Geochemical Characteristics of An'nage Hornblende Gabbro from East Kunlun Orogenic Belt and Its Constraints on Evolution of Paleo-Tethys Ocean
-
摘要: 目前关于东昆仑地区二叠纪-三叠纪基性岩浆岩的研究极为薄弱, 这不仅限制了对该时期东昆仑地区地幔源区性质的理解, 也在一定程度上制约了对古特提斯洋演化历史的准确认识.对东昆仑东段按纳格角闪辉长岩体进行了锆石U-Pb年代学、全岩地球化学和Sr-Nd-Hf同位素研究.结果显示:角闪辉长岩的锆石U-Pb定年结果为242±2 Ma; 岩体具有较低的SiO2(46.00%~52.40%)及(Na2O+K2O)含量(3.07%~3.79%), 碱度(δ)值为1.26~3.14;另外, 岩石具有较高的Al2O3(17.35%~20.10%), MgO(4.65%~6.53%)和FeOT(8.77%~11.07%)含量, Mg#值为68~75, 属于钙碱性系列.岩石(La/Yb)N为1.72~5.48, δEu为0.87~1.00, 具有弱的轻重稀土分异和负铕异常, 其富集大离子亲石元素, 亏损高场强元素, 具有低Nb/Ta值(3.7~8.8), 显示岛弧岩浆岩的地球化学特征.全岩(87Sr/86Sr)i值(0.708 80~0.710 36)和εNd(t)值(-4.8~-3.4)相对集中, 锆石εNd(t)值为-4.9~-0.4.综合分析表明, 岩浆起源于俯冲板片流体交代的地幔楔, 为尖晶石相金云母二辉橄榄岩的部分熔融产物, 岩浆在上升侵位过程中未遭受明显地壳混染, 但经历了少量单斜辉石和斜长石的分离结晶作用.综合区域构造演化史以及同时代岩浆岩的年代学和地球化学特征, 认为按纳格角闪辉长岩体侵位于古特提斯洋北向俯冲的晚期, 该区古特提斯洋的最终闭合时间为中-晚三叠世.Abstract: At present, the research on Permian-Triassic basic magmatic rocks in East Kunlun orogenic belt is extremely weak, which not only limits the understanding of the nature of the mantle source in the study area during this period but also restricts the accurate understanding of the evolution processes of Paleo-Tethys Ocean.The zircon LA-ICP-MS U-Pb geochronology and major and trace elements, as well as Sr-Nd-Hf isotope geochemistry of the An'nage hornblende gabbro in the East Kunlun orogenic belt are applied in this paper.LA-ICP-MS zircon U-Pb dating yields a weighted mean age of 242±2 Ma for the intrusion.It is characterized by low SiO2(46.00%-52.40%), low(Na2O+K2O)(3.07%-3.79%) contents.In addition, it is enriched in Al2O3(17.35%-20.10%), MgO(4.65%-6.53%) and FeOT(8.77%-11.07%) with high Mg#(68-75), indicating that it belongs to the calc-alkaline series.This intrusion has low(La/Yb)N and Nb/Ta ratios, negative Eu anomalies, with enriched large-ion lithophile elements and depleted high field strength elements.All geochemical characteristics show that this intrusion is the result of typical island arc magmatic activity.Additionally, the samples have relatively uniform(87Sr/86Sr)i ratios(0.708 80-0.710 36) and εNd(t) values(-4.8 to -3.4), and relatively high εHf(t) values(-4.9 to -0.4).According to the lithology, geochemical characteristics and isotopic compositions of the intrusion, we propose that the magma has not been significantly contaminated by the crust and it was derived from the low-degree partial melting(2%-10%) of the mantle wedge, which had undergone metasomatism induced by the fluid from the subducted slab.The mantle source was characterized by the spinel phase-phlogopite lherzolite.Slight fractional crystallization of pyroxene and plagioclase might also occur during the evolution of magma.In combination with the tectonic evolution of the East Kunlun orogenic belt and the geochronological and geochemical characteristics of contemporary intrusive rocks, it is concluded that the An'nage hornblende gabbro was produced at the late stage of Paleo-Tethys Ocean subduction, and the final closure timing of Paleo-Tethys Ocean should be the Middle Triassic to Late Triassic.
