Partial Melting of Himalayan Orogen and Formation Mechanism of Leucogranites
-
摘要: 喜马拉雅造山带核部由高级变质岩和淡色花岗岩组成,是研究大陆碰撞造山带部分熔融与花岗岩成因的天然实验室.基于最新研究成果,探讨了喜马拉雅造山带核部变质作用的条件、类型以及P-T轨迹、部分熔融的方式与程度及熔体成分以及变质作用与部分熔融的时间和持续过程.相关证据表明,造山带核部经历了高压麻粒岩相至榴辉岩相变质作用,具有以增温增压进变质和近等温降压退变质为特征的顺时针型P-T轨迹.这些高压变质岩石发生了长期持续的高温变质与部分熔融.在泥质岩石的进变质过程中白云母和黑云母脱水熔融可以形成不同成分的熔体.同时,总结了淡色花岗岩的形成时间、地球化学特征和源区熔融方式,结果表明碰撞造山过程中加厚下地壳的脱水熔融形成了喜马拉雅造山带的淡色花岗岩.Abstract: The core of the Himalayan orogen consists of high-grade metamorphic rocks and leucogranites, forming a natural laboratory for studying crustal anatexis and granite origin during the collisional orogeny. Based on recent achievements of the related studies, the condition, type and P-T path of metamorphism, and mechanism, degree and melt composition of anataxis as well as metamorphic and anatectic timing and duration of high-grade metamorphic rocks in the orogenic core are discussed in this paper. The obtained evidence shows that the orogenic core experienced high-pressure granulite-facies to eclogite-facies metamorphism, with a clockwise-type P-T path characterized by increasing temperature and pressure prograde and early retrogression of near-isothermal decompression, and that the high-pressure rocks record a prolonged high-temperature metamorphic and anatectic process. The muscovite-and biotite-dehydration melting of meta-pelitic rocks during the prograde metamorphism resulted in formation of melts with highly variable chemical compositions. In addition, the formation time and geochemical feature of the Himalayan leucogranites are also summarized. Finally, it is concluded that the leucogranites were derived from the dehydration melting of thickened lower crust during the collisional orogeny.
-
图 1 喜马拉雅造山带地质简图
据Yin and Harrison(2000)、Guillot et al.(2008)、Kohn(2014)、Ding et al.(2016a)修改;MFT.主前缘逆冲断裂;MBT.主边界逆冲断裂;MCT.主中央逆冲断裂;STD.藏南拆离系.图中标注了较深入研究的中、高级变质岩的地点与变质年龄,资料来源:ADM(Ama Drime Massif, Kellett et al., 2014), Annapurna(Kohn and Corrie, 2011), Everest(Cottle et al., 2009b), Gianbul(Horton et al., 2015), Jomolhari(Regis et al., 2014), Kaghan(Kaneko et al., 2003), Kali Gandaki(Iaccarino et al., 2015), Mabja dome(Lee and Whitehouse, 2007), Namche Barwa Syntaxis(Zhang et al., 2015), Nyalam(Wang et al., 2015a, 2015b), Sikkim(Rubatto et al., 2013), Tso Morari(Donaldson et al., 2013), Yadong(Zhang et al., 2017a)和Yardoi dome(Ding et al., 2016a, 2016b).变质作用类型:MP.中压;HP.高压;UHP.超高压
Fig. 1. Simplified geologic map of the Himalayan orogen
图 3 高喜马拉雅岩系的变质作用P-T-t轨迹以及白云母与黑云母脱水熔融和熔体结晶的时间与持续过程
据Gou et al.(2016)、张泽明等(2017)修改
Fig. 3. Metamorphic P-T-t path of the Greater Himalayan sequence, showing the timing and duration of muscovite-and biotite-dehydration, and melt crystallization
图 6 泥质麻粒岩进变质部分熔融过程中熔体成分变化
图中箭头指示熔融程度增加.喜马拉雅淡色花岗岩的成分范围据吴褔元等(2015).GHL.高喜马拉雅淡色花岗岩;THL.特提斯喜马拉雅淡色花岗岩
Fig. 6. Calculated changes of melt compositions during the increasing temperature (600-900 ℃) and pressure (0.7-1.6 GPa) prograde metamorphism of the pelitic granulite
表 1 泥质麻粒岩进变质过程中所形成的熔体体积与成分计算结果
Table 1. Calculated mode and composition of melt of the pelitic granulites during the prograde metamorphism
计算条件 P(GPa) 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.38 1.39 1.40 1.45 1.50 1.55 1.60 T(℃) 700 717 733 750 767 783 800 817 833 850 867 883 900 825 828 熔体体积 体积含量(%) 1.64 2.57 3.44 4.17 5.08 6.24 8.33 10.69 21.71 24.20 26.36 27.47 28.79 14.99 21.30 熔体成分(%) SiO2 74.58 74.17 73.88 73.49 73.12 72.76 72.37 72.02 71.76 71.63 71.53 71.32 71.05 70.84 70.61 Al2O3 15.29 15.44 15.53 15.68 15.76 15.81 15.82 15.87 15.92 15.98 16.03 16.11 16.23 16.30 16.38 FeO 0.33 0.37 0.41 0.45 0.50 0.55 0.57 0.60 0.60 0.58 0.59 0.65 0.69 0.76 0.84 MgO 0.06 0.06 0.07 0.07 0.08 0.08 0.09 0.09 0.09 0.09 0.10 0.12 0.13 0.14 0.15 CaO 0.41 0.46 0.51 0.56 0.64 0.73 0.85 0.96 1.06 1.14 1.17 1.26 1.35 1.43 1.51 Na2O 6.70 6.46 6.23 6.10 5.66 5.14 4.25 3.69 3.30 3.13 3.12 2.98 2.87 2.73 2.58 K2O 2.65 3.04 3.38 3.65 4.23 4.92 6.06 6.78 7.27 7.44 7.47 7.56 7.68 7.79 7.92 H2O 14.01 13.33 12.77 12.31 11.60 10.91 9.93 9.40 9.07 8.97 8.93 8.43 8.07 7.70 7.30 标准矿物 Or 15.64 17.94 19.96 21.59 25.02 29.09 35.81 40.05 42.96 43.96 44.12 44.68 45.37 46.05 46.78 Ab 56.67 54.70 52.74 51.57 47.90 43.46 35.92 31.22 27.90 26.46 26.37 25.24 24.24 23.08 21.87 An 2.03 2.30 2.52 2.79 3.20 3.64 4.22 4.77 5.26 5.67 5.82 6.25 6.72 7.11 7.51 -
