Mineral Association and Iron Species in Wujialong Fault of Jiangshan, Zhejiang Province: Implications for Fault Activity
-
摘要: 由于房屋建设开挖,浙江省江山市五家垄出露6条新鲜小断层,属于江绍断裂的次级组成部分.结合野外地质勘查,运用粉晶X射线衍射和穆斯堡尔谱技术对五家垄断层的3条小断层(F1、F2与F3)的断层泥和断层围岩进行矿物组成和铁元素化学种分布特征的对比分析与研究发现:断层围岩与断层泥的矿物成分主要为石英和黏土矿物,还含有少量钠长石和方解石,其中黏土矿物以伊利石、伊蒙混层和高蒙混层为主,还含有少量的绿泥石、高岭石和极少量的蒙脱石和蛭石;除采自F2断层的JS07样品外,断层围岩中造岩矿物含量高于断层泥,而断层泥黏土含量高于断层围岩;F1断层泥黏土矿物只有伊利石,显示断层带内为一个相对稳定的环境,F2与F3断层泥中伊利石含量低于断层围岩,蒙脱石、伊蒙混层含量高于断层围岩,指示其处于一个潮湿、强氧化环境;F1断层围岩高含量的还原性铁指示断层围岩形成的过程中有还原性物质的参与或者处于相对封闭的环境,F1、F3断层泥与F3上盘高含量的氧化铁亦说明F1、F3断层近期不活跃或者是块体内断层;断层带内黏土矿物的类型及组合与断层带内的氧化还原环境显示五家垄断层处于相对稳定的环境,但断层带内伊利石含量较高,有利于断层活动,五家垄断层的活动性与发震可能性应引起重视.Abstract: As a result of the excavation of building construction, 6 small size fresh faults exposed in Wujialong of Jiangshan City, Zhejiang Province, which was sub-branch of Jiangshao fault. Field geological survey, X-ray powder diffraction and Mössbauer spectroscopy were used to study the mineral composition and iron species of fault gouges and wall rocks of 3 small faults (F1, F2 and F3) in Wujialong fault. After comparative analysis and research we found that:(1) The wall rocks and fault gouges are mainly composed of quartz and clay minerals, and also contain a small amount of albite and calcite. The clay minerals are mainly composed of illite and IS layer, and also contain small amount of chlorite, kaolinite and KS layer and trace amount of montmorillonite and vermiculite. (2) Except the JS07 sample, the rock forming minerals content is higher than that of fault gouges whereas to the clay content in fault gouges is higher than that of wall rocks. (3) Clay mineral in F1 fault is dominated by illite, indicating a relative stable environment. The content of illite in F2 and F3 fault gouges are lower than that in wall rocks, montmorillonite and IS layer is higher than that in wall rocks, indicating that it was formed in wet, strong oxidizing environment. (4) The high content of reduced iron of wall rocks in F1 may suggest that the formation of wall rocks is involved in the process of reducing substances, the high levels of oxidized iron of F1, F3 fault zone and F3 hanger, indicating either F1, F3 faults are inactive and/or they are inner-block fault. (5) The types and association of clay minerals in the fault zone and the redox environment generally show that the Wujialong fault is in a relatively stable environment, however, the content of illite in the fault zone is high, which is conducive to the fault activity. The activity of Wujialong fault and the possibility of earthquake should be taken into consideration seriously.