-
Key words:
- hornblende gabbro /
- Triassic /
- Paleo-Tethys Ocean /
- subduction /
- East Kunlun orogenic belt /
- geochronology /
- geochemistry
-
图 1 东昆仑造山带构造位置(a)、岩浆岩分布(b)和按纳格角闪辉长岩体地质简图(c)
图a据Xia et al.(2015a), 图b据Xia et al.(2015b)
Fig. 1. Geotectonic framework(a) and magmatite distribution(b) of East Kunlun orogenic belt, and simplified geological map of the An'nage hornblende gabbro(c)
图 5 按纳格角闪辉长岩体TAS图解(a)和FeOT-FeOT/MgO图解(b)
图a底图据Wison(1989); 图b底图据Miyashiro(1974); 白日其利镁铁质岩(251 Ma)数据据熊富浩等(2011)
Fig. 5. TAS diagram(a) and FeOT vs.FeOT/MgO diagram(b) for An'nage hornblende gabbro
图 8 按纳格角闪辉长岩体的εNd(t)-(87Sr/86Sr)i图解(a), Nd同位素图解(b), 锆石Hf同位素图解(c)和Hf同位素二阶段模式年龄直方图(d)
图中白日其利镁铁质岩数据来源同图 5; a图中东昆仑基底数据来自陈宣华等(2011), 富集岩石圈地幔数据来自刘成东等(2003)以及熊富浩等(2011), 岩浆弧数据来自Xiong et al.(2012)和刘成东等(2003)
Fig. 8. The εNd(t)-(87Sr/86Sr)i relations(a), Nd isotopic compositions(b), Hf isotopic compositions of zircons(c) and histogram of Hf isotopic two-stage model age(d) of An'nage hornblende gabbro
图 9 按纳格角闪辉长岩体源区成分判别图解
图a数据来自Furman and Graham(1999); 图c数据来自柴凤梅等(2007); 图d数据来自赵少卿等(2015); 图c和d中带短横线曲线为地幔岩浆熔融程度趋势线
Fig. 9. The discrimination diagrams of source composition for An'nage hornblende gabbro
图 10 按纳格角闪辉长岩体Hf/3-Th-Nb/16(a)和Ti/100-Zr-Sr/2(b)构造环境判别图解
图a底图据Wood et al.(1979); 图b底图据Pearce and Cann(1973)
Fig. 10. Hf/3-Th-Rb/16(a) and Ti/100-Zr-Sr/2(b) discrimination diagrams for An'nage hornblende gabbro
表 1 按纳格角闪辉长岩锆石LA-ICP-MS U-Pb定年分析数据
Table 1. Zircon LA-ICP-MS U-Pb data of An'nage hornblende gabbro
点号 Th(10-6) U(10-6) Th/U 同位素比值 年龄(Ma) 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ An2-1 166 128 1.30 0.074 81 0.002 61 0.394 59 0.015 03 0.038 27 0.000 59 0.011 31 0.000 45 1 064 69 338 11 242 4 227 9 An2-2 146 124 1.18 0.051 58 0.001 71 0.271 33 0.009 99 0.038 17 0.000 56 0.012 75 0.000 50 267 74 244 8 242 3 256 10 An2-3 46 49 0.94 0.056 86 0.004 13 0.300 69 0.021 89 0.038 37 0.000 81 0.013 70 0.000 70 486 153 267 17 243 5 275 14 An2-4 99 108 0.91 0.053 26 0.002 07 0.280 41 0.011 69 0.038 20 0.000 58 0.012 06 0.000 52 340 85 251 9 242 4 242 10 An2-5 282 160 1.76 0.067 25 0.002 64 0.350 68 0.014 70 0.037 83 0.000 60 0.012 12 0.000 53 846 80 305 11 239 4 244 11 An2-6 227 179 1.27 0.052 06 0.002 27 0.274 84 0.012 63 0.038 30 0.000 61 0.011 54 0.000 54 288 97 247 10 242 4 232 11 An2-7 383 268 1.43 0.050 25 0.001 33 0.265 62 0.008 23 0.038 35 0.000 53 0.011 48 0.000 52 207 60 239 7 243 3 231 10 An2-08 442 342 1.29 0.059 45 0.001 69 0.314 34 0.010 26 0.038 36 0.000 54 0.012 58 0.000 60 584 61 278 8 243 3 253 12 An2-09 114 97 1.17 0.051 35 0.002 09 0.270 21 0.011 70 0.038 18 0.000 59 0.012 14 0.000 62 256 91 243 9 242 4 244 12 An2-10 421 219 1.93 0.051 77 0.001 56 0.276 53 0.009 41 0.038 75 0.000 55 0.011 59 0.000 60 275 68 248 7 245 3 233 12 An2-11 266 157 1.69 0.051 43 0.002 60 0.273 35 0.014 24 0.038 55 0.000 64 0.012 12 0.000 41 260 112 245 11 244 4 244 8 An2-12 346 224 1.54 0.056 81 0.001 48 0.298 47 0.009 03 0.038 11 0.000 51 0.012 20 0.000 38 484 56 265 7 241 3 245 8 An2-13 206 108 1.90 0.060 45 0.003 02 0.318 83 0.016 36 0.038 25 0.000 65 0.012 61 0.000 46 620 104 281 13 242 4 253 9 An2-14 187 119 1.57 0.062 93 0.003 16 0.330 72 0.017 03 0.038 12 0.000 66 0.012 83 0.000 50 706 103 290 13 241 4 258 10 An2-15 138 135 1.02 0.058 67 0.002 45 0.307 74 0.013 51 0.038 05 0.000 59 0.012 33 0.000 50 555 89 272 10 241 4 248 10 An2-16 163 145 1.13 0.053 87 0.001 75 0.283 48 0.010 15 0.038 17 0.000 54 0.012 29 0.000 49 366 72 253 8 242 3 247 10 An2-17 206 195 1.05 0.050 82 0.001 39 0.265 47 0.008 35 0.037 89 0.000 52 0.012 10 0.000 50 233 62 239 7 240 3 243 10 表 2 按纳格角闪辉长岩主量元素(%)、微量元素(10-6)和稀土元素(10-6)分析结果
Table 2. Major elements(%), trace elements(10-6) and rare earth elements(10-6) results of An'nage hornblende gabbro