[1] Aikman, A.B., Harrison, T.M., Hermann, J., 2012.The Origin of Eo-and Neo-Himalayan Granitoids, Eastern Tibet.Journal of Asian Earth Sciences, 58:143-157. https://doi.org/10.1016/j.jseaes.2012.05.018 [2] Aikman, A.B., Harrison, T.M., Lin, D., 2008.Evidence for Early (>44 Ma) Himalayan Crustal Thickening, Tethyan Himalaya, Southeastern Tibet.Earth and Planetary Science Letters, 274(1-2):14-23. https://doi.org/10.1016/j.epsl.2008.06.038 [3] Ambrose, T.K., Larson, K.P., Guilmette, C., et al., 2015.Lateral Extrusion, Underplating, and Out-of-Sequence Thrusting within the Himalayan Metamorphic Core, Kanchenjunga, Nepal.Lithosphere, 7(4):441-464. https://doi.org/10.1130/l437.1 [4] Anczkiewicz, R., Chakraborty, S., Dasgupta, S., et al., 2014.Timing, Duration and Inversion of Prograde Barrovian Metamorphism Constrained by High Resolution Lu-Hf Garnet Dating:A Case Study from the Sikkim Himalaya, NE India.Earth and Planetary Science Letters, 407:70-81. https://doi.org/10.1016/j.epsl.2014.09.035 [5] Aoya, M., Wallis, S.R., Terada, K., et al., 2005.North-South Extension in the Tibetan Crust Triggered by Granite Emplacement.Geology, 33(11):853. https://doi.org/10.1130/g21806.1 [6] Carosi, R., Montomoli, C., Langone, A., et al., 2014.Eocene Partial Melting Recorded in Peritectic Garnets from Kyanite-Gneiss, Greater Himalayan Sequence, Central Nepal.Geological Society, London, Special Publications, 412(1):111-129. https://doi.org/10.1144/sp412.1 [7] Chakungal, J., Dostal, J., Grujic, D., et al., 2010.Provenance of the Greater Himalayan Sequence:Evidence from Mafic Granulites and Amphibolites in NW Bhutan.Tectonophysics, 480(1-4):198-212. https://doi.org/10.1016/j.tecto.2009.10.014 [8] Coleman, M.E., 1998.U-Pb Constraints on Oligocene-Miocene Deformation and Anatexis within the Central Himalaya, Marsyandi Valley, Nepal.American Journal of Science, 298(7):553-571. https://doi.org/10.2475/ajs.298.7.553 [9] Corrie, S.L., Kohn, M.J., 2011.Metamorphic History of the Central Himalaya, Annapurna Region, Nepal, and Implications for Tectonic Models.Geological Society of America Bulletin, 123(9-10):1863-1879. https://doi.org/10.1130/b30376.1 [10] Corrie, S.L., Kohn, M.J., Vervoort, J.D., 2010.Young Eclogite from the Greater Himalayan Sequence, Arun Valley, Eastern Nepal:P-T-t Path and Tectonic Implications.Earth and Planetary Science Letters, 289(3-4):406-416. https://doi.org/10.1016/j.epsl.2009.11.029 [11] Cottle, J.M., Jessup, M.J., Newell, D.L., et al., 2007.Structural Insights into the Early Stages of Exhumation along an Orogen-Scale Detachment:The South Tibetan Detachment System, Dzakaa Chu Section, Eastern Himalaya.Journal of Structural Geology, 29(11):1781-1797. https://doi.org/10.1016/j.jsg.2007.08.007 [12] Cottle, J.M., Jessup, M.J., Newell, D.L., et al., 2009a.Geochronology of Granulitized Eclogite from the Ama Drime Massif:Implications for the Tectonic Evolution of the South Tibetan Himalaya.Tectonics, 28(1):TC1002. https://doi.org/10.1029/2008tc002256 [13] Cottle, J.M., Larson, K.P., Kellett, D.A., 2015a.How does the Mid-Crust Accommodate Deformation in Large, Hot Collisional Orogens? A Review of Recent Research in the Himalayan Orogen.Journal of Structural Geology, 78:119-133. https://doi.org/10.1016/j.jsg.2015.06.008 [14] Cottle, J.M., Searle, M.P., Horstwood, M.S.A., et al., 2009b.Timing of Midcrustal Metamorphism, Melting, and Deformation in the Mount Everest Region of Southern Tibet Revealed by U(-Th)-Pb Geochronology.The Journal of Geology, 117(6):643-664. https://doi.org/10.1086/605994 [15] Cottle, J.M., Searle, M.P., Jessup, M.J., et al., 2015b.Rongbuk Re-Visited:Geochronology of Leucogranites in the Footwall of the South Tibetan Detachment System, Everest Region, Southern Tibet.Lithos, 227:94-106. https://doi.org/10.1016/j.lithos.2015.03.019 [16] Daniel, C.G., Hollister, L.S., Parrish, R.R., et al., 2003.Exhumation of the Main Central Thrust from Lower Crustal Depths, Eastern Bhutan Himalaya.Journal of Metamorphic Geology, 21(4):317-334. https://doi.org/10.1046/j.1525-1314.2003.00445.x [17] Dasgupta, S., Chakraborty, S., Neogi, S., 2009.Petrology of an Inverted Barrovian Sequence of Metapelites in Sikkim Himalaya, India:Constraints on the Tectonics of Inversion.American Journal of Science, 309(1):43-84. https://doi.org/10.2475/01.2009.02 [18] Dasgupta, S., Ganguly, J., Neogi, S., 2004.Inverted Metamorphic Sequence in the Sikkim Himalayas:Crystallization History, P-T Gradient and Implications.Journal of Metamorphic Geology, 22(5):395-412. https://doi.org/10.1111/j.1525-1314.2004.00522.x [19] Ding, H.X., Zhang, Z.M., Dong, X., et al., 2016a.Early Eocene (c.50 Ma) Collision of the Indian and Asian Continents:Constraints from the North Himalayan Metamorphic Rocks, Southeastern Tibet.Earth and Planetary Science Letters, 435:64-73. https://doi.org/10.1016/j.epsl.2015.12.006 [20] Ding, H.X., Zhang, Z.M., Hu, K.M., et