• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    多龙矿集区色那东岩体年龄、成因与动力学背景

    王勤 林彬 唐菊兴 宋扬 李彦波 侯俊富 李玉彬 卫鲁杰

    王勤, 林彬, 唐菊兴, 宋扬, 李彦波, 侯俊富, 李玉彬, 卫鲁杰, 2018. 多龙矿集区色那东岩体年龄、成因与动力学背景. 地球科学, 43(4): 1125-1141. doi: 10.3799/dqkx.2017.613
    引用本文: 王勤, 林彬, 唐菊兴, 宋扬, 李彦波, 侯俊富, 李玉彬, 卫鲁杰, 2018. 多龙矿集区色那东岩体年龄、成因与动力学背景. 地球科学, 43(4): 1125-1141. doi: 10.3799/dqkx.2017.613
    Wang Qin, Lin Bin, Tang Juxing, Song Yang, Li Yanbo, Hou Junfu, Li Yubin, Wei Lujie, 2018. Diagenesis, Lithogenesis and Geodynamic Setting of Intrusions in Senadong Area, Duolong District, Tibet. Earth Science, 43(4): 1125-1141. doi: 10.3799/dqkx.2017.613
    Citation: Wang Qin, Lin Bin, Tang Juxing, Song Yang, Li Yanbo, Hou Junfu, Li Yubin, Wei Lujie, 2018. Diagenesis, Lithogenesis and Geodynamic Setting of Intrusions in Senadong Area, Duolong District, Tibet. Earth Science, 43(4): 1125-1141. doi: 10.3799/dqkx.2017.613

    多龙矿集区色那东岩体年龄、成因与动力学背景

    doi: 10.3799/dqkx.2017.613
    基金项目: 

    国土资源部公益性行业科研专项经费项目 201511017

    详细信息
      作者简介:

      王勤(1983-), 男, 博士研究生, 工程师, 从事固体矿产勘查与评价相关工作, 主要从事区域成矿学研究

      通讯作者:

      唐菊兴

    • 中图分类号: P597

    Diagenesis, Lithogenesis and Geodynamic Setting of Intrusions in Senadong Area, Duolong District, Tibet

    • 摘要: 多龙矿集区是我国首个铜金属资源量达到2 000万t以上的世界级铜金矿集区,外围找矿潜力依然十分巨大.首次报道矿集区东部色那东地区花岗斑岩体和闪长玢岩体的地质年代学及地球化学测试结果,为总结区域成矿规律提供基础数据.通过精确的锆石测年,全岩主、微量元素和锆石Hf同位素测试发现,上述岩体的成岩年龄均为123±2 Ma,岩石的形成与俯冲洋壳板片部分熔融有关,源区有明显幔源组分加入.色那东地区侵入岩与矿集区含矿斑岩空间上集中侵入,且同属早白垩世岩浆活动产物,暗示其具有相同动力学背景,是班公湖-怒江洋俯冲末期-碰撞初期弧-弧"软"碰撞的产物,其侵入过程为成矿提供了热量和流体来源,显示该地区仍有较好的成矿潜力.

       

    • 图  1  西藏多龙矿集区地质略图

      SJMB.三江成矿带; BNMB.班公湖-怒江成矿带; GDMB.冈底斯成矿带; NHMB.北喜马拉雅成矿带; BNS.班公湖-怒江缝合带; IYS.雅鲁藏布江缝合带; JS.金沙江缝合带; Q.第四系; K2a.上白垩统阿布山组; K1m.下白垩统美日切错组; J1q.下侏罗统曲色组; J1-2s.下-中侏罗统色洼组; T3r.上三叠统日干配错组; ba.枕状玄武岩; ν.辉长岩; γπ.花岗斑岩; λοπ.石英闪长玢岩; λδπ.花岗闪长斑岩; DP.闪长玢岩.据林彬等(2016)

      Fig.  1.  Geological sketch map of the Duolong ore cluster, Tibet

      图  2  色那东地区侵入岩野外露头及手标本、显微镜下(正交偏光)照片

      a.探槽揭露的花岗斑岩露头; b.花岗斑岩手标本; c.地表出露闪长玢岩岩脉; d.闪长玢岩手标本; e.闪长玢岩镜下特征(正交).Q.石英; Pl.斜长石; Hb.角闪石

      Fig.  2.  Field photographs, specimens and microscope picture (cross) of intrusions in Senadong area

      图  3  色那东地区侵入岩部分锆石CL图及测点位置

      Fig.  3.  Cathodoluminescence (CL) images with locations of analyses and ages of selected zircons from the intrusions, Senadong area

      图  4  色那东地区侵入岩锆石LA-ICP-MS U-Pb谐和图和206Pb/238U加权平均值图

      Fig.  4.  U-Pb concordia diagram and 206Pb/238U weighted average age of zircon from intrusions of Senadong area

      图  5  色那东地区侵入岩锆石Hf同位素组成与U-Pb年龄相关图解

      底图据刘勇等(2012)

      Fig.  5.  Hf isotopic composition and U-Pb ages of zircons of intrusions in Senadong area

      图  6  色那东地区闪长玢岩TAS判别图(a)和A/NK-A/CNK图解(b)

      Fig.  6.  TAS (a) and A/NK-A/CNK (b) classification diagrams of diorite porphyry in Senadong area