-
Key words:
- Jiangshan /
- fault gouge /
- X-ray powder diffraction /
- Mössbauer spectroscopy /
- iron species /
- mineralogy
-
图 1 浙西皖南及其邻区大地构造区划(a)与浙江江山构造纲要图(b)
a:①江山-绍兴深断裂;②开化-临安深断裂;③浙皖赣断裂;④江南深断裂;b:1.震旦系;2.寒武-奥陶系;3.石炭-二叠系;4.白垩系;5背斜;6.向斜;7.硅化带和硅化角砾岩;8.逆断层;9.平移断层;10.性质不明断层;11.不整合线;12.花岗岩;据郭福生(2014)
Fig. 1. Schematic showing tectonic position (a) and structural geologic map of Jiangshan area (b)
表 1 研究样品描述及采样位置
Table 1. Petrological properties and locations of the samples
样品编号 样品描述 采样位置 样品类型 JS01 黄绿色泥岩 F1断层上盘 断层围岩 JS02-1 土黄色断层泥 F1断层带内 断层泥 JS02-2 黑色断层泥 F1断层带内 断层泥 JS02-3 土黄色断层泥 F1断层带内 断层泥 JS03 墨绿色泥岩 F1断层下盘 断层围岩 JS06 灰绿色泥岩 F2断层上盘 断层围岩 JS07 黑色断层泥 F2断层带内 断层泥 JS08 土黄色泥岩 F2断层下盘 断层围岩 JS09 黄绿色泥岩 F3断层下盘 断层围岩 JS10 土黄色断层泥 F3断层带内 断层泥 JS11 黄绿色-灰绿色泥岩 F3断层上盘 断层围岩 表 2 五家垄断层泥、断层围岩样品中的主要矿物(%)
Table 2. Major minerals in the fault gouge and wallrock of Wujialong fault (%)
样品号 样品类型 石英 钠长石 方解石 黏土 JS01 断层围岩 47 12 0 41 JS02-1 断层泥 13 0 0 87 JS02-2 断层泥 35 0 0 65 JS03 断层围岩 41 11 1 47 JS06 断层围岩 39 15 0 46 JS07 断层泥 66 4 0 30 JS08 断层围岩 37 7 0 56 JS09 断层围岩 39 10 0 51 JS10 断层泥 25 4 0 71 JS11 断层围岩 26 5 0 69 表 3 五家垄断层泥、断层围岩样品中的主要黏土矿物组成(%)
Table 3. Principal clay compositions of fault gouge and wallrock of Wujialong fault (%)
样品号 样品类型 伊利石 绿泥石 伊蒙混层 高岭石 蒙脱石 高蒙混层 蛭石 JS01 断层围岩 64 21 10 5 0 0 0 JS02-1 断层泥 100 0 0 0 0 0 0 JS02-2 断层泥 100 0 0 0 0 0 0 JS03 断层围岩 62 25 11 2 0 0 0 JS06 断层围岩 56 26 14 4 0 0 0 JS07 断层泥 36 0 36 7 3 17 1 JS08 断层围岩 55 0 25 2 1 17 1 JS09 断层围岩 63 0 18 2 2 14 1 JS10 断层泥 41 0 46 3 1 9 0 JS11 断层围岩 64 0 27 2 1 6 0 表 4 F1、F3断层泥与断层围岩穆斯堡尔谱参数及各种铁化学种的相对含量
Table 4. Parameters of Mössbauer spectrum and relative contents of iron species in fault gouges and fault rocks of F1 and F3
样品号 岩性 铁化学种 相对含量(100%) IS(mm·s-1) QS(mm·s-1) HW(mm·s-1) Hi(T) Fe2+/Fe3+ F1断层 paraFe2+ 54.30±0.26 1.132 0±0.015 0 2.656±0.029 0.191 0±0.012 0 - JS01 断层围岩 paraFe3+ 17.00±0.16 0.381 0±0.069 0 1.040±0.230 0.239 0±0.099 0 - 1.180 paraFe3+ 29.00±0.14 0.349 0±0.018 0 0.530±0.084 0.205 0±0.051 0 - paraFe2+ 11.10±0.29 1.120 0±0.067 0 2.820±0.120 0.318 0±0.100 0 - JS02-2 断层泥 paraFe3+ 25.00±0.25 0.362 5±0.007 6 0.483±0.046 0.141 0±0.052 0 - 0.125 paraFe3+ 64.00±0.27 0.367 4±0.007 7 0.800±0.130 0.256 0±0.020 0 - paraFe2+ 24.50±0.22 1.133 0±0.033 0 2.697±0.065 0.215 0±0.027 0 - JS02-3 断层泥 paraFe3+ 33.00±0.17 0.370 0±0.033 0 1.050±0.170 0.261 0±0.046 0 - 0.322 paraFe3+ 43.00±0.16 0.356 4±0.008 6 0.585±0.045 0.192 0±0.027 0 - paraFe2+ 63.30±0.17 1.123 3±0.005 8 2.650±0.011 0.185 3±0.006 6 - JS03 断层围岩 paraFe3+ 12.00±0.11 0.404 0±0.053 0 1.000±0.150 0.221 0±0.097 0 - 1.711 paraFe3+ 25.00±0.11 0.347 0±0.017 0 0.556±0.073 0.211 0±0.042 0 - F3断层 paraFe2+ 29.60±0.22 1.125 0±0.014 0 2.701±0.028 0.203 0±0.020 0 - JS09 断层围岩 paraFe3+ 44.00±0.27 0.365 0±0.016 0 0.880±0.190 0.274 0±0.036 0 - 0.417 paraFe3+ 27.00±0.25 0.356 0±0.011 0 0.520±0.066 0.168 0±0.054 0 - paraFe2+ 11.36±0.19 1.102 0±0.025 0 2.767±0.050 0.180 0±0.036 0 - JS-10 断层泥 paraFe3+ 43.32±0.18 0.362 3±0.005 1 0.482±0.037 0.154 0±0.023 0 - 0.128 paraFe3+ 45.32±0.20 0.362 5±0.007 9 0.834±0.099 0.217 0±0.026 0 - 注:paraFe3+为顺磁性高价铁;paraFe2+为顺磁性低价铁;IS.同质异能移动;QS.四极分裂;HW.半线宽; Hi.磁超精细场强度. -