al., 2016b.P-T-t-D Paths of the North Himalayan Metamorphic Rocks:Implications for the Himalayan Orogeny.Tectonophysics, 683:393-404. https://doi.org/10.1016/j.tecto.2016.06.035 [21] Ding, L., Kapp, P., Wan, X.Q., 2005.Paleocene-Eocene Record of Ophiolite Obduction and Initial India-Asia Collision, South Central Tibet.Tectonics, 24(3):TC3001. https://doi.org/10.1029/2004tc001729 [22] Donaldson, D.G., Webb, A.A.G., Menold, C.A., et al., 2013.Petrochronology of Himalayan Ultrahigh-Pressure Eclogite.Geology, 41(8):835-838. https://doi.org/10.1130/g33699.1 [23] Finch, M., Hasalova, P., Weinberg, R.F., et al., 2014.Switch from Thrusting to Normal Shearing in the Zanskar Shear Zone, NW Himalaya:Implications for Channel Flow.Geological Society of America Bulletin, 126(7-8):892-924. https://doi.org/10.1130/b30817.1 [24] Gaidies, F., Petley-Ragan, A., Chakraborty, S., et al., 2015.Constraining the Conditions of Barrovian Metamorphism in Sikkim, India:P-T-t Paths of Garnet Crystallization in the Lesser Himalayan Belt.Journal of Metamorphic Geology, 33(1):23-44. https://doi.org/10.1111/jmg.12108 [25] Ganguly, J., Dasgupta, S., Cheng, W.J., et al., 2000.Exhumation History of a Section of the Sikkim Himalayas, India:Records in the Metamorphic Mineral Equilibria and Compositional Zoning of Garnet.Earth and Planetary Science Letters, 183(3-4):471-486. https://doi.org/10.1016/s0012-821x(00)00280-6 [26] Gao, L.E., Zeng, L.S., 2014.Fluxed Melting of Metapelite and the Formation of Miocene High-CaO Two-Mica Granites in the Malashan Gneiss Dome, Southern Tibet.Geochimica et Cosmochimica Acta, 130:136-155. https://doi.org/10.1016/j.gca.2014.01.003 [27] Gao, L.E., Zeng, L.S., Asimow, P.D., 2017.Contrasting Geochemical Signatures of Fluid-Absent versus Fluid-Fluxed Melting of Muscovite in Metasedimentary Sources:The Himalayan Leucogranites.Geology, 45(1):39-42. https://doi.org/10.1130/g38336.1 [28] Gao, L.E., Zeng, L.S., Gao, J.H., et al., 2016.Oligocene Crustal Anatexis in the Tethyan Himalaya, Southern Tibet.Lithos, 264:201-209. https://doi.org/10.1016/j.lithos.2016.08.038 [29] Gao, L.E., Zeng, L.S., Xie, K.J., 2012.Eocene High Grade Metamorphism and Crustal Anatexis in the North Himalaya Gneiss Domes, Southern Tibet.Chinese Science Bulletin, 57(6):639-650. https://doi.org/10.1007/s11434-011-4805-4 [30] Godin, L., Grujic, D., Law, R.D., et al., 2006.Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones:An Introduction.Geological Society, London, Special Publications, 268:1-23. doi: 10.1144/GSL.SP.2006.268 [31] Godin, L., Parrish, R.R., Brown, R.L., et al., 2001.Crustal Thickening Leading to Exhumation of the Himalayan Metamorphic Core of Central Nepal:Insight from U-Pb Geochronology and 40Ar/39Ar Thermochronology.Tectonics, 20(5):729-747. https://doi.org/10.1029/2000tc001204 [32] Goscombe, B., Gray, D., Hand, M., 2006.Crustal Architecture of the Himalayan Metamorphic Front in Eastern Nepal.Gondwana Research, 10(3-4):232-255. https://doi.org/10.1016/j.gr.2006.05.003 [33] Gou, Z.B., Zhang, Z.M., Dong, X., et al., 2016.Petrogenesis and Tectonic Implications of the Yadong Leucogranites, Southern Himalaya.Lithos, 256-257:300-310. https://doi.org/10.1016/j.lithos.2016.04.009 [34] Groppo, C., Lombardo, B., Rolfo, F., et al., 2007.Clockwise Exhumation Path of Granulitized Eclogites from the Ama Drime Range (Eastern Himalayas).Journal of Metamorphic Geology, 25(1):51-75. https://doi.org/10.1111/j.1525-1314.2006.00678.x [35] Groppo, C., Rolfo, F., Indares, A., 2012.Partial Melting in the Higher Himalayan Crystallines of Eastern Nepal:The Effect of Decompression and Implications for the 'Channel Flow' Model.Journal of Petrology, 53(5):1057-1058. https://https://doi.org.org/10.1093/petrology/egs009 [36] Groppo, C., Rolfo, F., Mosca, P., 2013.The Cordierite-Bearing Anatectic Rocks of the Higher Himalayan Crystallines (Eastern Nepal):Low-Pressure Anatexis, Melt Productivity, Melt Loss and the Preservation of Cordierite.Journal of Metamorphic Geology, 31(2):187-204. https://doi.org/10.1111/jmg.12014 [37] Groppo, C., Rubatto, D., Rolfo, F., et al., 2010.Early Oligocene Partial Melting in the Main Central Thrust Zone (Arun Valley, Eastern Nepal Himalaya).Lithos, 118(3-4):287-301. https://doi.org/10.1016/j.lithos.2010.05.003 [38] Grujic, D., Warren, C.J., Wooden, J.L., 2011.Rapid Synconvergent Exhumation of Miocene-Aged Lower Orogenic Crust in the Eastern Himalaya.Lithosphere, 3(5):346-366. https://doi.org/10.1130/l154.1 [39] Guillot, S., Le Fort, P., 1995.Geochemical Constraints on the Bimodal Origin of High Himalayan Leucogranites.Lithos, 