 23.5 61.7 403.3 顺9 5 597.27 8.31 6.10 2.15 77.8 92.5 265.1 顺9 5 600.46 10.64 6.88 1.62 75.9 93.8 264.7 顺9 5 600.46 10.00 6.67 1.45 75.6 110.3 253.8 顺9 5 600.46 10.21 6.74 1.86 82.5 108.2 256.2 顺9 5 597.95 12.15 7.38 1.78 65.6 90.6 272.3 顺9 5 600.46 14.85 8.28 1.66 97.3 126.2 10.2 顺9 5 597.95 16.36 8.79 2.04 99.0 130.0 8.4 顺9 5 599.59 17.79 9.26 2.00 101.5 127.7 9.6 顺9 5 600.46 18.72 9.57 2.39 96.5 125.4 9.9 顺901 5 497.00 7.17 5.72 1.67 79.1 102.4 260.0 顺901 5 497.00 10.50 6.83 1.93 84.6 112.5 252.0 顺901 5 497.00 11.46 7.15 1.71 83.9 110.3 253.1 顺902H 5 301.62 9.94 6.65 1.62 75.4 96.5 265.4 顺902H 5 301.62 11.97 7.32 1.78 68.7 89.4 268.7 顺10 5 693.11 3.74 4.58 1.23 16.0 54.2 415.6 顺10 5 693.11 3.98 4.66 1.20 15.6 44.8 416.9 顺10 5 693.11 4.11 4.70 1.22 19.8 70.6 408.4 顺10 5 694.27 9.59 6.53 1.63 79.5 102.3 270.5 顺10 5 694.27 10.40 6.80 1.63 83.8 106.7 254.8 顺10 5 694.27 3.60 4.53 1.29 16.4 55.3 418.2 表 5 顺托果勒地区柯坪塔格组(S1k)沥青显微红外光谱数据
Table 5. Micro FT-IR parameters of bitumens in Kepingtage Formation of Shuntuoguole
井号 深度(m) 沥青产状 CH2a/CH3a Xinc Xstd ARH3000-3100/AL2800-3000 顺10 5 694.87 顺层理分布 1.66 7.25 5.75 0.11 顺10 5 689.00 顺层理分布 1.45 2.34 4.11 0.07 顺9 5 336.56 块状沥青 1.98 17.10 9.03 0.00 顺901 5 294.78 顺层理分布 3.04 0.88 3.63 0.16 顺901 5 294.78 顺层理分布 2.19 12.24 7.41 0.05 顺901 5 301.44 块状沥青 1.72 10.53 6.84 0.02 顺902H 5 517.07 块状沥青 1.71 6.78 5.59 0.04 顺902H 5 543.05 块状沥青 1.73 5.84 5.28 0.05 顺902H 5 527.28 块状沥青 1.65 9.22 6.41 0.04 顺903H 5 590.88 块状沥青 2.17 15.17 8.39 0.04 顺903H 5 346.50 顺层理分布 6.36 53.99 21.33 0.00 顺904H 5 372.18 斑点状沥青 2.00 20.36 10.12 0.00 顺904H 5 577.10 块状沥青 1.77 15.81 8.60 0.00 顺904H 5 371.45 顺层理分布 1.62 8.45 6.15 0.00 表 6 顺托果勒地区柯坪塔格组油气充注时期
Table 6. Hydrocarbon charging periods of Kepingtage Formation in Shuntuoguole
井区 充注幕次 充注年龄(Ma) 充注时期 顺9 第一幕 419.6~398.1 加里东晚期-海西早期 第二幕 271.5~255.4 海西晚期 第三幕 258.1~224.0 海西晚期 第四幕 11.4~2.2 喜山期 第四幕 11.1~1.1 喜山期 顺10 第一幕 419.6~408.4 加里东晚期-海西早期 第二幕 271.6~261.2 海西晚期 第三幕 254.8~236.8 海西晚期 -
[1] Alstadt, K.N., Katti, D.R., Katti, K.S., 2012.An In Situ FTIR Step-Scan Photoacoustic Investigation of Kerogen and Minerals in Oil Shale.Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 89:105-113. https://doi.org/10.1016/j.saa.2011.10.078 [2] Burruss, R., 1991.Practical Aspects of Fluorescence Microscopy of Petroleum Fluid Inclusions.Society of Economic Paleontologists & Mineralogists, 25(1):1-7. https://doi.org/10.2110/scn.91.25 [3] Chen, H.H., 2014.Microspectrofluorimetric Characterization and Thermal Maturity Assessment of Individual Oil Inclusion.Acta Petrolei Sinica, 35(3):584-590 (in Chinese with English abstract). https://www.researchgate.net/profile/Peter_Owens2/citations?sorting=recent&page=1 [4] Chen, H.H., Mi, L.J., Liu, Y.H., et al., 2017.Genesis, Distribution and Risk Belt Prediction of CO2 in Deep-Water Area in the Pearl River Mouth Basin.Acta Petrolei Sinica, 38(2):119-134 (in Chinese with English abstract). http://www.academia.edu/7708856/T3S5_O1_Beds_Bars_Bends_Banks_and_Basins_Construction_of_the_Seascape_and_Deep-Marine_Strata_by_Turbidity_Currents [5] Ferket, H., Guilhaumou, N., Roure, F., et