      图  7  色那东地区闪长玢岩稀土元素配分曲线(a)和微量元素蛛网图(b)

      球粒陨石数据和原始地幔数据据Sun and McDonough(1989)

      Fig.  7.  Chondrite-normalized rare earth element patterns (a) and primitive mantle-normalized trace element patterns (b) in the Senadong area

      图  8  多龙矿集区岩浆岩时空格架

      Fig.  8.  Temporal and spatial framework of igneous rocks in Duolong ore cluster

      图  9  色那东闪长玢岩微量元素构造环境判别图解

      Fig.  9.  Tectonic diagram of trace elements of diorite porphyry in Senadong area

      表  1  色那东地区侵入岩LA-ICP-MS锆石测年结果

      Table  1.   1Zircon LA-ICP-MS data of intrusions in Senadong area

      测点 Th(10-6) U(10-6) Th/U 207Pb/235U 206Pb/238U 年龄(Ma)
      测值 1σ 测值 1σ 207Pb/235U 1σ 206Pb/238U 1σ
      花岗斑岩
      SND-1 145.0 219.0 0.7 0.124 9 0.012 6 0.018 9 0.000 9 120 11 121 6
      SND-2 86.3 276.0 0.3 0.123 5 0.013 3 0.018 7 0.000 5 118 12 120 3
      SND-3 27.1 76.0 0.4 0.132 2 0.038 7 0.019 7 0.001 0 126 35 126 6
      SND-4 15.9 55.8 0.3 0.114 4 0.036 4 0.016 9 0.001 2 110 33 108 7
      SND-5 25.7 83.0 0.3 0.131 5 0.040 4 0.019 7 0.000 9 125 36 126 6
      SND-6 50.1 123.0 0.4 0.133 8 0.027 0 0.021 0 0.001 0 128 24 134 6
      SND-7 103.0 173.0 0.6 0.121 6 0.021 4 0.019 4 0.000 7 117 19 124 5
      SND-8 37.2 106.0 0.4 0.125 3 0.016 9 0.018 9 0.000 8 120 15 121 5
      SND-9 48.9 117.0 0.4 0.129 9 0.023 6 0.019 3 0.000 8 124 21 123 5
      SND-10 31.2 79.6 0.4 0.130 7 0.032 4 0.019 2 0.000 9 125 29 123 6
      SND-11 29.8 92.9 0.3 0.123 4 0.059 3 0.017 0 0.001 0 118 54 109 6
      SND-12 79.4 151.0 0.5 0.132 1 0.015 6 0.019 5 0.000 7 126 14 125 4
      SND-13 17.6 59.1 0.3 0.126 4 0.024 0 0.019 1 0.001 0 121 22 122 6
      SND-14 21.3 55.1 0.4 0.143 8 0.031 5 0.019 9 0.001 0 136 28 127 7
      SND-15 73.7 152.0 0.5 0.132 2 0.011 9 0.019 3 0.000 7 126 11 123 4
      SND-16 304.0 398.0 0.8 0.141 3 0.016 4 0.019 5 0.000 6 134 15 124 4
      SND-17 41.5 97.8 0.4 0.117 2 0.049 7 0.018 9 0.000 8 113 45 121 5
      SND-18 6.1 19.0 0.3 0.178 9 0.110 9 0.024 1 0.002 3 167 96 154 14
      SND-19 198.0 257.0 0.8 0.139 6 0.018 3 0.017 8 0.000 8 133 16 114 5
      SND-20 26.6 79.9 0.3 0.127 7 0.017 9 0.017 7 0.001 2 122 16 113 8
      SND-21 27.2 94.7 0.3 0.122 0 0.016 4 0.018 7 0.001 1 117 15 119 7
      SND-22 47.8 126.0 0.4 0.131 9 0.020 7 0.019 4 0.000 9 126 19 124 6
      SND-23 14.2 53.4 0.3 0.150 3 0.041 5 0.021 9 0.001 9 142 37 140 12
      SND-24 22.2 49.3 0.5 0.126 7 0.019 1 0.020 1 0.001 2 121 17 128 8
      SND-25 29.4 83.8 0.4 0.140 0 0.026 0 0.020 0 0.001 0 133 23 128 6
      闪长玢岩
      SC-1 43.6 110.0 0.4 0.128 8 0.017 4 0.019 3 0.000 8 123 16 123 5
      SC-2 55.1 130.0 0.4 0.124 5 0.021 3 0.018 8 0.000 7 119 19 120 4
      SC-3 74.1 124.0 0.6 0.117 0 0.016 7 0.017 4 0.000 6 112 15 111 4
      SC-4 76.3 132.0 0.6 0.130 4 0.015 0 0.019 6 0.000 7 125 14 125 5
      SC-5 36.2 93.4 0.4 0.125 6 0.021 5 0.018 9 0.001 2 120 19 121 7
      SC-6 67.0 117.0 0.6 0.142 3 0.021 5 0.021 1 0.001 1 135 19 134 7
      SC-7 72.1 142.0 0.5 0.134 6 0.017 3 0.020 0 0.000 8 128 15 127 5
      SC-8 45.2 99.5 0.5 0.123 9 0.015 1 0.018 5 0.000 9 119 14 118 6
      SC-9 268.0 201.0 1.3 0.138 3 0.020 1 0.019 0 0.000 6 132 18 122 4
      SC-10 69.8 258.0 0.3 0.327 3 0.047 8 0.040 4 0.002 4 287 37 255 15
      SC-11 104.0 168.0 0.6 0.135 3 0.016 7 0.018 8 0.000 6 129 15 120 4
      SC-12 90.3 156.0 0.6 0.128 9 0.020 6 0.018 8 0.000 8 123 19 120 5
      SC-13 59.5 123.0 0.5 0.167 3 0.016 0 0.020 2 0.001 0 157 14 129 7
      SC-14 228.0 262.0 0.9 0.146 2 0.016 1 0.019 7 0.000 7 139 14 126 4
      SC-15 16.7 47.5 0.4 0.136 3 0.036 8 0.019 9 0.001 1 130 33 127 7
      SC-16 16.9 39.2 0.4 0.142 9 0.055 8 0.019 7 0.001 2 136 50 126 8
      SC-17 90.1 160.0 0.6 0.125 4 0.010 9 0.018 9 0.000 6 120 10 121 4
      SC-18 54.0 112.0 0.5 0.126 9 0.031 6 0.018 9 0.001 0 121 28 120 7
      SC-19 92.8 184.0 0.5 0.127 2 0.016 3 0.019 1 0.000 7 122 15 122 4
      SC-20 69.1 145.0 0.5 0.131 6 0.017 9 0.019 7 0.000 7 126 16 126 4
      SC-21 25.8 70.2 0.4 0.134 2 0.027 2 0.020 1 0.001 0 128 24 128 6
      SC-22 32.4 81.7 0.4 0.130 4 0.018 9 0.019 8 0.001 0 125 17 127 6
      SC-23 48.0 99.0 0.5 0.131 8 0.022 1 0.019 8 0.000 8 126 20 126 5
      SC-24 54.9 116.0 0.5 0.148 1 0.024 0 0.021 6 0.001 2 140 21 138 7
      SC-25 142.0 210.0 0.7 0.129 6 0.012 8 0.019 4 0.000 6 124 12 124 4
      下载: 导出CSV