35(3-4):221-234. https://doi.org/10.1016/0024-4937(94)00052-4 [40] Guillot, S., Mahéo, G., de Sigoyer, J., et al., 2008.Tethyan and Indian Subduction Viewed from the Himalayan High-to Ultrahigh-Pressure Metamorphic Rocks.Tectonophysics, 451(1-4):225-241. https://doi.org/10.1016/j.tecto.2007.11.059 [41] Guilmette, C., Indares, A., Hébert, R., 2011.High-Pressure Anatectic Paragneisses from the Namche Barwa, Eastern Himalayan Syntaxis:Textural Evidence for Partial Melting, Phase Equilibria Modeling and Tectonic Implications.Lithos, 124(1-2):66-81. https://doi.org/10.1016/j.lithos.2010.09.003 [42] Guo, Z.F., Wilson, M., 2012.The Himalayan Leucogranites:Constraints on the Nature of Their Crustal Source Region and Geodynamic Setting.Gondwana Research, 22(2):360-376. https://doi.org/10.1016/j.gr.2011.07.027 [43] Harris, N.B.W., Ayres, M.W., Massey, J.A., 1995.Geochemistry of Granitic Melts Produced during the Incongruent Melting of Muscovite:Implications for the Extraction of Himalayan Leucogranite Magmas.Journal of Geophysical Research:Solid Earth, 100(B8):15767-15777. https://doi.org/10.1029/94jb02623 [44] Harris, N.B.W., Caddick, M., Kosler, J., et al., 2004.The Pressure-Temperature-Time Path of Migmatites from the Sikkim Himalaya.Journal of Metamorphic Geology, 22(3):249-264. https://doi.org/10.1111/j.1525-1314.2004.00511.x [45] Harris, N.B.W., Inger, S., Massey, J., 1993.The Role of Fluids in the Formation of High Himalayan Leucogranites.Geological Society, London, Special Publications, 74:391-400. doi: 10.1144/GSL.SP.1993.074.01.26 [46] Harris, N.B.W., Massey, J.A., 1994.Decompression and Anatexis of Himalayan Metapelites.Tectonics, 13(6):1537-1546. https://doi.org/10.1029/94tc01611 [47] Harrison, T.M., Grove, M., Lovera, O.M., et al., 1998.A Model for the Origin of Himalayan Anatexis and Inverted Metamorphism.Journal of Geophysical Research:Solid Earth, 103(B11):27017-27032. https://doi.org/10.1029/98jb02468 [48] Hodges, K.V., 2000.Tectonics of the Himalaya and Southern Tibet from Two Perspectives.Geological Society of America Bulletin, 112(3):324-350.https://doi.org/10.1130/0016-7606(2000)112<324:tothas>2.0.co;2 doi: 10.1130/0016-7606(2000)112<324:tothas>2.0.co;2 [49] Horton, F., Lee, J., Hacker, B., et al., 2015.Himalayan Gneiss Dome Formation in the Middle Crust and Exhumation by Normal Faulting:New Geochronology of Gianbul Dome, Northwestern India.Geological Society of America Bulletin, 127(1-2):162-180. https://doi.org/10.1130/b31005.1 [50] Hou, Z.Q., Zheng, Y.C., Zeng, L.S., et al., 2012.Eocene-Oligocene Granitoids in Southern Tibet:Constraints on Crustal Anatexis and Tectonic Evolution of the Himalayan Orogen.Earth and Planetary Science Letters, 349-350:38-52. https://doi.org/10.1016/j.epsl.2012.06.030 [51] Iaccarino, S., Montomoli, C., Carosi, R., et al., 2015.Pressure-Temperature-Time-Deformation Path of Kyanite-Bearing Migmatitic Paragneiss in the Kali Gandaki Valley (Central Nepal):Investigation of Late Eocene-Early Oligocene Melting Processes.Lithos, 231:103-121. https://https://doi.org.org/10.1016/j.lithos.2015.06.005 [52] Imayama, T., Takeshita, T., Arita, K., 2010.Metamorphic P-T Profile and P-T Path Discontinuity across the Far-Eastern Nepal Himalaya:Investigation of Channel Flow Models.Journal of Metamorphic Geology, 28(5):527-549. https://doi.org/10.1111/j.1525-1314.2010.00879.x [53] Imayama, T., Takeshita, T., Yi, K., et al., 2012.Two-Stage Partial Melting and Contrasting Cooling History within the Higher Himalayan Crystalline Sequence in the Far-Eastern Nepal Himalaya.Lithos, 134-135:1-22. https://doi.org/10.1016/j.lithos.2011.12.004 [54] Jamieson, R.A., Beaumont, C., Medvedev, S., et al., 2004.Crustal Channel Flows:2.Numerical Models with Implications for Metamorphism in the Himalayan-Tibetan Orogen.Journal of Geophysical Research:Solid Earth, 109(B6):B06407. https://doi.org/10.1029/2003jb002811 [55] Kali, E., Leloup, P.H., Arnaud, N., et al., 2010.Exhumation History of the Deepest Central Himalayan Rocks, Ama Drime Range:Key Pressure-Temperature-Deformation-Time Constraints on Orogenic Models.Tectonics, 29(2):TC2014. https://doi.org/10.1029/2009TC002551 [56] Kaneko, Y., Katayama, I., Yamamoto, H., et al., 2003.Timing of Himalayan Ultrahigh-Pressure Metamorphism:Sinking Rate and Subduction Angle of the Indian Continental Crust beneath Asia.Journal of Metamorphic Geology, 21(6):589-599. https://doi.org/10.1046/j.1525-1314.2003.00466.x [57] Kellett, D.A., Cottle, J.M., Smit, M., 2014.Eocene Deep Crust at Ama Drime, Tibet:Early Evolution of the Himalayan Orogen.Lithosphere, 6(4):220-229. https://doi.org/10.1130/l350.1 [58] Kellett, D.A., Grujic, D., Coutand, I., et al., 2013.The South Tibetan Detachment System Facilitates Ultra Rapid Cooling of Granulite-Facies Rocks in Sikkim Himalaya.Tectonics, 32(2):252-270. https://doi.org/10.1002/tect.20014 [59] Kellett, D.A., Grujic, D., Erdmann, S., 2009.Miocene Structural Reorganization of the South Tibetan Detachment, Eastern Himalaya:Implications for Continental Collision.Lithosphere, 1(5):259-281. https://doi.org/10.1130/l56.1 [60] King, J., Harris, N., Argles, T., et al., 2007.First Field Evidence of Southward Ductile Flow of Asian Crust beneath Southern Tibet.Geology, 35(8):727. https://doi.org/10.1130/g23630a.1 [61] King, J., Harris, N., Argles, T., et al., 2011.Contribution of Crustal Anatexis to the Tectonic Evolution of Indian Crust beneath Southern Tibet.Geological Society of America Bulletin, 123(1-2):218-239. https://doi.org/10.1130/b30085.1 [62] Kohn, M.J., 2014.Himalayan Metamorphism and Its Tectonic Implications.Annual Review of Earth and Planetary Sciences, 42(1):381-419. https://doi.org/10.1146/annurev-earth-060313-055005 [63] Kohn, M.J., Corrie, S.L., 2011.Preserved Zr-Temperatures and U-Pb Ages in High-Grade Metamorphic Titanite:Evidence for a Static Hot Channel in the Himalayan Orogen.Earth and Planetary Science Letters, 311(1-2):136-143. https://doi.org/10.1016/j.epsl.2011.09.008 [64] Langille, J.M., Jessup, M.J., Cottle, J.M., et al., 2012.Timing of Metamorphism, Melting and Exhumation of the Leo Pargil Dome, Northwest India.Journal of Metamorphic Geology, 30(8):769-791. https://doi.org/10.1111/j.1525-1314.2012.00998.x [65] Larson, K.P., Ambrose, T.K., Webb, A.A.G., et al., 2015.Reconciling Himalayan Midcrustal Discontinuities:The Main Central Thrust System.Earth and Planetary Science Letters, 429:139-146. https://doi.org/10.1016/j.epsl.2015.07.070 [66] Larson, K.P., Cottle, J.M., 2014.Midcrustal Discontinuities and the Assembly of the Himalayan Midcrust.Tectonics, 33(5):718-740. https://doi.org/10.1002/2013tc003452 [67] Larson, K.P., Cottle, J.M., Godin, L., 2011.Petrochronologic Record of Metamorphism and Melting in the Upper Greater Himalayan Sequence, Manaslu-Himal Chuli Himalaya, West-Central Nepal.Lithosphere, 3(6):379-392. https://doi.org/10.1130/l149.1 [68] Le Fort, P., 1975.Himalayas:The Collided Range.Present Knowledge of the Continental Arc.American Journal of Science, 275:1-44. [69] Le Fort, P., 1981.Manaslu Leucogranite:A Collision Signature of the Himalaya:A Model for Its Genesis and Emplacement.Journal of Geophysical Research:Solid Earth, 86(B11):10545-10568. https://doi.org/10.1029/jb086ib11p10545 [70] Lederer, G.W., Cottle, J.M., Jessup, M.J., et al., 2013.Timescales of Partial Melting in the Himalayan Middle Crust:Insight from the Leo Pargil Dome, Northwest India.Contributions to Mineralogy and Petrology, 166(5):1415-1441. https://doi.org/10.1007/s00410-013-0935-9 [71] Lee, J., Whitehouse, M.J., 2007.Onset of Mid-Crustal Extensional Flow in Southern Tibet:Evidence from U/Pb Zircon Ages.Geology, 35(1):45. https://doi.org/10.1130/g22842a.1 [72] Liu, F.L., Zhang, L.F., 2014.High-Pressure Granulites from Eastern Himalayan Syntaxis:P-T Path, Zircon U-Pb Dating and Geological Implications.Acta Petrologica Sinica, 30(10):2808-2820 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-YSXB201410002.htm [73] Liu, Z.C., Wu, F.Y., Ding, L., et al., 2016.Highly Fractionated Late Eocene (~35 Ma) Leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet.Lithos, 240-243:337-354. https://doi.org/10.1016/j.lithos.2015.11.026 [74] Liu, Z.C., Wu, F.Y., Ji, W.Q., et al., 2014.Petrogenesis of the Ramba Leucogranite in the Tethyan Himalaya and Constraints on the Channel Flow Model.Lithos, 208-209:118-136. https://doi.org/10.1016/j.lithos.2014.08.022 [75] Lombardo, B., Rolfo, F., 2000.Two Contrasting Eclogite Types in the Himalayas:Implications for the Himalayan Orogeny.Journal of Geodynamics, 30(1-2):37-60. https://doi.org/10.1016/s0264-3707(99)00026-5 [76] Montomoli, C., Carosi, R., Iaccarino, S., 2015.Tectonometamorphic Discontinuities in the Greater Himalayan Sequence:A Local or a Regional Feature? Geological Society, London, Special Publication, 412(1):25-41. https://doi.org/10.1144/SP412.3 [77] Montomoli, C., Iaccarino, S., Carosi, R., et al., 2013.Tectonometamorphic Discontinuities within the Greater Himalayan Sequence in Western Nepal (Central Himalaya):Insights on the Exhumation of Crystalline Rocks.Tectonophysics, 608:1349-1370. https://doi.org/10.1016/j.tecto.2013.06.006 [78] Mottram, C.M., Warren, C.J., Regis, D., et al., 2014.Developing an Inverted