al., 2011.Insights from Fluid Inclusions, Thermal and PVT Modeling for Paleo-Burial and Thermal Reconstruction of the Córdoba Petroleum System (NE Mexico).Marine and Petroleum Geology, 28(4):936-958. https://doi.org/10.1016/j.marpetgeo.2010.01.020 [6] Ganz, H., Kalkreuth, W., 1987.Application of Infrared Spectroscopy to the Classification of Kerogen Types and the Evaluation of Source Rock and Oil Shale Potentials.Fuel, 66(5):708-711. https://doi.org/10.1016/0016-2361(87)90285-7 [7] Huang, H.P., Zhang, S.C., Su, J., 2016.Palaeozoic Oil-Source Correlation in the Tarim Basin, NW China:A Review.Organic Geochemistry, 94:32-46. https://doi.org/10.1016/j.orggeochem.2016.01.008 [8] Huang, T.Z., 2014.Structural Interpretation and Petroleum Exploration Targets in Northern Slope of Middle Tarim Basin.Petroleum Geology & Experiment, 36(3):257-267 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201403002.htm [9] Huo, Z.P., Jiang, T., Pang, X.Q., et al., 2016.Evaluation of Deep Carbonate Source Rocks with Low TOC and Contribution to Oil-Gas Accumulation in Tazhong Area, Tarim Basin.Earth Science, 41(12):2061-2074 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.143 [10] Khorasani, G.K., 1987.Novel Development in Fluorescence Microscopy of Complex Organic Mixtures:Application in Petroleum Geochemistry.Organic Geochemistry, 11(3):157-168. https://doi.org/10.1016/0146-6380(87)90019-2 [11] Li, F., Jiang, Z.X., Li, Z., et al., 2016.Fluid Inclusion Characteristic and Hydrocarbon Charge History of Dibei Gas Reservoir in the Kuqa Depression.Journal of Central South University (Science and Technology), 47(2):515-523 (in Chinese with English abstract). https://www.scientific.net/amr.339.517.pdf [12] Li, M.J., Hu, S.H., Wang, Q.G., et al., 2006.Discovery of Strike-Slip Fault System in Tazhong Area and Geologic Meaning.Oil Geophysical Prospecting, 41(1):116-121 (in Chinese with English abstract). [13] Lis, G.P., Mastalerz, M., Schimmelmann, A., et al., 2005.FTIR Absorption Indices for Thermal Maturity in Comparison with Vitrinite Reflectance Ro in Type-Ⅱ Kerogens from Devonian Black Shales.Organic Geochemistry, 36(11):1533-1552. https://doi.org/10.1016/j.orggeochem.2005.07.001 [14] Liu, D.M., Jin, K.L., Wang, L.Z., 1999.Characteristics and Genesis of Silurian Bituminous Sandstone in the Tarim Basin.Geoscience, 13(2):49-55 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXW201201021.htm [15] Liu, L.F., Fang, J.H., Wang, H.Y., 2001a.Petrological Characteristics of the Silurian Asphltic Sandstones in Talimu Basin and the Significance of Studying Them.Journal of Xi'an Petroleum Institute (Natural Science Edition), 16(1):16-22 (in Chinese with English abstract). doi: 10.1007/BF02873769 [16] Liu, L.F., Zhao, J.Z., Zhang, S.C., et al., 2001b.The Depositional and Structural Settings and the Bituminous Sandstone Distribution Characters of the Silurian in Tarim Basin.Acta Petrolei Sinica, 22(6):11-17 (in Chinese with English abstract). doi: 10.1007/BF03187450 [17] Liu, L.F., Zhao, J.Z., Zhang, S.C., et al., 2000a.Hydrocarbon Filling Ages