      表  2  色那东地区侵入岩锆石Hf同位素分析结果

      Table  2.   Results of Hf isotope analysis for zircons of intrusions in Senadong area

      编号 年龄(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ 176Hf/177Hf(t) εHf(0) εHf(t) TDM(Ma) fLu-Hf TDM2(Ma)
      SND-1 121 0.056 908 0.001 699 0.283 044 0.000 019 0.283 040 9.6 12.1 300 -0.95 401
      SND-3 126 0.053 742 0.001 578 0.283 065 0.000 021 0.283 061 10.4 13.0 269 -0.95 350
      SND-5 126 0.032 741 0.000 981 0.283 033 0.000 021 0.283 031 9.2 11.9 310 -0.97 419
      SND-6 134 0.061 201 0.001 820 0.283 013 0.000 022 0.283 009 8.5 11.0 346 -0.95 472
      SND-9 123 0.033 276 0.000 995 0.283 078 0.000 017 0.283 076 10.8 13.4 246 -0.97 318
      SND-10 123 0.051 973 0.001 576 0.283 114 0.000 022 0.283 110 12.1 14.6 198 -0.95 241
      SND-13 122 0.035 579 0.001 071 0.282 985 0.000 020 0.282 983 7.5 10.1 378 -0.97 529
      SND-14 127 0.044 503 0.001 346 0.283 032 0.000 020 0.283 028 9.2 11.9 315 -0.96 423
      SND-17 121 0.047 193 0.001 346 0.282 977 0.000 021 0.282 974 7.3 9.8 393 -0.96 549
      SC-1 123 0.063 599 0.001 881 0.283 011 0.000 021 0.283 007 8.5 11.0 349 -0.94 474
      SC-2 120 0.067 863 0.001 988 0.282 973 0.000 020 0.282 969 7.1 9.6 406 -0.94 563
      SC-4 125 0.064 130 0.001 868 0.282 968 0.000 017 0.282 963 6.9 9.5 412 -0.94 572
      SC-5 121 0.037 756 0.001 128 0.282 993 0.000 018 0.282 990 7.8 10.5 368 -0.97 511
      SC-7 127 0.039 979 0.001 194 0.282 938 0.000 017 0.282 935 5.9 8.4 447 -0.96 638
      SC-8 118 0.050 002 0.001 436 0.282 953 0.000 021 0.282 949 6.4 9.1 429 -0.96 602
      SC-11 120 0.041 737 0.001 230 0.282 917 0.000 020 0.282 914 5.1 7.7 478 -0.96 686
      SC-12 120 0.043 266 0.001 288 0.282 967 0.000 019 0.282 964 6.9 9.4 407 -0.96 573
      SC-15 127 0.026 162 0.000 796 0.282 927 0.000 018 0.282 925 5.5 8.2 459 -0.98 658
      SC-16 126 0.021 010 0.000 632 0.282 927 0.000 016 0.282 926 5.5 8.2 456 -0.98 657
      SC-17 121 0.059 385 0.001 712 0.282 958 0.000 021 0.282 954 6.6 9.1 425 -0.95 596
      SC-18 120 0.036 961 0.001 062 0.282 861 0.000 019 0.282 859 3.2 5.7 555 -0.97 811
      SC-19 122 0.054 009 0.001 565 0.282 939 0.000 020 0.282 936 5.9 8.5 450 -0.95 636
      SC-21 128 0.029 887 0.000 737 0.282 555 0.000 023 0.282 553 -7.7 -4.9 979 -0.98 1 492
      SC-22 127 0.054 231 0.001 615 0.282 984 0.000 019 0.282 980 7.5 10.1 386 -0.95 533
      注: εHf(0)=((176Hf/177Hf)S/(176Hf/177Hf)CHUR, 0-1)×10 000; εHf(t)=((176Hf/177Hf)S-(176Lu/177Hf)S×(eλt-1))/((176Hf/177Hf)CHUR, 0-(176Lu/177Hf)CHUR×(eλt-1))-1)×10 000; (176Hf/177Hf)i=(176Hf/177Hf)S-(176Lu/177Hf)S×(eλt-1))-1; THf1=10/λ×ln[1+((176Hf/177Hf)S-(176Hf/177Hf)DM)/((176Lu/177Hf)S-(176Lu/177Hf)DM)]; THf2=THf1-(THf1-t)(fCC-fS)/(fCC-fDM); fLu/Hf=(176Lu/177Hf)S/(176Lu/177Hf)CHUR-1.其中,(176Lu/177Hf)S和(176Hf/177Hf)S为样品测定值; (176Lu/177Hf)CHUR和(176Hf/177Hf)CHUR,0值分别为0.033 2和0.282 772(Blichert-Toft and Albarède, 2008); (176Lu/177Hf)DM和(176Hf/177Hf)DM值分别为0.038 4和0.283 25(Griffin et al., 2000); fCC为大陆地壳的fLu/Hf(-0.55, Griffin et al., 2000),fDM为亏损地幔的fLu/Hf(0.16, Griffin et al., 2000)和fS为样品的fLu/Hf; λ=1.867×10-11·a-1(Schärer et al., 1984),t为锆石的形成时间.
      下载: 导出CSV