Barrovian Sequence; Insights from Monazite Petrochronology.Earth and Planetary Science Letters, 403:418-431. https://doi.org/10.1016/j.epsl.2014.07.006 [79] O'Brien, P.J., Zotov, N., Law, R., et al., 2001.Coesite in Himalayan Eclogite and Implications for Models of India-Asia Collision.Geology, 29(5):435.https://doi.org/10.1130/0091-7613(2001)029<0435:ciheai>2.0.co;2 doi: 10.1130/0091-7613(2001)029<0435:ciheai>2.0.co;2 [80] Patiño Douce, A.E., Harris, N.B.W., 1998.Experimental Constraints on Himalayan Anatexis.Journal of Petrology, 39(4):689-710. https://doi.org/10.1093/petroj/39.4.689 [81] Pognante, U., Benna, P., 1993.Metamorphic Zonation, Migmatization, and Leucogranites along the Everest Transect (Eastern Nepal and Tibet):Record of an Exhumation History.Geological Society, London, Special Publication, 74(1):323-340. https://doi.org/10.1144/GSL.SP.1993.074.01.22 [82] Pognante, U., Lombardo, B., 1989.Metamorphic Evolution of the High Himalayan Crystallines in SE Zanskar, India.Journal of Metamorphic Geology, 7(1):9-17. https://doi.org/10.1111/j.1525-1314.1989.tb00571.x [83] Prince, C., Harris, N.B.W., Vance, D., 2001.Fluid-Enhanced Melting during Prograde Metamorphism.Journal of the Geological Society, 158(2):233-241. https://doi.org/10.1144/jgs.158.2.233 [84] Qi, X.X., Zeng, L.S., Meng, X.J., et al., 2008.Zircon SHRIMP U-Pb Dating for Dala Granite in the Tethyan Himalaya and Its Geological Implication.Acta Petrologica Sinica, 24(7):1501-1508 (in Chinese with English abstract). http://www.oalib.com/paper/1471516 [85] Regis, D., Warren, C.J., Mottram, C.M., et al., 2016.Using Monazite and Zircon Petrochronology to Constrain the P-T-t Evolution of the Middle Crust in the Bhutan Himalaya.Journal of Metamorphic Geology, 34(6):617-639. https://doi.org/10.1111/jmg.12196 [86] Regis, D., Warren, C.J., Young, D., et al., 2014.Tectono-Metamorphic Evolution of the Jomolhari Massif:Variations in Timing of Syn-Collisional Metamorphism across Western Bhutan.Lithos, 190-191:449-466. https://doi.org/10.1016/j.lithos.2014.01.001 [87] Rubatto, D., Chakraborty, S., Dasgupta, S., 2013.Timescales of Crustal Melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) Inferred from Trace Element-Constrained Monazite and Zircon Chronology.Contributions to Mineralogy and Petrology, 165(2):349-372. https://doi.org/10.1007/s00410-012-0812-y [88] Sachan, H.K., Kohn, M.J., Saxena, A., et al., 2010.The Malari Leucogranite, Garhwal Himalaya, Northern India:Chemistry, Age, and Tectonic Implications.Geological Society of America Bulletin, 122(11-12):1865-1876. https://doi.org/10.1130/b30153.1 [89] Sachan, H.K., Mukherjee, B.K., Ogasawara, Y., et al., 2004.Discovery of Coesite from Indus Suture Zone (ISZ), Ladakh, India:Evidence for Deep Subduction.European Journal of Mineralogy, 16(2):235-240. https://doi.org/10.1127/0935-1221/2004/0016-0235 [90] Scaillet, B., France-Lanord, C., Le Fort, P., 1990.Badrinath-Gangotri Plutons (Garhwal, India):Petrological and Geochemical Evidence for Fractionation Processes in a High Himalayan Leucogranite.Journal of Volcanology and Geothermal Research, 44(1-2):163-188. https://doi.org/10.1016/0377-0273(90)90017-a [91] Searle, M.P., 1999.Extensional and Compressional Faults in the Everest Lhotse Massif, Khumbu Himalaya, Nepal.Journal of the Geological Society, 156(2):227-240. https://doi.org/10.1144/gsjgs.156.2.0227 [92] Searle, M.P., Godin, L., 2003.The South Tibetan Detachment and the Manaslu Leucogranite:A Structural Reinterpretation and Restoration of the Annapurna-Manaslu Himalaya, Nepal.The Journal of Geology, 111(5):505-523. https://doi.org/10.1086/376763 [93] Smit, M.A., Hacker, B.R., Lee, J., 2014.Tibetan Garnet Records Early Eocene Initiation of Thickening in the Himalaya.Geology, 42(7):591-594. https://doi.org/10.1130/g35524.1 [94] Sorcar, N., Hoppe, U., Dasgupta, S., et al., 2014.High-Temperature Cooling Histories of Migmatites from the High Himalayan Crystallines in Sikkim, India:Rapid Cooling Unrelated to Exhumation? Contributions to Mineralogy and Petrology, 167(2):1-34. https://doi.org/10.1007/s00410-013-0957-3 [95] Streule, M.J., Searle, M.P., Waters, D.J., et al., 2010.Metamorphism, Melting, and Channel Flow in the Greater Himalayan Sequence and Makalu Leucogranite:Constraints from Thermobarometry, Metamorphic Modeling, and U-Pb Geochronology.Tectonics, 29(5):TC5011. https://doi.org/10.1029/2009tc002533 [96] St-Onge, M.R., Rayner, N., Palin, R.M., et al., 2013.Integrated Pressure-Temperature-Time Constraints for the Tso Morari Dome (Northwest India):Implications for the Burial and Exhumation Path of UHP