样号 An1 An2 An3 An4 An5 An6 SiO2 51.20 52.40 51.40 49.80 51.40 46.00 Al2O3 18.20 17.95 18.25 17.45 17.35 20.10 FeOT 8.92 8.77 10.04 11.07 10.10 8.86 TiO2 0.82 1.08 1.07 1.12 1.16 0.92 MnO 0.17 0.13 0.17 0.17 0.15 0.14 MgO 5.82 4.65 5.53 5.95 5.71 6.53 CaO 8.39 7.98 7.80 7.83 7.76 10.95 BaO 0.03 0.03 0.03 0.03 0.03 0.03 Na2O 2.21 2.37 2.48 2.04 2.34 2.05 K2O 1.01 1.42 0.90 1.34 1.30 1.02 P2O5 0.09 0.15 0.10 0.10 0.10 0.06 LOI 2.04 2.39 1.57 2.40 1.69 2.55 Total 99.06 99.49 99.58 99.61 99.32 99.37 Na2O+K2O 3.22 3.79 3.38 3.38 3.64 3.07 FeOT/MgO 1.53 1.89 1.82 1.86 1.77 1.36 Mg# 72 68 69 68 69 75 δ 1.26 1.53 1.36 1.68 1.58 3.14 Li 33.8 35.3 23.9 15.1 13.9 12.5 Be 1.56 2.12 1.81 0.69 0.77 0.46 Sc 46.8 50.1 57.7 25.5 28.4 23.5 V 381 537 623 293 278 186 Cr 68.3 42.7 59.4 37.3 24.5 86.8 Co 158.0 139.0 164.0 56.1 59.5 65.6 Ni 73.3 66.2 83.1 33.7 27.8 45.3 Cu 21.5 33.2 88.9 35.9 35.2 10.2 Zn 223 225 283 124 145 109 Ga 37.3 42.3 41.1 17.4 17.3 17.3 Rb 74.3 105.0 69.6 43.7 45.5 33.2 Sr 655 714 621 241 256 273 Y 51.8 46.3 45.3 20.1 22.0 26.2 Zr 171.0 129.0 143.0 46.8 48.8 51.7 Nb 13.7 16.0 13.8 5.3 12.6 3.8 Cs 3.5 6.1 3.5 2.1 2.7 1.6 Ba 523 677 522 270 292 221 La 26.9 35.3 29.8 10.6 12.8 6.1 Ce 55.3 71.2 59.4 23.1 26.0 14.2 Pr 7.2 9.0 7.2 2.9 3.2 2.1 Nd 31.5 36.6 28.9 12.4 13.1 10.1 Sm 7.9 7.9 6.9 3.0 3.2 3.1 Eu 2.32 2.63 2.20 0.95 1.04 0.99 Gd 8.4 7.9 7.4 3.3 3.6 3.8 Tb 1.44 1.28 1.23 0.54 0.60 0.66 Dy 8.7 7.7 7.5 3.3 3.7 4.3 Ho 1.83 1.60 1.57 0.69 0.76 0.91 Er 5.28 4.68 4.58 2.01 2.22 2.63 Tm 0.77 0.68 0.66 0.29 0.32 0.38 Yb 4.85 4.34 4.21 1.84 1.99 2.40 Lu 0.73 0.65 0.64 0.28 0.30 0.36 Hf 4.39 3.94 4.23 1.52 1.64 1.68 Ta 3.71 1.82 2.37 0.73 1.72 0.82 Tl 0.37 0.53 0.36 0.25 0.25 0.17 Pb 11.0 16.2 12.2 5.1 5.9 4.7 Th 5.9 7.0 9.2 2.4 2.9 0.8 U 0.72 0.83 1.55 0.62 0.48 0.24 ΣREE 215 238 208 85 95 78 (La/Yb)N 3.74 5.48 4.77 3.88 4.34 1.72 δEu 0.87 1.00 0.94 0.92 0.93 0.88 注:FeOT为全铁含量; LOI为烧矢量; Mg#=100×Mg/(Ma+Fe), 原子个数之比; 碱度δ=(Na2O+K2O)2/(SiO2-43);δEu=2EuN/(SmN+GdN)(Sun and McDonough, 1989), 下标N为球粒陨石标准化值. 表 3 按纳格角闪辉长岩Sr-Nd同位素分析结果
Table 3. Sr-Nd isotopic compositions of An'nage hornblende gabbro
样号 87Rb/86Sr 87Sr/86Sr 1σ (87Sr/86Sr)i 147Sm/144Nd 143Nd/144Nd 1σ εNd(t) tDM2(Ma) An1 0.328 0.710 48 0.000 02 0.709 35 0.151 418 0.512 369 0.000 006 -3.9 1 326 An2 0.426 0.711 82 0.000 02 0.710 36 0.130 812 0.512 287 0.000 005 -4.8 1 405 An3 0.324 0.710 02 0.000 02 0.708 91 0.143 496 0.512 381 0.000 006 -3.4 1 287 An4 0.525 0.710 74 0.000 02 0.708 94 0.145 768 0.512 375 0.000 003 -3.6 1 303 An5 0.514 0.710 56 0.000 04 0.708 80 0.148 593 0.512 388 0.000 006 -3.4 1 289 注:εNd(t)值计算采用(147Sm/144Nd)CHUR=0.196 7, (143Nd/144Nd)CHUR=0.512 638;t代表成岩年龄(242 Ma); 同位素亏损地幔模式年龄tDM2计算采用(147Sm/144Nd)DM=0.213 7, (143Nd/144Nd)DM=0.513 15. 表 4 按纳格角闪辉长岩锆石Hf同位素分析结果
Table 4. Hf isotopic data for zircon samples from An'nage hornblende gabbro
点号 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ t(Ma) εHf(0) εHf(t) tDM1(Ma) tDM2(Ma) fLu/Hf An2-1 0.037 146 0.001 727 0.282 583 0.000 020 242 -6.7 -1.6 965 1 153 -0.95 An2-2 0.039 615 0.001 834 0.282 491 0.000 025 242 -9.9 -4.9 1100 1 318 -0.94 An2-3 0.036 556 0.001 650 0.282 557 0.000 027 243 -7.6 -2.6 1001 1 200 -0.95 An2-4 0.034 658 0.001 657 0.282 568 0.000 021 242 -7.2 -2.2 985 1 179 -0.95 An2-5 0.034 797 0.001 571 0.282 576 0.000 019 239 -6.9 -1.9 972 1 165 -0.95 An2-6 0.037 491 0.001 661 0.282 575 0.000 027 242 -7.0 -1.9 975 1 167 -0.95 An2-7 0.064 186 0.002 795 0.282 572 0.000 027 243 -7.1 -2.2 1010 1 181 -0.92 An2-8 0.022 967 0.001 044 0.282 590 0.000 034 243 -6.4 -1.3 938 1 136 -0.97 An2-10 0.048 051 0.002 033 0.282 592 0.000 037 245 -6.4 -1.4 960 1 139 -0.94 An2-11 0.051 703 0.002 161 0.282 619 0.000 037 244 -5.4 -0.4 925 1 092 -0.93 An2-12 0.086 838 0.003 532 0.282 594 0.000 038 241 -6.3 -1.6 999 1 148 -0.89 An2-13 0.043 328 0.001 806 0.282 611 0.000 036 242 -5.7 -0.7 927 1 103 -0.95 An2-14 0.025 801 0.001 089 0.282 577 0.000 029 241 -6.9 -1.7 957 1 158 -0.97 An2-15 0.041 244 0.001 818 0.282 522 0.000 036 241 -8.9 -3.8 1056 1 264 -0.95 An2-16 0.053 913 0.002 218 0.282 571 0.000 025 242 -7.1 -2.1 996 1 179 -0.93 An2-17 0.041 781 0.001 861 0.282 568 0.000 028 240 -7.2 -2.1 991 1 181 -0.94 注:εHf(t)采用(176Lu/177Hf)CHUR=0.033 2和(176Hf/177Hf)CHUR, 0=0.282 772进行计算( Blichert-Toft et al., 1997 ), tDM采用(176Lu/177Hf)DM=0.038 4和(176Hf/177Hf)DM=0.283 25进行计算(Griffin et al., 2004 ), 176Lu衰变常数采用1.867×10-11 a-1(Söderlund et al., 2004 ). -