      表  3  色那东地区闪长玢岩主量、微量和稀土元素分析结果

      Table  3.   Results of major elements, trace elements and rare earth elements of diorite porphyry in Senadong area

      Sample No. SC-B2 SC-B3 SC-B4 SC-B5 SC-B6
      SiO2 58.4 59.2 59.1 58.5 59.2
      Al2O3 16.6 16.7 16.7 16.3 16.6
      Fe2O3T 6.48 6.28 6.54 6.2 6.14
      FeO 2.67 2.83 2.59 3.18 2.62
      MgO 2.5 2.56 2.6 2.48 2.46
      CaO 5.08 4.73 4.09 5.09 4.99
      Na2O 3.6 4.29 4.97 4.52 4.1
      K2O 1.74 1.08 0.8 1.09 1.16
      MnO 0.2 0.18 0.18 0.17 0.17
      TiO2 0.59 0.58 0.6 0.58 0.58
      P2O5 0.14 0.14 0.14 0.14 0.14
      LOI 4.7 4.33 3.73 4.85 4.47
      Rb 59.6 45.1 33.6 40.1 43.7
      Ba 563 451 468 319 326
      Th 2.87 3.02 2.78 2.89 2.85
      U 0.738 0.836 0.812 0.782 0.762
      Cu 15.9 63.2 22.7 27.3 32.7
      Zn 200 139 127 124 134
      Ta 0.47 0.5 0.49 0.47 0.5
      Nb 6.04 6.21 6.22 5.97 5.9
      Sr 463 531 581 564 529
      Bi 0.074 0.058 0.024 0.053 0.063
      Zr 71.9 70.3 72.4 70.1 64.2
      Hf 2.2 2.47 2.41 2.26 2.25
      Ti 3 549 3 477 3 615 3 459 3 453
      K 14 444 8 965 6 633 9 048 9 630
      P 607 624 629 611 611
      La 12.9 14.2 13.4 12.6 12.5
      Ce 24.3 25.9 24.4 23.8 24.3
      Pr 3.19 3.21 3.33 3.2 3.05
      Nd 13 13.9 13.7 13.5 13.2
      Sm 2.98 3.29 3.12 3.19 3.06
      Eu 0.98 0.89 0.87 0.77 0.87
      Gd 3 3.08 2.98 2.8 2.91
      Tb 0.53 0.56 0.54 0.54 0.52
      Dy 3.18 3.26 3.34 3.23 3.14
      Ho 0.64 0.63 0.66 0.63 0.62
      Er 2.11 2.05 1.91 1.92 1.98
      Tm 0.32 0.35 0.33 0.33 0.31
      Yb 2.1 2.19 2.04 2.2 2.1
      Lu 0.34 0.31 0.33 0.33 0.32
      Y 18.1 19 18.5 18.1 17.7
      ∑REE 69.6 73.8 71 69 68.9
      LREE/HREE 4.7 4.94 4.85 4.76 4.79
      LaN/YbN 4.17 4.4 4.46 3.89 4.04
      δEu 0.99 0.84 0.85 0.77 0.88
      δCe 0.89 0.89 0.86 0.89 0.93
      注: K=K2O×10 000×0.830 13; Ti=TiO2×10 000×0.599 5; P=P2O5×10 000×0.436 46.
      下载: 导出CSV
    • [1] Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses That do not Report 204Pb.Chemical Geology, 192(1-2):59-79. https://doi.org/10.1016/S0009-2541(02)00195-X
      [2] Atherton, M.P., Petford, N., 1993.Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust.Nature, 362(6416):144-146. https://doi.org/10.1038/362144a0
      [3] Belousova, E., Griffin, W., O'Reilly, S.Y., et al., 2002.Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type.Contributions to Mineralogy and Petrology, 143(5):602-622. https://doi.org/10.1007/s00410-002-0364-7
      [4] Blichert-Toft, J., Albarède, F., 2008.Hafnium Isotopes in Jack Hills Zircons and the Formation of the Hadean Crust.Earth and Planetary Science Letters, 265(3-4):686-702. https://doi.org/10.1016/j.epsl.2007.10.054
      [5] Bouvier, A., Vervoort, J.D., Patchett, P.J., 2008.The Lu-Hf and Sm-Nd Isotopic Composition of CHUR:Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets.Earth and Planetary Science Letters, 273(1-2):48-57. https://doi.org/10.1016/j.epsl.2008.06.010
      [6] Chang, Z.S., Hedenquist, J.W., White, N.C., et al., 2011.Exploration Tools for Linked Porphyry and Epithermal Deposits:Example from the Mankayan Intrusion-Centered Cu-Au District, Luzon, Philippines.Economic Geology, 106(8):1365-1398. https://doi.org/10.2113/econgeo.106.8.1365
      [7] Cooke, D.R., Hollings, P., Walsh, J.L., 2005.Giant Porphyry Deposits:Characteristics, Distribution, and Tectonic Controls.Economic Geology, 100(5):801-818. https://doi.org/10.2113/100.5.801
      [8] Cooke, D.R., Hollings, P., Walshe, J.L., 2006.Tectonic Triggers for Giant Porphyry and Epithermal Deposits of the Circum-Pacific Region.Geochimica et Cosmochimica Acta, 70(18):A110. https://doi.org/10.1016/j.gca.2006.06.133
      [9] Defant, M.J., Drummond, M.S., 1990.Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere.Nature, 347(6294):662-665. https://doi.org/10.1038/347662a0
      [10] Ding, S., Chen, Y.C., Tang, J.X., et al., 2017.Petrogenesis and Tectonics of the Naruo Porphyry Cu(Au) Deposit Related Intrusion in the Duolong Area, Central Tibet.Acta Geologica Sinica (English Edition), 91(2):581-601. https://doi.org/10.1111/1755-6724.13119