Units in the Western Himalaya.Journal of Metamorphic Geology, 31(5):469-504. https://doi.org/10.1111/jmg.12030 [97] Tian, Z., Zhang, Z.M., Dong, X., 2016.Metamorphism of High-P Metagreywacke from the Eastern Himalayan Syntaxis:Phase Equilibria and P-T Path.Journal of Metamorphic Geology, 34(7):697-718. https://doi.org/10.1111/jmg.12205 [98] Tian, Z.L., Kang, D.Y., Mu, H.C., 2017.Metamorphic P-T-t Path of Garnet Amphibolite from the Eastern Himalaya Syntaxis:Phase Equilibria and Zircon Chronology.Acta Petrologica Sinica, 33(8):2467-2478 (in Chinese with English abstract). doi: 10.1007/s00410-004-0600-4 [99] Tobgay, T., McQuarrie, N., Long, S., et al., 2012.The Age and Rate of Displacement along the Main Central Thrust in the Western Bhutan Himalaya.Earth and Planetary Science Letters, 319-320:146-158. https://doi.org/10.1016/j.epsl.2011.12.005 [100] Viskupic, K., Hodges, K.V., 2001.Monazite-Xenotime Thermochronometry:Methodology and an Example from the Nepalese Himalaya.Contributions to Mineralogy and Petrology, 141(2):233-247. https://doi.org/10.1007/s004100100239 [101] Viskupic, K., Hodges, K.V., Bowring, S.A., 2005.Timescales of Melt Generation and the Thermal Evolution of the Himalayan Metamorphic Core, Everest Region, Eastern Nepal.Contributions to Mineralogy and Petrology, 149(1):1-21. https://doi.org/10.1007/s00410-004-0628-5 [102] Visonà, D., Carosi, R., Montomoli, C., et al., 2012.Miocene Andalusite Leucogranite in Central-East Himalaya (Everest-Masang Kang Area):Low-Pressure Melting during Heating.Lithos, 144-145:194-208. https://doi.org/10.1016/j.lithos.2012.04.012 [103] Wang, J.M., Rubatto, D., Zhang, J.J., 2015a.Timing of Partial Melting and Cooling across the Greater Himalayan Crystalline Complex (Nyalam, Central Himalaya):In-Sequence Thrusting and Its Implications.Journal of Petrology, 56(9):1677-1702. https://doi.org/10.1093/petrology/egv050 [104] Wang, J.M., Wu, F.Y., Rubatto, D., et al., 2017b.Monazite Behaviour during Isothermal Decompression in Pelitic Granulites:A Case Study from Dinggye, Tibetan Himalaya.Contributions to Mineralogy and Petrology, 172(10):1-30. https://doi.org/10.1007/s00410-017-1400-y [105] Wang, J.M., Zhang, J.J., Liu, K., et al., 2016.Spatial and Temporal Evolution of Tectonometamorphic Discontinuities in the Central Himalaya:Constraints from P-T Paths and Geochronology.Tectonophysics, 679:41-60. https://doi.org/10.1016/j.tecto.2016.04.035 [106] Wang, J.M., Zhang, J.J., Wang, X.X., 2013.Structural Kinematics, Metamorphic P-T Profiles and Zircon Geochronology across the Greater Himalayan Crystalline Complex in South-Central Tibet:Implication for a Revised Channel Flow.Journal of Metamorphic Geology, 31(6):607-628. https://doi.org/10.1111/jmg.12036 [107] Wang, J.M., Zhang, J.J., Wei, C.J., et al., 2015b.Characterising the Metamorphic Discontinuity across the Main Central Thrust Zone of Eastern-Central Nepal.Journal of Asian Earth Sciences, 101:83-100. https://doi.org/10.1016/j.jseaes.2015.01.027 [108] Wang, Y.H., Zhang, L.F., Zhang, J.J., et al., 2017a.The Youngest Eclogite in Central Himalaya:P-T Path, U-Pb Zircon Age and Its Tectonic Implication.Gondwana Research, 41:188-206. https://doi.org/10.1016/j.gr.2015.10.013 [109] Warren, C.J., Grujic, D., Kellett, D.A., et al., 2011.Probing the Depths of the India-Asia Collision:U-Th-Pb Monazite Chronology of Granulites from NW Bhutan.Tectonics, 30(2):TC2004. https://doi.org/10.1029/2010tc002738 [110] Wei, C.J., Guan, X., Dong, J., 2017.HT-UHP Metamorphism of Metabasites and the Petrogenesis of TTGs.Acta Petrologica Sinica, 33(5):1381-1404 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20170502 [111] Weinberg, R.F., 2016.Himalayan Leucogranites and Migmatites:Nature, Timing and Duration of Anatexis.Journal of Metamorphic Geology, 34(8):821-843. https://doi.org/10.1111/jmg.12204 [112] Wu, F.Y., Liu, Z.C., Liu, X.C., et al., 2015.Himalayan Leucogranite:Petrogenesis and Implications to Orogenesis and Plateau Uplift.Acta Petrologica Sinica, 31(1):1-36 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201501001.htm [113] Xiang, H., Zhang, Z.M., Dong, X., et al., 2013.High-Pressure Metamorphism and Anatexis during the Subduction of Indian Continent:Phase Equilibria Modeling of the Namche Barwa Complex, Eastern Himalayan Syntaxis.Acta Petrologica Sinica, 29(11):3792-3802 (in Chinese with English abstract). https://www.researchgate.net/publication/229098874_High-pressure_anatectic_paragneisses_from_the_Namche_Barwa_Eastern_Himalayan_Syntaxis_Textural_evidence_for_partial_melting_phase_equilibria_modeling_and_tectonic_implications [114] Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211 [115] Zeiger, K., Gordon, S.M., Long, S.P., et al., 2015.Timing and Conditions of Metamorphism and Melt Crystallization in Greater Himalayan Rocks, Eastern and Central Bhutan:Insight from U-Pb Zircon and Monazite Geochronology and Trace-Element Analyses.Contributions to Mineralogy and Petrology, 169(5):47. https://doi.org/10.1007/s00410-015-1143-6 [116] Zeng, L.S., Gao, L.E., 2017.Cenozoic Crustal Anatexis and the Leucogranites in the Himalayan Collisional Orogenic Belt.Acta Petrologica Sinica, 33(5):1420-1444 (in Chinese with English abstract). http://mall.cnki.net/magazine/Article/JXTW2013Z2016.htm [117] Zeng, L.S., Gao, L.E., Dong, C.Y., et al., 2012.High-Pressure Melting of Metapelite and the Formation of Ca-Rich Granitic Melts in the Namche Barwa Massif, Southern Tibet.Gondwana Research, 21(1):138-151. https://doi.org.org/10.1016/j.gr.2011.07.023 [118] Zeng, L.S., Gao, L.E., Tang, S.H., et al., 2015.Eocene Magmatism in the Tethyan Himalaya, Southern Tibet.Geological Society, London, Special Publications, 412(1):287-316. https://doi.org/10.1144/SP412.8 [119] Zeng, L.S., Gao, L.E., Xie, K.J., et al., 2011.Mid-Eocene High Sr/Y Granites in the Northern Himalayan Gneiss Domes:Melting Thickened Lower Continental Crust.Earth and Planetary Science Letters, 303(3-4):251-266. https://doi.org/10.1016/j.epsl.2011.01.005 [120] Zhang, H.F., Harris, N.B.W., Parrish, R., et al., 2004.Causes and Consequences of Protracted Melting of the Mid-Crust Exposed in the North Himalayan Antiform.Earth and Planetary Science Letters, 228(1-2):195-212. https://doi.org/10.1016/j.epsl.2004.09.031 [121] Zhang, J.J., Santosh, M., Wang, X.X., et al., 2012a.Tectonics of the Northern Himalaya since the India-Asia Collision.Gondwana Research, 21(4):939-960. https://doi.org/10.1016/j.gr.2011.11.004 [122] Zhang, Z.M., Dong, X., Ding, H.X., et al., 2017.Metamorphism and Partial Melting of the Himalayan Orogen.Acta Petrologica Sinica, 33(8):2313-2341 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20170801 [123] Zhang, Z.M., Dong, X., Santosh, M., et al., 2012b.Petrology and Geochronology of the Namche Barwa Complex in the Eastern Himalayan Syntaxis, Tibet:Constraints on the Origin and Evolution of the North-Eastern Margin of the Indian Craton.Gondwana Research, 21(1):123-137. https://doi.org/10.1016/j.gr.2011.02.002 [124] Zhang, Z.M., Xiang, H., Ding, H.X., et al., 2017a.Miocene Orbicular Diorite in East-Central Himalaya:Anatexis, Melt Mixing, and Fractional Crystallization of the Greater Himalayan Sequence.Geological Society of America Bulletin, 129(7-8):869-885. https://doi.org/10.1130/b31586.1 [125] Zhang, Z.M., Xiang, H., Dong, X., et al., 2015.Long-Lived High-Temperature Granulite-Facies Metamorphism in the Eastern Himalayan Orogen, South Tibet.Lithos, 212-215:1-15. https://doi.org/10.1016/j.lithos.2014.10.009 [126] Zhang, Z.M., Xiang, H., Dong, X., et al., 2017b.Oligocene HP Metamorphism and Anatexis of the Higher Himalayan Crystalline Sequence in Yadong Region, East-Central Himalaya.Gondwana Research, 41:173-187. https://doi.org/10.1016/j.gr.2015.03.002 [127] Zhang, Z.M., Zhao, G.C., Santosh, M., et al., 2010.Two Stages of Granulite Facies Metamorphism in the Eastern Himalayan Syntaxis, South Tibet:Petrology, Zircon Geochronology and Implications for the Subduction of Neo-Tethys and the Indian Continent beneath Asia.Journal of Metamorphic Geology, 28(7):719-733. https://doi.org/10.1111/j.1525-1314.2010.00885.x [128] 刘凤麟, 张立飞, 2014.喜马拉雅东构造结高压麻粒岩PT轨迹, 锆石U-Pb定年及其地质意义.岩石学报, 30(10):2808-2820. http://d.wanfangdata.com.cn/Periodical/ysxb98201410002 [129] 戚学祥, 曾令森, 孟祥金, 等, 2008.特提斯喜马拉雅打拉花岗岩的锆石SHRIMP U-Pb定年及其地质意义.岩石学报, 24(7):1501-1508. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_ysxb98200807007 [130] 田作林, 康东艳, 穆虹辰, 2017.东喜马拉雅构造结石榴角闪岩变质作用P-T-t轨迹:相平衡模拟与锆石年代学.岩石学报, 33(8):2467-2478. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201708009 [131] 魏春景, 关晓, 董杰, 2017.基性岩高温-超高压变质作用与TTG质岩成因.岩石学报, 33(5):1381-1404. https://mall.cnki.net/qikan-YSXB201705002.html [132] 吴福元, 刘志超, 刘小驰, 等, 2015.喜马拉雅淡色花岗岩.岩石学报, 31(1):1-36. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20150101 [133] 向华, 张泽明, 董昕, 等, 2013.印度大陆俯冲过程中的高压变质与深熔作用:东喜马拉雅构造结南迦巴瓦杂岩的相平衡模拟研究.岩石学报, 29(11):3792-3802. http://www.ysxb.ac.cn/ysxb/ch/reader/issue_list.aspx?year_id=2013&quarter_id=11 [134] 曾令森, 高利娥, 2017.喜马拉雅碰撞造山带新生代地壳深熔作用与淡色花岗岩.岩石学报, 33(5):1420-1444. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20170504 [135] 张泽明, 董昕, 丁慧霞, 等, 2017.喜马拉雅造山带的变质作用与部分熔融.岩石学报, 33(8):2313-2341. http://mall.cnki.net/magazine/Article/YSXB201708001.htm