[1] Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses That Do not Report 204Pb.Chemical Geology, 192(1-2):59-79. https://doi.org/10.1016/s0009-2541(02)00195-x [2] Black, L.P., Gulson, B.L., 1978.The Age of the Mud Tank Carbonatite, Strangways Range, Northern Territory.BMR Journal of Australian Geology and Geophysics, 3(3):227-232. http://www.oalib.com/references/15774673 [3] Blichert-Toft, J., Chauvel, C., Albarède, F., 1997.Separation of Hf and Lu for High-Precision Isotope Analysis of Rock Samples by Magnetic Sector-Multiple Collector ICP-MS.Contributions to Mineralogy and Petrology, 127(3):248-260. https://doi.org/10.1007/s004100050278 [4] Brenan, J.M., Shaw, H.F., Ryerson, F.J., et al., 1995.Mineral-Aqueous Fluid Partitioning of Trace Elements at 900 ℃ and 2.0 GPa:Constraints on the Trace Element Chemistry of Mantle and Deep Crustal Fluids.Geochimica et Cosmochimica Acta, 59(16):3331-3350. https://doi.org/10.1016/0016-7037(95)00215-l [5] Campbell, I.H., Griffiths, R.W., 1993.The Evolution of the Mantle's Chemical Structure.Lithos, 30(3-4):389-399. https://doi.org/10.1016/0024-4937(93)90047-g [6] Chai, F.M., Parat, A., Zhang, Z.C., et al., 2007.Geochemistry of the Lamprophyre Dykes in the SW Margin of the Tarim Block and Their Source Region.Geological Review, 53(1):11-21(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200701002.htm [7] Chen, G.C., Pei, X.Z., Li, R.B., et al., 2013.Geochronology and Genesis of the Helegang Xilikete Granitic Plutons from the Southern Margin of the Eastern East Kunlun Orogenic Belt and Their Tectonic Significance.Acta Geologica Sinica, 87(10):1525-1541(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201310004.htm [8] Chen, J.J., Fu, L.B., Wei, J.H., et al., 2016.Geochemical Characteristics of Late Ordovician Granodiorite in Gouli Area, Eastern Kunlun Orogenic Belt, Qinghai Province:Implications on the Evolution of Proto-Tethys Ocean.Earth science, 41(11):1863-1882(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.129 [9] Chen, L., Sun, Y., Pei, X.Z., et al., 2003.Comprehensive Comparison of Paleo-Tethys Ophiolite and Its Geodynamic Significance—An Example from Dur'ngoi Ophiolite.Science China Earth Science, 33(12):1136-1142(in Chinese). https://www.researchgate.net/publication/234002386_Plate_Tectonic_Evolution_and_Paleogeography_of_the_Circum-Carpathian_Region [10] Chen, X.H., Yin, A., Gehrels, G.E., et al., 2011.Chemical Geodynamics of Granitic Magmatism in the Basement of the Eastern Qaidam Basin, Northern Qinghai-Tibet Plateau.Acta Geologica Sinica, 85(2):157-171(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201102002.htm [11] Cheng, Y.Q., 1994.Profiles of Regional Geology in China.Geological Publishing House, Beijing(in Chinese). [12] Class, C., Miller, D.M., Goldstein, S.L., et al., 2000.Distinguishing Melt and Fluid Subduction Components in Umnak Volcanics, Aleutian Arc.Geochemistry, Geophysics, Geosystems, 1(6):1-34. https://doi.org/10.1029/1999gc000010 [13] Ding, X., Sun, W.D., 2013.Low Nb/Ta Ratios Amphibolite in Subduction Zone:The Enlightenment of the Genesis of Continental Crust.Acta Geologica Sinica, 87(S1):68-70(in Chinese). [14] Fan, W.M., Wang, Y.J., Zhang, A.M., et al., 2010.Permian Arc-Back-Arc Basin Development along the Ailaoshan Tectonic Zone:Geochemical, Isotopic and Geochronological Evidence from the Mojiang Volcanic Rocks, Southwest China.Lithos, 119(3-4):553-568. https://doi.org/10.1016/j.lithos.2010.08.010 [15] Furman, T., Graham, D., 1999.Erosion of Lithospheric Mantle beneath the East African Rift System:Geochemical Evidence from the Kivu Volcanic Province.Lithos, 48(1-4):237-262. https://doi.org/10.1016/s0024-4937(99)00031-6 [16] Griffin, W.L., Belousova, E.A., Shee, S.R., et al., 2004.Archean Crustal Evolution in the Northern Yilgarn Craton:U-Pb and Hf-Isotope Evidence from Detrital Zircons.Precambrian Research, 