[1] Canil, D., O'Neill, H.S.C., Pearson, D.G., et al., 1994.Ferric Iron in Peridotites and Mantle Oxidation States.Earth and Planetary Science Letters, 123(1-3):205-220. https://doi.org/10.1016/0012-821x(94)90268-2 [2] Chen, Y.K., Zhao, G.M., Yan, C.G., et al., 2013.Active Fault Detection and Seismic Hazard Assessment in Tianjin.Science Press, Beijing (in Chinese). [3] Chen, Z.D., Wu, X.Y., 1996.The Caledonian Movement in Western Part of Zhejiang.Geology of Zhejiang, 12(2):28-34(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000005899 [4] Dang, J.X., Zhou, Y.S., Han, L., et al., 2012.X-Ray Diffraction Analysis Result of Co-Seismic Fault Gouge in Carbon Mudstone at Outcrops of Bajiaomian and Shenxigou in Hongkou.Seismology and Geology, 34(1):17-27(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZDZ201201005.htm [5] Dyar, M., 1993.Crystal Chemistry of Fe3+ and H+ in Mantle Kaersutite:Implications for Mantle Metasomatism.American Mineralogist, 78(9-10):968-979. https://doi.org/10.1016/0024-4937(93)90032-8 [6] Eyles, N., Boyce, J.I., 1998.Kinematic Indicators in Fault Gouge:Tectonic Analog for Soft-Bedded Ice Sheets.Sedimentary Geology, 116(1-2):1-12. https://doi.org/10.1016/s0037-0738(97)00122-x [7] Fu, B.H., Wang, P., Kong, P., et al., 2008.Preliminary Study of Coseismic Fault Gouge Occurred in The Slip Zone of the Wenchuan Ms8.0 Earthquake and Its Tectonic Implications.Acta Petrologica Sinica, 24(10):2237-2243(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200810005.htm [8] Guo, F.S., 2004.Sedimentary Evolution and Tectonic Control of Paleozoic in Jiangshan, Zhejiang(Dissertation).China University of Geosciences, Beijing(in Chinese with English abstract). [9] Guo, F.S., 2014.Outline of Jiangshan Geology and Practice Guide for Regional Geological Survey.Geological Publishing House, Beijing (in Chinese). [10] Hashimoto, Y., Ujiie, K., Sakaguchi, A., et al., 2007.Characteristics and Implication of Clay Minerals in the Northern and Southern Parts of the Chelung-Pu Fault, Taiwan.Tectonophysics, 443(3-4):233-242. https://doi.org/10.1016/j.tecto.2007.01.024 [11] Hataya, R., Tanaka, K., Miki, T., 1997.A New ESR Signal (R Signal) in Quartz Grains Taken from Fault Gauges:Its Properties and Significance for ESR Fault Dating.Applied Radiation and Isotopes, 48(3):423-429. https://doi.org/10.1016/s0969-8043(96)00230-8 [12] Hoffman, J., Hower, J., 1979.Clay Mineral Assemblages as Low Grade Metamorphic Geothermometers:Application to the Thrust Faulted Disturbed Belt of Montana.Aspects of Diagenesis, 55-79. https://doi.org/10.2110/pec.79.26.0055 [13] Hong, H.L., Fang, Q., Wang, C.W., et al., 2017.Constraints of Parent Magma on