and Evolution of the Silurian Asphalt Sandstones in Tarim Basin.Acta Sedimentologica Sinica, 18(3):475-479 (in Chinese with English abstract). doi: 10.1007/BF02873769 [18] Liu, L.F., Zhao, J.Z., Zhang, S.C., et al., 2000b.Genetic Types and Characteristics of the Silurian Asphaltic Sandstones in Tarim Basin.Acta Petrolei Sinica, 21(6):12-17 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1872579108600305 [19] Lu, X.S., Song, Y., Liu, S.B., et al., 2012.Detailed Analysis of Fluid Inclusions and Its Application in Accumulation History Research on Silurian Reservoirs in Tazhong Area, Tarim Basin.Journal of China University of Petroleum, 36(4):45-50, 76 (in Chinese with English abstract). https://www.researchgate.net/publication/288633871_Detailed_analysis_of_fluid_inclusions_and_its_application_in_accumulation_history_research_on_Silurian_reservoirs_in_Tazhong_area_Tarim_Basin [20] Lü, X.X., Bai, Z.K., Zhao, F.Y., 2008.Hydrocarbon Accumulation and Distributional Characteristics of the Silurian Reservoirs in the Tazhong Uplift of the Tarim Basin.Earth Science Frontiers, 15(2):156-166 (in Chinese with English abstract). doi: 10.1016/S1872-5791(08)60030-5 [21] Ma, Q.Y., Sha, X.G., Li, Y.L., et al., 2012.Characteristics of Strike-Slip Fault and Its Controlling on Oil in Shuntuoguole Region, Middle Tarim Basin.Petroleum Geology & Experiment, 34(2):120-124 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_sysydz201202003.aspx [22] Ma, Z.Y., Huang, W., Li, J.J., et al., 2013.Geochemical Characteristics of Crude Oil from Lower Kalpintag Formation in SH9 Well Area, Northern Slope of Middle Tarim Basin.Petroleum Geology & Experiment, 35(5):559-563 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_sysydz201305016.aspx [23] Munz, I.A., 2001.Petroleum Inclusions in Sedimentary Basins:Systematics, Analytical Methods and Applications.Lithos, 55(1-4):195-212. https://doi.org/10.1016/s0024-4937(00)00045-1 [24] Odeh, A.O., 2015.Qualitative and Quantitative ATR-FTIR Analysis and Its Application to Coal Char of Different Ranks.Journal of Fuel Chemistry and Technology, 43(2):129-137. https://doi.org/10.1016/s1872-5813(15)30001-3 [25] Okolo, G.N., Neomagus, H.W.J.P., Everson, R.C., et al., 2015.Chemical-Structural Properties of South African Bituminous Coals:Insights from Wide Angle XRD-Carbon Fraction Analysis, ATR-FTIR, Solid State 13C NMR, and HRTEM Techniques.Fuel, 158:779-792. https://doi.org/10.1016/j.fuel.2015.06.027 [26] Pironon, J., Barres, O., 1990.Semi-Quantitative FT-IR Microanalysis Limits:Evidence from Synthetic Hydrocarbon Fluid Inclusions in Sylvite.Geochimica et Cosmochimica Acta, 54(3):509-518. https://doi.org/10.1016/0016-7037(90)90348-o [27] Pironon, J., Thiéry, R., Teinturier, S., et al., 2000.Water in Petroleum Inclusions:Evidence from Raman and FT-IR Measurements, PVT Consequences.Journal of Geochemical Exploration, 69-70:663-668. https://doi.org/10.1016/s0375-6742(00)00108-4 [28] Qin, Z.H., Chen, H., Yan, Y.J., et al., 2015.FTIR Quantitative Analysis upon Solubility of Carbon Disulfide/N-Methyl-2-Pyrrolidinone Mixed