131(3-4):231-282. https://doi.org/10.1016/j.precamres.2003.12.011 [17] Guo, F., Li, H.X., Fan, W.M., et al., 2015.Early Jurassic Subduction of the Paleo-Pacific Ocean in NE China:Petrologic and Geochemical Evidence from the Tumen Mafic Intrusive Complex.Lithos, 224-225:46-60. https://doi.org/10.1016/j.lithos.2015.02.014 [18] Hawkesworth, C.J., Gallagher, K., Hergt, J.M., et al., 1993.Mantle and Slab Contributions in ARC Magmas.Annual Review of Earth and Planetary Sciences, 21(1):175-204. https://doi.org/10.1146/annurev.ea.21.050193.001135 [19] Hu, Z.C., Liu, Y.S., Gao, S., et al., 2012.Improved In Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS.Journal of Analytical Atomic Spectrometry, 27(9):1391-1399. https://doi.org/10.1039/c2ja30078h [20] Huang, H., Niu, Y.L., Nowell, G., et al., 2014.Geochemical Constraints on the Petrogenesis of Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau:Implications for Continental Crust Growth through Syn-Collisional Felsic Magmatism.Chemical Geology, 370(4):1-18. https://doi.org/10.1016/j.chemgeo.2014.01.010 [21] Ishikawa, T., Tera, F., 1999.Two Isotopically Distinct Fluid Components Involved in the Mariana Arc:Evidence from Nb/B Ratios and B, Sr, Nd, and Pb Isotope Systematics.Geology, 27(1):83.https://doi.org/10.1130/0091-7613(1999)027<0083:tidfci>2.3.co;2 doi: 10.1130/0091-7613(1999)027<0083:tidfci>2.3.co;2 [22] Iwamori, H., Nakamura, H., 2015.Isotopic Heterogeneity of Oceanic, Arc and Continental Basalts and Its Implications for Mantle Dynamics.Gondwana Research, 27(3):1131-1152. https://doi.org/10.1016/j.gr.2014.09.003 [23] Jackson, S.E., Pearson, N.J., Griffin, W.L., et al., 2004.The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to In Situ U-Pb Zircon Geochronology.Chemical Geology, 211(1-2):47-69. https://doi.org/10.1016/j.chemgeo.2004.06.017 [24] Kelemen, P. B., Rilling, J. L., Parmentier, E. M., et al., 2013. Thermal Structure Due to Solid-State Flow in the Mantle Wedge beneath Arcs. In: Eiler, J., ed., Inside the Subduction Factory. American Geophysical Union, Washington, D. C. . https: //doi. org/10. 1029/138gm13 [25] Labanieh, S., Chauvel, C., Germa, A., et al., 2012.Martinique:A Clear Case for Sediment Melting and Slab Dehydration as a Function of Distance to the Trench.Journal of Petrology, 53(12):2441-2464. https://doi.org/10.1093/petrology/egs055 [26] Li, B.L., Sun, F.Y., Yu, X.F., et al., 2012.U-Pb Dating and Geochemistry of Diorite in the Eastern Section from Eastern Kunlun Middle Uplifted Basement and Granitic Belt.Acta Petrologica Sinica, 28(4):1163-1172(in Chinese with English abstract). https://www.researchgate.net/publication/295643275_U-Pb_dating_and_geochemistry_of_diorite_in_the_eastern_section_from_eastern_Kunlun_middle_uplifted_basement_and_granitic_belt [27] Li, R.B., 2012.Research on the Late Paleozoic-Early Mesozoic Orogeny in East Kunlun Orogen(Dissertation).Chang'an University, Xi'an(in Chinese with English abstract). doi: 10.1029/2002TC001390 [28] Li, X.W., Huang, X.F., Luo, M.F., et al., 2015.Petrogenesis and Geodynamic Implications of the Mid-Triassic Lavas from East Kunlun, Northern Tibetan Plateau.Journal of Asian Earth Sciences, 105:32-47. https://doi.org/10.1016/j.jseaes.2015.03.009 [29] Li, Y.J., Li, G.Y., Tong, L.L., et al., 2015.Discrimination of Ratios of Ta, Hf, Th, La, Zr and Nb for Tectonic Settings in Basalts.Journal of Earth Sciences and Environment, 37(3):14-21(in Chinese with English abstract). doi: 10.2747/0020-6814.50.12.1057?src=recsys [30] Liu, C.D., Mo, X.X., Luo, Z.H., et al., 2003.Pb-Sr-Nd-O Isotope Characteristics of Granitoids in East Kunlun Orogenic Belt.Acta Geoscientica Sinica, 24(6):584-588(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB200306020.htm [31] Liu, Z.Q., Pei, X.Z., Li, R.B., et al., 2011.LA-ICP-MS Zircon U-Pb Geochronology of the Two Suites of Ophiolites at the Buqingshan Area of the A'nyemaqen Orogenic Belt in the Southern Margin of East Kunlun and Its Tectonic Implication.Acta Geologica Sinica, 