Altered Clay Minerals:A Case Study on the Permin-Triassic Boundary in Xinmin Section, Guizhou Province.Earth Science, 42(2):161-172(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201702001.htm [14] Huang, S.J., 1990.Identification and Diagenetic Significance of Interstratified Illite-Montmorillonite Series.Sedimentary Facies and Palaeogeography, (5):23-29(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TTSD199005003.htm [15] Jin, W.S., Zhao, F.Q., Zhang, H.M., 1998.Division of Tectonic Units and Its Characteristics.Geology of Zhejiang, 14(1):1-10(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZJDZ199801000.htm [16] Li, Z., Ying, Y.P., 1996.Mineral Mössbauer Spectroscopy.Science Press, Beijing (in Chinese). [17] Liang, D.X., Chen, L.E., 1990.Phanerozoice on Sedimentologic and Tectonic Evolution in the West Zhejiang and Anhui Region.Journal of East China College of Geology, (4):84-92(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HDDZ199004014.htm [18] Lin, C.Y., Shi, L.F., Liu, X.S., et al., 1995.Significance of Fault Gouge in the Study of Recent Activity of Fault in Bedrock Area.Earthquake Research in China, 11(1):26-32(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500633724 [19] Luo, D.G., Liu, J.P., Jin, C., 2017.Instantaneous Seismic Attributes and Response Characteristics of Active Faults.Earth Science, 42(3):462-470(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201703013 [20] Ma, R.Z., Xu, Y.T., 1996.Mössbauer Spectroscopy.Science Press, Beijing (in Chinese). [21] Ma, X.X., Wang, H.L., Zhang, Z.W., et al., 2014.Distribution Charcateristics of Iron Species in Three Faults Along the Eastern Margin of the Tibetan Plateau, China.Bulletin of Mineralogy, Petrology and Geochemistry, 33(3):348-354(in Chinese with English abstract). [22] Pollastro, R.M., 1993.Considerations and Applications of the Illite/Smectite Geothermometer in Hydrocarbon-Bearing Rocks of Miocene to Mississippian Age.Clays and Clay Minerals, 41(2):119-133. https://doi.org/10.1346/ccmn.1993.0410202 [23] Shao, S.M., 1994.Present Condition and Progress of Fault Gouge Research.Earthquake Research in Plateau, 6(3):51-56(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400138610 [24] Tanaka, H., Fujimoto, K., Ohtani, T., et al., 2001.Structural and Chemical Characterization of Shear Zones in the Freshly Activated Nojima Fault, Awaji Island, Southwest Japan.Journal of Geophysical Research:Solid Earth, 106(B5):8789-8810. https://doi.org/10.1029/2000jb900444 [25] Tang, Y.J., Jia, J.Y., Xie, X.D., 2002.Environment Significance of Clay Minerals.Earth Science Frontiers, 9(2):337-344(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgsm201801012 [26] Vrolijk, P., Van, d.P.B.A., 1999.Clay Gouge.Journal of Structural Geology, 21(8):1039-1048. https://doi.org/10.1016/S0191-8141(99)00103-0 [27] Wang, J., 2000.Neoproterozoic Rifting History of South