      [11] Ding, S., Tang, J.X., Zheng, W.B., et al., 2017.Geochronology and Geochemistry of Naruo Porphyry Cu(Au) Deposit in Duolong Ore-Concentrated Area, Tibet, and Their Geological Significance.Earth Science, 42(1):1-23 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201701001.htm
      [12] Duan, J.L., Tang, J.X., Li, Y.B., et al., 2015.Copper Isotopic Signature of the Tiegelongnan High-Sulfidation Copper Deposit, Tibet:Implications for Its Origin and Mineral Exploration.Mineralium Deposita, 51(5):591-602. https://doi.org/10.1007/s00126-015-0624-x
      [13] Duan, Z.M., Li, G.M., Zhang, H., et al., 2013a, The Formation and Its Geologic Significance of Late Triassic-Jurassic Accretionary Complexes and Constraints on Metallogenic and Geological Settings in Duolong Porphyry Copper Gold Ore Concentration Area, Northern Bangong Co-Nujiang Suture Zone, Tibet.Geological Bulletin of China, 32(5):742-750 (in Chinese with English abstract).
      [14] Duan, Z.M., Li, G.M., Zhang, H., et al., 2013b.Zircon U-Pb Age & Geochemical Characteristics of the Quartz Monzobiorite and Metallogenic Background of the Sena Gold Deposit in Duolong Metallogenic Concentrated Area, Tibet.Journal of Jilin University (Earth Science Edition), 43(6):1864-1877 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201306016.htm
      [15] Fang, X., Tang, J.X., Li, Y.B., et al., 2014.Metallogenic Element Spatial Distribution of the Naruo Copper (Gold) Deposit in the Duolong Ore Concentration Area of Tibet and Its Geochemical Exploration Model.Geology in China, 41(3):936-950 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201403019.htm
      [16] Fang, X., Tang, J.X., Song, Y., et al., 2015.Formation Epoch of the South Tiegelong Superlarge Epithermal Cu(Au-Ag) Deposit in Tibet and Its Geological Implications.Acta Geoscientica Sinica, 36(2):168-176 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQXB201502006.htm
      [17] Gao, K., Tang, J.X., Fang, X., et al., 2016.Geological and Geochemical Characteristics and Significance of the Sena Cu-Au Deposit from Duolong Ore-Concentration Area, Tibet, China.Acta Mineralogica Sinica, 36(2):199-207 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB201602006.htm
      [18] Geng, Q.R., Pan, G.T., Wang, L.Q., et al., 2011.Tethyan Evolution and Metallogenic Geological Background of the Bangong Co-Nujiang Belt and the Qiangtang Massif in Tibet.Geological Bulletin of China, 30(8):1261-1274 (in Chinese with English abstract). https://www.researchgate.net/publication/288704824_Tethyan_evolution_and_metallogenic_geological_background_of_the_Bangong_Co-Nujiang_belt_and_the_Qiangtang_massif_in_Tibet
      [19] Griffin, W.L., Pearson, N.J., Belousova, S.E., et al., 2000.The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites.Geochimica et Cosmochimica Acta, 64(1):133-147. https://doi.org/10.1016/S0016-7037(99)00343-9
      [20] Hanchar, J.M., Miller, C.F., 1993.Zircon Zonation Patterns as Revealed by Cathodoluminescence and Backscattered Electron Images:Implications for Interpretation of Complex Crustal Histories.Chemical Geology, 110(1-3):1-13. https://doi.org/10.1016/0009-2541(93)90244-D
      [21] Hou, K.J., Li, Y.H., Tian, Y.R., 2009.In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS.Mineral Deposits, 28(4):481-492 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200904009.htm
      [22] Hou, K.J., Li, Y.H., Zou, T.R., et al., 2007.Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications.Acta Petrologica Sinica, 23(10):2595-2604 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200710026.htm
      [23] Hou, Z.Q., Ma, H.W., Zaw, K., et al., 2003.The Himalayan Yulong Porphyry Copper Belt:Product of Large-Scale Strike-Slip Faulting in Eastern Tibet.Economic Geology, 98(1):125-145. https://doi.org/10.2113/98.1.125
      [24] Hou, Z.Q., Mo, X.X., Gao, Y.F., et al., 2003.Adakite, a Possible Host Rock for Porphyry Copper Deposits:Case Studies of Porphyry Copper Belts in Tibetan Plateau and in Northern Chile.Mineral Deposits, 22(1):1-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200301000.htm