85(2):185-194(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201102005.htm [32] Ludwig, K.R., 2003.User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center Special Publication, Berkeley. [33] Luo, M.F., Mo, X.X., Yu, X.H., et al., 2014.Zircon LA-ICP-MS U-Pb Age Dating, Petrogenesis and Tectonic Implications of the Late Triassic Granites from the Xiangride Area, East Kunlun.Acta Petrologica Sinica, 30(11):3229-3241(in Chinese with English abstract). https://www.researchgate.net/publication/279029918_Zircon_LA-ICP-MS_U-Pb_age_dating_petrogenesis_and_tectonic_implications_of_the_Late_Triassic_granites_from_the_Xiangride_area_East_Kunlun [34] Ma, C.Q., Xiong, F.H., Yin, S., et al., 2015.Intensity and Cyclicity of Orogenic Magmatism:An Example from a Paleo-Tethyan Granitoid Batholith, Eastern Kunlun, Northern Qinghai-Tibetan Plateau.Acta Petrologica Sinica, 31(12):3555-3568(in Chinese with English abstract). [35] Macdonald, R., 2001.Plume-Lithosphere Interactions in the Generation of the Basalts of the Kenya Rift, East Africa.Journal of Petrology, 42(5):877-900. https://doi.org/10.1093/petrology/42.5.877 [36] Miyashiro, A., 1974.Volcanic Rock Series in Island Arcs and Active Continental Margins.American Journal of Science, 274(4):321-355. https://doi.org/10.2475/ajs.274.4.321 [37] Mo, X.X., Luo, Z.H., Deng, J.F., et al., 2007.Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt.Geological Journal of China Universities, 13(3):403-414(in Chinese with English abstract). http://adsabs.harvard.edu/abs/2011AGUFM.T51D2370M [38] Naumann, T.R., Geist, D.J., 1999.Generation of Alkalic Basalt by Crystal Fractionation of Tholeiitic Magma.Geology, 27(5):423.https://doi.org/10.1130/0091-7613(1999)027<0423:goabbc>2.3.co;2 doi: 10.1130/0091-7613(1999)027<0423:goabbc>2.3.co;2 [39] Pearce, J.A., Cann, J.R., 1973.Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses.Earth and Planetary Science Letters, 19(2):290-300. https://doi.org/10.1016/0012-821x(73)90129-5 [40] Pollock, J.C., Hibbard, J.P., 2010.Geochemistry and Tectonic Significance of the Stony Mountain Gabbro, North Carolina:Implications for the Early Paleozoic Evolution of Carolinia.Gondwana Research, 17(2-3):500-515. https://doi.org/10.1016/j.gr.2009.09.009 [41] Qi, L., Hu, J., 2000.Determination of Trace Elements in Sediment and Granite by Inductively Coupled Plasma Mass Spectrometry.Guangxi Chemical Industry, (S1):140-142(in Chinese). [42] Rawson, H., Keller, T., Fontijn, K., et al., 2016.Compositional Variability in Mafic Arc Magmas over Short Spatial and Temporal Scales:Evidence for the Signature of Mantle Reactive Melt Channels.Earth and Planetary Science Letters, 456:66-77. https://doi.org/10.1016/j.epsl.2016.09.056 [43] Sang, L.K., Ma, C.Q., 2012.Petrology.Geological Publishing House, Beijing(in Chinese). [44] Sajona, F.G., Maury, R.C., Pubellier, M., et al., 2000.Magmatic Source Enrichment by Slab-Derived Melts in a Young Post-Collision Setting, Central Mindanao(Philippines).Lithos, 54(3-4):173-206. https://doi.org/10.1016/s0024-4937(00)00019-0 [45] Shinjo, R., Chung, S.L., Kato, Y., et al., 1999.Geochemical and Sr-Nd Isotopic Characteristics of Volcanic Rocks from the Okinawa Trough and Ryukyu Arc:Implications for the Evolution of a Young, Intracontinental Back Arc Basin.Journal of Geophysical Research:Solid Earth, 104(B5):10591-10608. https://doi.org/10.1029/1999jb900040 [46] Söderlund, U., Patchett, P.J., Vervoort, J.D., et al., 2004.The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions.Earth and Planetary Science Letters, 219(3-4):311-324. https://doi.org/10.1016/s0012-821x(04)00012-3 [47] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [48] Wang, G., Sun, F.Y., Li, B.L., et al., 2014.Zircon U-Pb Geochronology and Geochemistry of Diorite in Xiarihamu Ore District from East Kunlun and Its Geological Significance.Journal of Jilin University:Earth Science Edition, 44(3):876-891(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201403014 [49] Wang, K., Plank, T., Walker, J.D., et al., 2002.A