Solvent to Coal Petrographic Constituents.Fuel Processing Technology, 133:14-19. https://doi.org/10.1016/j.fuproc.2015.01.001 [29] Stasiuk, L.D., Snowdon, L.R., 1997.Fluorescence Micro-Spectrometry of Synthetic and Natural Hydrocarbon Fluid Inclusions:Crude Oil Chemistry, Density and Application to Petroleum Migration.Applied Geochemistry, 12(3):229-241. https://doi.org/10.1016/s0883-2927(96)00047-9 [30] Wang, Q.R., Chen, H.H., Hu, S.Z., et al., 2016.Curve-Fitting Analysis of Micro FT-IR and Its Application on Individual Oil Inclusion and Micro-Area Bitumens.Earth Science, 41(11):1921-1934 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.133 [31] Weng, S.F., 2010.Fourier Transform Infrared Spectrum Analysis.Chemical Industry Press, Beijing, 269-272 (in Chinese). [32] Yang, S.B., Liu, J., Li, H.L, et al., 2013.Characteristics of the NE-Trending Strike-Slip Fault System and Its Control on Oil Accumulation in North Peri-Cline Area of the Tazhong Paleouplift.Oil & Gas Geology, 34(6):797-802 (in Chinese with English abstract). https://www.researchgate.net/publication/288172274_Fault_characteristics_and_hydrocarbon_geological_significances_in_Rongxingtun_structural_zone_of_East_sag_Liaohe_Depression [33] Zhang, S.C., Su, J., Wang, X.M., et al., 2011.Geochemistry of Palaeozoic Marine Petroleum from the Tarim Basin, NW China:Part 3.Thermal Cracking of Liquid Hydrocarbons and Gas Washing as the Major Mechanisms for Deep Gas Condensate Accumulations.Organic Geochemistry, 42(11):1394-1410. https://doi.org/10.1016/j.orggeochem.2011.08.013 [34] Zhang, S.C., Zhang, B.M., Li, B.L., et al., 2011.History of Hydrocarbon Accumulations Spanning Important Tectonic Phases in Marine Sedimentary Basins of China:Taking the Tarim Basin as an Example.Petroleum Exploration and Development, 38(1):1-15 (in Chinese with English abstract). doi: 10.1016/S1876-3804(11)60010-4 [35] Zhang, S.C., Zhang, B., Yang, H.J., et al., 2012.Adjustment and Alteration of Hydrocarbon Reservoirs during the Late Himalayan Period, Tarim Basin, NW China.Petroleum Exploration and Development, 39(6):668-680 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1876380412600962 [36] Zhang, Y.Y., Luo, X.Q., 2012.K-Ar and Ar-Ar Dating of Authigenic Illite and Hydrocarbon Accumulation History of Carboniferous and Silurian Sandstone Reservoirs in Well Ha 6, Tarim Basin.Acta Petrolei Sinica, 33(5):748-757 (in Chinese with English abstract). https://www.researchgate.net/publication/286722377_K-Ar_and_Ar-Ar_dating_of_authigenic_illite_and_hydrocarbon_accumulation_history_of_Carboniferous_and_Silurian_sandstone_reservoirs_in_Well_Ha_6_Tarim_Basin [37] Zhang, Y.Y., Zwingmann, H., Liu, K.Y., et al., 2007.K-Ar Isotopic Dating of Authigenic Illite and Its Application to the Investigation of Hydrocarbon Accumulation History of the Silurian Bituminous Sandstone Reservoirs in the Tazhong Uplift, Tarim Basin.Oil & Gas Geology, 28(2):166-174 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200702009.htm [38] Zhang, Y.Y., Zwingmann, H., Liu, K.Y., et al., 2011.Hydrocarbon Charge History of the Silurian Bituminous Sandstone Reservoirs in the Tazhong Uplift, Tarim Basin, China.AAPG Bulletin, 95(3):395-412. https://doi.org/10.1306/08241009208 [39] Zhao, J.Z., Li, Q.M., 2002.Hydrocarbon Accumulation Periods and History in Tarim Basin.Chinese Science Bulletin, 47(S1):116-121 (in Chinese). https://www.sciencedirect.com/science/article/pii/S1872579108600305 [40] 陈红汉, 2014.