China:Significance to Rodinia Breakup.Geological Publishing House, Beijing (in Chinese). [28] Wang, Z.W., Pang, B.Z., 2008.Geophysical Logging and Global Climate Change Research.Journal of Jilin University(Earth Science Edition), (Suppl.1):103-105(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200802343602 [29] Wu, F.T., Blatter, L., Roberson, H., 1975.Clay Gouges in the San Andreas Fault System and Their Possible Implications.Pure and Applied Geophysics, 113(1):87-95. https://doi.org/10.1007/bf01592901 [30] Zeelmaekers, E., Honty, M., Derkowski, A., et al., 2015.Qualitative and Quantitative Mineralogical Composition of the Rupelian Boom Clay in Belgium.Clay Minerals, 50(2):249-272. https://doi.org/10.1180/claymin.2015.050.2.08 [31] Zhang, B.L., Feng, J.J., Niu, L.F.et al., 1989.Characteristics of Clay Minerals in Fault Gouges from Honghe Fault Zone and Their Seismogeologic Implication.Seismology and Geology, 11(3):96-97(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ198903014.htm [32] Zhang, F.L., Yi, F., Chen, Y.L., et al., 1997.Determination of the Optimum Thickness of an Absorber in Mössbauer Spectroscopy.Journal of Wuhan University(Natural Science Edition), 43(3):348-352(in Chinese with English abstract). [33] Zhang, Y.S., Gao, D.L., Liu, Y., et al., 2014.Characteristics and Environmental Significance of Clay Minerals in the Late Pieistocene Lake Sediment, Qaidam Basin.Bulletin of Mineralogy, Petrology and Geochemistry, 33(1):49-54(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/pre_2c7b8fa6-2e32-40fa-ae8f-28f58353bf71 [34] Zhao, J., Zheng, G.D., Fu, B.H., 2009.Current Development of Tectonic Geochemical Studies of Active Fault Zones.Advances in Earth Science, 24(10):1130-1137(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkxjz200910007 [35] Zheng, G.D., 2008.Iron Speciation by Mössbauer Spectroscopy and Its Implications in Various Studies on the Earth Surface Processes.Bulletin of Mineralogy, Petrology and Geochemistry, 27(2):161-168(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH200802011.htm [36] Zheng, G.D., Fu, B.H., Takahashi, Y., et al., 2008.Iron Speciation in Fault Gouge from the Ushikubi Fault Zone Central Japan.Hyperfine Interactions, 186(1-3):39-52. https://doi.org/10.1007/s10751-008-9846-y [37] Zheng, G.D., Xu, S., Lang, Y.H., et al., 2002.Chemical Variation of Iron Elements in Clay of Landslide.Chinese Science Bulletin, 47(24):1889-1893(in Chinese). doi: 10.1360/02tb9438 [38] Zhu, D.G., Meng, X.G., Zhao, X.T., et al., 2004.Lake-Level Change of Namco, Tibet, since the Late Pleistocene and Environment Information of Clay Minerals in Lacustrine Deposits.Journal of Geomechanics, 10(4):300-309(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX200404002.htm [39] Zhu, G.Q., Jiang, J.S., Chen, Z.J., et al., 1997, Tectonic Evolution and Deformational Features of Jiangshan-Shaoxing Fracture Zone in Northweastern Zhejiang.Zhejiang Land & Resources, 13(2):6-10(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700721240 [40] 陈宇坤, 赵国敏, 闫成国, 等, 2013.