      [25] Li, G.M., Duan, Z.M., Liu, B., et al., 2011.The Discovery of Jurassic Accretionary Complexes in Duolong Area, Northern Bangong Co-Nujiang Suture Zone, Tibet, and Its Geologic Significance.Geological Bulletin of China, 30(8):1256-1260 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201108012.htm
      [26] Li, J.X., Qin, K.Z., Li, G.M., et al., 2013.Petrogenesis of Ore-Bearing Porphyries from the Duolong Porphyry Cu-Au Deposit, Central Tibet:Evidence from U-Pb Geochronology, Petrochemistry and Sr-Nd-Hf-O Isotope Characteristics.Lithos, 160-161:216-227. https://doi.org/10.1016/j.lithos.2012.12.015
      [27] Li, J.X., Qin, K.Z., Li, G.M., et al., 2014.Geochronology, Geochemistry, and Zircon Hf Isotopic Compositions of Mesozoic Intermediate-Felsic Intrusions in Central Tibet:Petrogenetic and Tectonic Implications.Lithos, 198-199:77-91. https://doi.org/10.1016/j.lithos.2014.03.025
      [28] Li, J.X., Qin, K.Z., Li, G.M., et al., 2016a.The Nadun Cu-Au Mineralization, Central Tibet:Root of a High Sulfidation Epithermal Deposit.Ore Geology Reviews, 78:371-387. https://doi.org/10.1016/j.oregeorev.2016.04.019
      [29] Li, J.X., Qin, K.Z., Li, G.M., et al., 2016b.Petrogenesis of Cretaceous Igneous Rocks from the Duolong Porphyry Cu-Au Deposit, Central Tibet:Evidence from Zircon U-Pb Geochronology, Petrochemistry and Sr-Nd-Pb-Hf Isotope Characteristics.Geological Journal, 51(2):285-307. https://doi.org/10.1002/gj.2631
      [30] Li, J. X., 2008. Geochronology, Petrology and Metallogeneses of High Oxidized Magma-Hydrothermal Fluid of Duobuza Gold-Rich Porphyry Copper Deposit in Bangonghu Belt, Northern Tibet (Dissertation). Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing (in Chinese with English abstract).
      [31] Li, J.X., Li, G.M., Qin, K.Z., et al., 2008.Geochemistry of Porphyries and Volcanic Rocks and Ore-Forming Geochronlogy of Duobuza Gold-Rich Porphyry Copper Deposit in Bangonghu Belt, Tibet:Constraints on Metallogenic Tectonic Settings.Acta Petrologica Sinica, 24(3):531-543 (in Chinese with English abstract).
      [32] Li, X.K., Li, C., Sun, Z.M., et al., 2015.Zircon U-Pb Geochronology, Hf Isotope, and Whole-Rock Geochemistry of Diorite in the Saijiao Cu-Au Deposit, Tibet, and Its Ore-Forming Significance.Geological Bulletin of China, 34(5):908-918 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201505011.htm
      [33] Li, Y.B., Dor, J., Zhong, W.T., et al., 2012.An Exploration Model of the Duobuza Porphyry Cu-Au Deposit in Gaize County, Northern Tibet.Geology and Exploration, 48(2):274-287 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201202010.htm
      [34] Lin, B., Chen, Y.C., Tang J.X., et al., 2017a.40Ar/39Ar and Rb-Sr Ages of the Tiegelongnan Porphyry Cu-(Au) Deposit in the Bangong Co-Nujiang Metallogenic Belt of Tibet, China:Implication for Generation of Super-Large Deposit.Acta Geologica Sinica (English Edition), 91(2):602-616. doi: 10.1111/acgs.2017.91.issue-2
      [35] Lin, B., Tang, J.X., Chen, Y.C., et al., 2017b.Geochronology and Genesis of the Tiegelongnan Porphyry Cu(Au) Deposit in Tibet:Evidence from U-Pb, Re-Os Dating and Hf, S, and H-O Isotopes.Resource Geology, 67(1):1-21. https://doi.org/10.1111/rge.12113
      [36] Lin, B., Chen, Y.C., Tang, J.X., et al., 2016.Zircon U-Pb Ages and Hf Isotopic Composition of the Ore-Bearing Porphyry in Dibao Cu(Au) Deposit, Duolong Ore Concentration Area, Xizang (Tibet), and Its Geological Significance.Geological Review, 62(6):1565-1578 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZLP201606017.htm
      [37] Liu, Y., Li, T.D., Xiao, Q.H., et al., 2012.Formation Epoch and Origin of the Yizhang Andesite, Diabase and Granite-Porphyry in Yizhang County, Southern Hu'nan Province:Zircon U-Pb Age and Hf Isotopes.Geological Bulletin of China, 31(9):1363-1378 (in Chinese with English abstract). https://www.researchgate.net/publication/287231641_Formation_epoch_and_origin_of_the_Yizhang_andesite_diabase_and_granite-porphyry_in_Yizhang_County_southern_Hu%27nan_Province_Zircon_U-Pb_age_and_Hf_isotopes