单个油包裹体显微荧光特性与热成熟度评价.石油学报, 35(3):584-590. doi: 10.7623/syxb201403023 [41] 陈红汉, 米立军, 刘妍鷨, 等, 2017.珠江口盆地深水区CO2成因、分布规律与风险带预测.石油学报, 38(2):119-134. doi: 10.7623/syxb201702001 [42] 黄太柱, 2014.塔里木盆地塔中北坡构造解析与油气勘探方向.石油实验地质, 36(3):257-267. doi: 10.11781/sysydz201403257 [43] 霍志鹏, 姜涛, 庞雄奇, 等, 2016.塔中地区深层低丰度碳酸盐岩有效烃源岩评价及其对油气藏的贡献.地球科学, 41(12):2061-2074. https://doi.org/10.3799/dqkx.2016.143 [44] 李峰, 姜振学, 李卓, 等, 2016.库车坳陷迪北气藏流体包裹体特征及油气充注历史.中南大学学报(自然科学版), 47(2):515-523. doi: 10.11817/j.issn.1672-7207.2016.02.023 [45] 李明杰, 胡少华, 王庆果, 2006.塔中地区走滑断裂体系的发现及其地质意义.石油地球物理勘探, 41(1):116-121. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203008.htm [46] 刘大锰, 金奎励, 王凌志.1999.塔里木盆地志留系沥青砂岩的特性及其成因.现代地质, 13(2):49-55. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xddz902.008&dbname=CJFD&dbcode=CJFQ [47] 刘洛夫, 方家虎, 王鸿燕, 2001a.塔里木盆地志留系沥青砂岩岩石学特征及其意义.西安石油大学学报(自然科学版), 16(1):16-22. http://www.cnki.com.cn/Article/CJFDTOTAL-NXSH201504025.htm [48] 刘洛夫, 赵建章, 张水昌, 等, 2001b.塔里木盆地志留系沉积构造及沥青砂岩的特征.石油学报, 22(6):11-17. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=syxb200106002&dbname=CJFD&dbcode=CJFQ [49] 刘洛夫, 赵建章, 张水昌, 等, 2000a.塔里木盆地志留系沥青砂岩的形成期次及演化.沉积学报, 18(3):475-479. http://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201504002.htm [50] 刘洛夫, 赵建章, 张水昌, 等, 2000b.塔里木盆地志留系沥青砂岩的成因类型及特征.石油学报, 21(6):12-17. https://www.wenkuxiazai.com/doc/65eb3ce7dd36a32d7275811e.html [51] 鲁雪松, 宋岩, 柳少波, 等, 2012.流体包裹体精细分析在塔中志留系油气成藏研究中的应用.中国石油大学学报(自然科学版), 36(4):45-50, 76. http://www.cnki.com.cn/Article/CJFDTOTAL-DQSY200903009.htm [52] 吕修祥, 白忠凯, 赵风云, 2008.塔里木盆地塔中隆起志留系油气成藏及分布特点.地学前缘, 15(2):156-166. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxqy200802021&dbname=CJFD&dbcode=CJFQ [53] 马庆佑, 沙旭光, 李玉兰, 等, 2012.塔中顺托果勒区块走滑断裂特征及控油作用.石油实验地质, 34(2):120-124. doi: 10.11781/sysydz201202120 [54] 马中远, 黄苇, 李婧婧, 等, 2013.塔中北坡SH9井区柯坪塔格组下段原油地球化学特征.石油实验地质, 35(5):559-563. doi: 10.11781/sysydz201305559 [55] 王倩茹, 陈红汉, 胡守志, 等, 2016.单个油包裹体和微区沥青显微红外光谱分峰拟合技术及应用.地球科学, 41(11):1921-1934. https://doi.org/10.3799/dqkx.2016.133 [56] 翁诗甫, 2010.傅里叶变换红外光谱分析.北京:化学工业出版社, 269-272. [57] 杨圣彬, 刘军, 李慧莉, 等, 2013.塔中北围斜区北东向走滑断裂特征及其控油作用.石油与天然气地质, 34(6):797-802. doi: 10.11743/ogg20130612 [58] 张水昌, 张宝民, 李本亮, 等, 2011.中国海相盆地跨重大构造期油气成藏历史—以塔里木盆地为例.石油勘探与开发, 38(1):1-15. https://wap.cnki.net/qikan-SKYK201206005.html [59] 张水昌, 张斌, 杨海军, 等, 2012.塔里木盆地喜马拉雅晚期油气藏调整与改造.石油勘探与开发, 39(6):668-680. https://wap.cnki.net/qikan-SKYK201206005.html [60] 张有瑜, 罗修泉, 2012.塔里木盆地哈6井石炭系、志留系砂岩自生伊利石K-Ar、Ar-Ar测年与成藏年代.石油学报, 33(5):748-757. doi: 10.7623/syxb201205003 [61] 张有瑜, Zwingmann, H., 刘可禹, 等, 2007.塔中隆起志留系沥青砂岩油气储层自生伊利石K-Ar同位素测年研究与成藏年代探讨.石油与天然气地质, 28(2):166-174. doi: 10.11743/ogg20070206 [62] 赵靖舟, 李启明, 2002.塔里木盆地克拉通区海相油气成藏期与成藏史.科学通报, 47(S1):116-121. http://www.oalib.com/paper/5025082