Mantle Melting Profile across the Basin and Range, SW USA.Journal of Geophysical Research:Solid Earth, 107(B1):ECV 5-1-ECV 5-21. https://doi.org/10.1029/2001jb000209 [50] Wison, M., 1989.Igneous Petrogenesis.Unwim Hyman, London. [51] Wood, D.A., Joron, J.L., Treuil, M., 1979.A Re-Appraisal of the Use of Trace Elements to Classify and Discriminate between Magma Series Erupted in Different Tectonic Settings.Earth and Planetary Science Letters, 45(2):326-336. https://doi.org/10.1016/0012-821x(79)90133-x [52] Woodhead, J.D., Hergt, J.M., Davidson, J.P., et al., 2001.Hafnium Isotope Evidence for 'Conservative' Element Mobility during Subduction Zone Processes.Earth and Planetary Science Letters, 192(3):331-346. https://doi.org/10.1016/s0012-821x(01)00453-8 [53] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007.Lu-Hf Isotopic Systematics and Their Applications in Petrology.Acta Petrologica Sinica, 23(2):185-220(in Chinese with English abstract). http://www.oalib.com/paper/1472343 [54] Wu, Y.B., Zheng, Y.F., 2004.Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age.Chinese Science Bulletin, 49(15):1554-1569. https://doi.org/10.1007/bf03184122 [55] Xia, R., Wang, C.M., Qing, M., et al., 2015a.Zircon U-Pb Dating, Geochemistry and Sr-Nd-Pb-Hf-O Isotopes for the Nan'getan Granodiorites and Mafic Microgranular Enclaves in the East Kunlun Orogen:Record of Closure of the Paleo-Tethys.Lithos, 234-235:47-60. https://doi.org/10.1016/j.lithos.2015.07.018 [56] Xia, R., Wang, C.M., Qing, M., et al., 2015b.Molybdenite Re-Os, Zircon U-Pb Dating and Hf Isotopic Analysis of the Shuangqing Fe-Pb-Zn-Cu Skarn Deposit, East Kunlun Mountains, Qinghai Province, China.Ore Geology Reviews, 66:114-131. https://doi.org/10.1016/j.oregeorev.2014.10.024 [57] Xiong, F.H., 2014.Spatial-Temporal Pattern, Petrogenesis and Geological Implications of Paleo-Tethyan Granitoids in the East Kunlun Orogenic Belt(Eastern Segment)(Dissertation).China University of Geosciences, Wuhan(in Chinese with English abstract). [58] Xiong, F.H., Ma, C.Q., Zhang, J.Y., et al., 2011.LA-ICP-MS Zircon U-Pb Dating, Elements and Sr-Nd-Hf Isotope Geochemistry of the Early Mesozoic Mafic Dyke Swarms in East Kunlun Orogenic Belt.Acta Petrologica Sinica, 27(11):3350-3364(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201111016.htm [59] Xiong, F.H., Ma, C.Q., Zhang, J.Y., et al., 2012.The Origin of Mafic Microgranular Enclaves and Their Host Granodiorites from East Kunlun, Northern Qinghai-Tibet Plateau:Implications for Magma Mixing during Subduction of Paleo-Tethyan Lithosphere.Mineralogy and Petrology, 104(3-4):211-224. https://doi.org/10.1007/s00710-011-0187-1 [60] Xu, Z.Q., Yang, J.S., Li, H.B., et al., 2007.The Mechanism of Collage, Collision and Uplift of the Qinghai-Tibet Plateau, an Orogenic Plateau.Geological Publishing House, Beijing(in Chinese). [61] Yogodzinski, G., Kay, R.W., Volynets, O.N., et al., 1995.Magnesian Andesite in the Western Aleutian Komandorsky Region:Implications for Slab Melting and Processes in the Mantle Wedge.Geological Society of America Bulletin, 107(5):505-519.https://doi.org/10.1130/0016-7606(1995)107<0505:maitwa>2.3.co;2 doi: 10.1130/0016-7606(1995)107<0505:maitwa>2.3.co;2 [62] Zhang, H.F., Gao, S., 2012.Geochemistry.Geological Publishing House, Beijing(in Chinese). [63] Zhao, F.F., Sun, F.Y., Liu, J.L., 2017.Zircon U-Pb Geochronology and Geochemistry of the Gneissic Granodiorite in Manite Area from East Kunlun, with Implications for Geodynamic Setting.Earth science, 42(6):927-940(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.073 [64] Zhao, S.Q., Fu, L.B., Wei, J.H., et al., 2015.Petrogenesis and Geodynamic Setting of Late Triassic Quartz Diorites in Zhiduo Area, Qinghai Province.Earth Science, 40(1):61-76(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.005 [65] Zhao, Z.H., Wang, Q., Xiong, X.L., 2004.Complex Mantle-Crust Interaction in Subduction Zone.Bulletin of Mineralogy, Petrology and Geochemistry, 23(4):277-284(in Chinese with English