      [38] Liu, M., Zhao, H.T., Zhang, D., et al., 2017.Chronology, Geochemistry and Tectonic Implications of Late Palaeozoic Intrusions from South of Xiwuqi, Inner Mongolia.Earth Science, 42(4):527-548 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201704004.htm
      [39] Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010.Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analysis by LA-ICP-MS.Chinese Science Bulletin, 55(15):1535-1546. https://doi.org/10.1007/s11434-010-3052-4
      [40] Ludwig, K. R., 2003. User's Manual for Isoplot/Ex Version 3. 00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publications 4, Berkeley, 1-72.
      [41] Qu, X.M., Fan, S.F., Ma, X.D., et al., 2015.Post-Collisional Copper Ore Deposits along Bangong Co-Nujiang Metallogenic Belt, Tibetan Plateau.Mineral Deposits, 34(3):431-448 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-KCDZ201503001.htm
      [42] Qu, X.M., Xin, H.B., 2006.Ages and Tectonic Environment of the Bangong Co Porphyry Copper Belt in Western Tibet, China.Geological Bulletin of China, 25(7):792-799 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200607005.htm
      [43] Qu, X.M., Xin, H.B., Du, D.D., et al., 2013.Magma Source of the A-Type Granite and Slab Break-off in the Middle Segment of the Bangonghu-Nujiang Suture, Tibet Plateau.Acta Geologica Sinica, 87(6):759-772 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201306002.htm
      [44] Rollinson, H.P., 1993.Using Geochemical Date:Evaluation, Presentation, Interpretation.Longman Publishing Group, New York, 174-206.
      [45] Schärer, U., Xu, R.H., Allègre, C.J., 1984.U-Pb Geochronology of Gangdese (Trans-Himalaya) Plutonism in the Lhasa-Xigaze Region, Tibet.Earth and Planetary Science Letters, 69(2):311-320. https://doi.org/10.1016/0012-821X(84)90190-0
      [46] She, H.Q., Li, J.W., Ma, D.F., et al., 2009.Molybdenite Re-Os and SHRIMP Zircon U-Pb Dating of Duobuza Porphyry Copper Deposit in Tibet and Its Geological Implications.Mineral Deposits, 28(6):737-746 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200906002.htm
      [47] Singer, D. A., Berger, V. I., Moring, B. C., 2008. Porphyry Copper Deposits of the World: Database and Grade and Tonnage Models. U. S. Geological Survey Open-File Report 2008-1155, Reston, Virginia, 1-45. https://www.researchgate.net/publication/303172164_Porphyry_copper_deposits_of_the_world_database_map_grade_and_tonnage_models
      [48] Soesoo, A., Bons, P.D., Gray, D.R., et al., 1997.Divergent Double Subduction:Tectonic and Petrologic Consequences.Geology, 25(8):755-758.https://doi.org/10.1130/0091-7613(1997)025<0755:DDSTAP>2.3.CO;2 doi: 10.1130/0091-7613(1997)025<0755:DDSTAP>2.3.CO;2
      [49] Song, B., Zhang, Y.H., Wan, Y.S., et al., 2002.Mount Making and Procedure of the SHRIMP Dating.Geological Review, 48(Suppl.):26-30 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP2002S1006.htm
      [50] Song, Y., Tang, J.X., Qu, X.M., et al., 2014.Progress in the Study of Mineralization in the Bangongco-Nujiang Metallogenic Belt and Some New Recognition.Advances in Earth Science, 29(7):795-809 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_dqkxjz201407004
      [51] Stolz, A.J., Jochum, K.P., Spettel, B., et al., 1996.Fluid and Melt-Related Enrichment in the Subarc Mantle:Evidence from Nb/Ta Variations in Island-Arc Basalts.Geology, 24(7):587-590.https://doi.org/10.1130/0091-7613(1996)024<0587:famrei>2.3.co;2 doi: 10.1130/0091-7613(1996)024<0587:famrei>2.3.co;2
      [52] Sun, J., Mao, J.W., Beaudoin, G., et al., 2017.Geochronology and Geochemistry of Porphyritic Intrusions in the Duolong Porphyry and Epithermal Cu-Au District, Central Tibet:Implications for the Genesis and Exploration of Porphyry Copper Deposits.Ore Geology Reviews, 80:1004-1019. https://doi.org/10.1016/j.oregeorev.2016.08.029