天津市活动断层探测与地震危险性评价.北京:科学出版社. [41] 陈忠大, 吴小勇, 1996.浙西的加里东运动.浙江地质, 12(2):28-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600691748 [42] 党嘉祥, 周永胜, 韩亮, 等, 2012.虹口八角庙-深溪沟炭质泥岩同震断层泥的X射线衍射分析结果.地震地质, 34(1):17-27. doi: 10.3969/j.issn.0253-4967.2012.01.003 [43] 付碧宏, 王萍, 孔屏, 等, 2008.四川汶川5.12大地震同震滑动断层泥的发现及构造意义.岩石学报, 24(10):2237-2243. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200810005 [44] 郭福生, 2004.浙江江山古生代沉积演化及其构造控制(博士学位论文).北京: 中国地质大学. [45] 郭福生, 2014.江山地质概论及区域地质调查实习指导书.北京:地质出版社. [46] 洪汉烈, 方谦, 王朝文, 等, 2017.岩浆母质对蚀变粘土矿物的约束:以贵州新民剖面P-T界线附近火山灰层为例.地球科学, 42(2):161-172. doi: 10.3969/j.issn.1672-6561.2017.02.003 [47] 黄思静, 1990.混层伊利石-蒙脱石的鉴定及其成岩意义.岩相古地理, (5):23-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000003145126 [48] 金文山, 赵凤清, 张惠民, 1998.华机构造单元划分及其特征.浙江地质, 14(1):1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800765673 [49] 李哲, 应育浦, 1996.矿物穆斯堡尔谱学.北京:科学出版社. [50] 梁鼎新, 陈联儿, 1990.浙西和皖南地区显生宙沉积大地构造演化.东华理工大学学报(自然科学版), 13(4):84-92. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000005507633 [51] 林传勇, 史兰斌, 刘行松, 等, 1995.断层泥在基岩区断层新活动研究中的意义.中国地震, 11(1):26-32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500633724 [52] 罗登贵, 刘江平, 金聪, 等, 2017.活断层的地震响应特征与瞬时地震属性.地球科学, 42(3):462-470. http://www.earth-science.net/WebPage/Article.aspx?id=3535 [53] 马如璋, 徐英庭, 1996.穆斯堡尔谱学.北京:科学出版社. [54] 马向贤, 王华林, 张志武, 等, 2014.青藏高原东缘3条断裂带断层泥铁元素化学种的分布特征.矿物岩石地球化学通报, 33(3):348-354. doi: 10.3969/j.issn.1007-2802.2014.03.009 [55] 邵顺妹, 1994.断层泥研究的现状和进展.高原地震, 6(3):51-56. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400138610 [56] 汤艳杰, 贾建业, 谢先德, 2002.粘土矿物的环境意义.地学前缘, 9(2):337-344. doi: 10.3321/j.issn:1005-2321.2002.02.011 [57] 王剑, 2000.华南新元古代裂谷盆地演化——兼论与Rodinia解体的关系.北京:地质出版社. [58] 王志文, 潘保芝, 2008.地球物理测井在古气候研究中的现状和展望.吉林大学学报(地球科学版), 38(增刊1):103-105. http://d.old.wanfangdata.com.cn/Conference/6874698 [59] 张秉良, 冯锦江, 牛娈芳, 等, 1989.红河断裂带断层泥中粘土矿物特征及其地震地质意义.地震地质, 11(3):96-97. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000348874 [60] 张富良, 易凡, 陈义龙, 等, 1997.穆斯堡尔谱学中样品最佳厚度的确定.武汉大学学报(理学版), 43(3):348-352. doi: 10.3321/j.issn:1671-8836.1997.03.001 [61] 张玉淑, 高东林, 刘永, 等, 2014.柴达木盆地晚更新世湖泊沉积物中黏土矿物特征及环境意义.矿物岩石地球化学通报, 33(1):49-54. doi: 10.3969/j.issn.1007-2802.2014.01.006 [62] 赵军, 郑国东, 付碧宏, 2009.活动断层的构造地球化学研究现状.地球科学进展, 24(10):1130-1137. doi: 10.3321/j.issn:1001-8166.2009.10.007 [63] 郑国东, 2008.基于穆斯堡尔谱技术的铁化学种及其在相关表生地球科学研究中的应用.矿物岩石地球化学通报, 27(2):161-168. doi: 10.3969/j.issn.1007-2802.2008.02.009 [64] 郑国东, 徐胜, 郎煜华, 等, 2002.滑坡面黏土中铁元素的化学种变化.科学通报, 47(24):1889-1893. doi: 10.3321/j.issn:0023-074X.2002.24.011 [65] 朱大岗, 孟宪刚, 赵希涛, 等, 2004.西藏纳木错晚更新世以来湖面变化和湖相沉积中粘土矿物显示的环境信息.地质力学学报, 10(4):300-309. doi: 10.3969/j.issn.1006-6616.2004.04.002 [66] 竺国强, 姜继双, 陈梓军, 等, 1997.浙西北江山-绍兴断裂带构造演化特征.浙江地质, 13(2):6-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700721240