abstract). https://www.researchgate.net/publication/289264036_Complex_mantle_-_Crust_interaction_in_subduction_zone [66] Zhao, Z.H., Xiong, X.L., Wang, Q., et al., 2008.Some Aspects on Geochemistry of Nb and Ta.Geochimica, 37(4):304-320(in Chinese with English abstract). https://www.researchgate.net/publication/285505066_Some_aspects_on_geochemistry_of_Nb_and_Ta [67] Zhou, W.T., Guo, G.L., Liu, X.D., et al., 2016.Geochemical Characteristics and Tectonic Significances of the Rocks from Northeastern Jiangxi Ophiolite.Earth Science, 41(1):84-96(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.006 [68] 柴凤梅, 帕拉提·阿布都卡迪尔, 张招崇, 等, 2007.塔里木板块西南缘钾质煌斑岩地球化学及源区特征.地质论评, 53(1):11-21. http://www.docin.com/p-21190174.html [69] 陈国超, 裴先治, 李瑞保, 等, 2013.东昆仑造山带东段南缘和勒冈希里克特花岗岩体时代、成因及其构造意义.地质学报, 87(10):1525-1541. http://www.doc88.com/p-2833499365196.html [70] 陈加杰, 付乐兵, 魏俊浩, 等, 2016.东昆仑沟里地区晚奥陶世花岗闪长岩地球化学特征及其对原特提斯洋演化的制约.地球科学, 41(11):1863-1882. https://doi.org/10.3799/dqkx.2016.129. [71] 陈亮, 孙勇, 裴先治, 等, 2003.古特提斯蛇绿岩的综合对比及其动力学意义—以德尔尼蛇绿岩为例.中国科学:地球科学, 33(12):1136-1142. [72] 陈宣华, 尹安, Geheels, G.E., 等, 2011.柴达木盆地东部基底花岗岩类岩浆活动的化学地球动力学.地质学报, 85(2):157-171. https://www.wenkuxiazai.com/doc/5ad6684a0740be1e640e9a1a-2.html [73] 程裕淇, 1994.中国区域地质概况.北京:地质出版社. [74] 丁兴, 孙卫东, 2013.俯冲碰撞带低Nb/Ta角闪岩:对大陆地壳成因的启示.地质学报, 87(S1):68-70. [75] 李碧乐, 孙丰月, 于晓飞, 等, 2012.东昆中隆起带东段闪长岩U-Pb年代学和岩石地球化学研究.岩石学报, 28(4):1163-1172. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20120413 [76] 李瑞保, 2012.东昆仑造山带(东段)晚古生代-早中生代造山作用研究(博士学位论文).西安:长安大学. [77] 李永军, 李甘雨, 佟丽莉, 等, 2015.玄武岩类形成的大地构造环境Ta、Hf、Th、La、Zr、Nb比值对比判别.地球科学与环境学报, 37(3):14-21. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200103008.htm [78] 刘成东, 莫宣学, 罗照华, 等, 2003.东昆仑造山带花岗岩类Pb-Sr-Nd-O同位素特征.地球学报, 24(6):584-588. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200306020.htm [79] 刘战庆, 裴先治, 李瑞保, 等, 2011.东昆仑南缘阿尼玛卿构造带布青山地区两期蛇绿岩的LA-ICP-MS锆石U-Pb定年及其构造意义.地质学报, 85(2):185-194. https://www.wenkuxiazai.com/doc/41cf7fb7a5e9856a57126085-3.html [80] 罗明非, 莫宣学, 喻学惠, 等, 2014.东昆仑香日德地区晚三叠世花岗岩LA-ICP-MS锆石U-Pb定年、岩石成因和构造意义.岩石学报, 30(11):3229-3241. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201411010.htm [81] 马昌前, 熊富浩, 尹烁, 等, 2015.造山带岩浆作用的强度和旋回性:以东昆仑古特提斯花岗岩类岩基为例.岩石学报, 31(12):3555-3568. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20151204 [82] 莫宣学, 罗照华, 邓晋福, 等, 2007.东昆仑造山带花岗岩及地壳生长.高校地质学报, 13(3):403-414. http://d.wanfangdata.com.cn/Periodical/gxdzxb200703010 [83] 漆亮, 胡静, 2000.电感耦合等离子体质谱法测定花岗岩、沉积物中的微量元素.广西化工, (S1):140-142. [84] 桑隆康, 马昌前, 2012.岩石学.北京:地质出版社. [85] 王冠, 孙丰月, 李碧乐, 等, 2014.东昆仑夏日哈木矿区闪长岩锆石U-Pb年代学、地球化学及其地质意义.吉林大学学报(地球科学版), 44(3):876-891. http://www.cnki.com.cn/Article/CJFDTotal-CCDZ201403014.htm [86] 吴福元, 李献华, 郑永飞, 等, 2007.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. https://www.researchgate.net/profile/Yong-Fei_Zheng/publication/279910636_Lu-Hf_isotopic_systematics_and_their_application_in_petrology/links/55cead3708aee19936fc5d6b.pdf?inViewer=true&pdfJsDownload=true&disableCoverPage=true&origin=publication_detail [87] 熊富浩, 2014.东昆仑造山带东段古特提斯域花岗岩类时空分布、岩石成因及其地质意义(博士学位论文).武汉:中国地质大学. https://www.cnki.com.cn/lunwen-1014340842.html [88] 熊富浩, 马昌前, 张金阳, 等, 2011.东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石U-Pb定年、元素和Sr-Nd-Hf同位素地球化学.岩石学报, 27(11):3350-3364. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201111016.htm [89] 许志琴, 杨经绥, 李海兵, 等, 2007.造山的高原—青藏高原的地体拼合、碰撞造山及隆升机制.北京:地质出版社. [90] 张宏飞, 高山, 2012.地球化学.北京:地质出版社. [91] 赵菲菲, 孙丰月, 刘金龙, 2017.东昆仑马尼特地区片麻状花岗闪长岩锆石U-Pb年代学、地球化学及其构造背景.地球科学, 42(6):927-940. https://doi.org/10.3799/dqkx.2017.073 [92] 赵少卿, 付乐兵, 魏俊浩, 等, 2015.青海治多地区晚三叠世石英闪长岩地球化学特征及成岩动力学背景.地球科学, 40(1):61-76.https://doi.org/10.3799/dqkx.2015.005 http://www.earth-science.net/WebPage/Article.aspx?id=3025 [93] 赵振华, 王强, 熊小林, 2004.俯冲带复杂的壳幔相互作用.矿物岩石地球化学通报, 23(4):277-284. http://www.wenkuxiazai.com/doc/2b687e294b73f242336c5f13.html [94] 赵振华, 熊小林, 王强, 等, 2008.铌与钽的某些地球化学问题.地球化学, 37(4):304-320. https://www.wenkuxiazai.com/doc/17155e41be1e650e52ea991d.html [95] 周文婷, 郭国林, 刘晓东, 等, 2016.赣东北蛇绿混杂岩岩石地球化学特征及构造意义.地球科学, 41(1):84-96. https://doi.org/10.3799/dqkx.2016.006