      [53] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [54] Tang, J.X., Dorji, Liu, H.F., et al., 2012.Minerogenetic Series of Ore Deposits in the East Part of the Gangdise Metallogenic Belt.Acta Geoscientica Sinica, 33(4):393-410 (in Chinese with English abstract). http://www.oalib.com/paper/1559914
      [55] Tang, J.X., Song, Y., Wang, Q., et al., 2016.Geological Characteristics and Exploration Model of the Tiegelongnan Cu(Au-Ag) Deposit:The First Ten Million Tons Metal Resources of a Porphyry-Epithermal Deposit in Tibet.Acta Geoscientica Sinica, 37(6):663-690 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQXB201606003.htm
      [56] Tang, J.X., Sun, X.G., Ding, S., et al., 2014a.Discovery of the Epithermal Deposit of Cu(Au-Ag) in the Duolong Ore Concentrating Area, Tibet.Acta Geoscientica Sinica, 35(1):6-10 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQXB201401002.htm
      [57] Tang, J.X., Wang, D.H., 2011.Recent Advances in Exploration and Research of Superlarge Copper Polymetallic Deposits Like Jiama etc in Tibet.Mineral Deposits, 30(2):177-178 (in Chinese).
      [58] Tang, J.X., Wang, D.H., Wang, X.W., et al., 2010.Geological Features and Metallogenic Model of the Jiama Copper-Polymetallic Deposit in Tibet.Acta Geoscientica Sinica, 31(4):495-506 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201004002.htm
      [59] Tang, J.X., Wang, Q., Yang, C., et al., 2014b.Two Porphyry-Epithermal Deposit Metallogenic Subseries in Tibetan Plateau:Practice of "Absence Prospecting" Deposit Metallogenic Series.Mineral Deposits, 33(6):1151-1170 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ201406002.htm
      [60] Thiéblemont, D., Stein, G., Lescuyer, J.L., 1997.Gisements Épithermaux et Porphyriques:La Connexion Adakite.Comptes Rendus de L'Académie des Sciences-Series IIA-Earth and Planetary Science, 325(2):103-109. https://doi.org/10.1016/s1251-8050(97)83970-5
      [61] Wang, Q., Tang, J.X., Fang, X., et al., 2015.Petrogenetic Setting of Andsites in Rongna Ore Block, Tiegelong Cu(Au-Ag) deposit, Duolong Ore Concentration Area, Tibet:Evidence from Zircon U-Pb LA-ICP-MS Dating and Petrogeochemistry of Andsites.Geology in China, 42(5):1324-1336 (in Chinese with English abstract).
      [62] Wang, Q., Tang, J.X., Xie, F.W., et al., 2017.Copper Resource on Qinghai-Tibet Plateau.Science and Technology Review, 35(12):1-7 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-KJDB201712021.htm
      [63] Wang, Y.L., Zhang, Q., Wang, Q., et al., 2003.Study on Adakitic Rock and Cu-Au Mineralization.Acta Petrologica Sinica, 19(3):543-550 (in Chinese with English abstract). https://www.researchgate.net/publication/289792911_Study_on_adakitic_rock_and_Cu-Au_mineralization
      [64] Wei, S.G., Tang, J.X., Song, Y., et al., 2017.Early Cretaceous Bimodal Volcanism in the Duolong Cu Mining District, Western Tibet:Record of Slab Breakoff that Triggered ca.108-113 Ma Magmatism in the Western Qiangtang Terrane.Journal of Asian Earth Sciences, 138:588-607. https://doi.org/10.1016/j.jseaes.2016.12.010
      [65] Wei, S.G., Tang, J.X., Song, Y., et al., 2017.Zircons LA-MC-ICP-MS U-Pb Ages, Petrochemical, Petrological and Its Significance of the Potassic Monzonitic Granite Porphyry from the Duolong Ore Concentrated District, Gaize County, Xizang (Tibet).Geological Review, 63(1):189-206 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZLP201701021.htm
      [66] Xu, W., Li, C., Wang, M., et al., 2017.Subduction of a Spreading Ridge within the Bangong Co-Nujiang Tethys Ocean:Evidence from Early Cretaceous Mafic Dykes in the Duolong Porphyry Cu-Au Deposit, Western Tibet.Gondwana Research, 41:128-141. https://doi.org/10.1016/j.gr.2015.09.010
      [67] Yang, C., Tang, J.X., Song, J.L., et al., 2015.Chlorite Characteristic of the Naruo Porphyry Cu(Au) Depositi in Tibet and Its Geological Significance.Acta Geologica Sinica, 89(5):856-872 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201505003.htm
      [68] Yang, C., Tang, J.X., Wang, Y.Y., et al., 2014.Fluid and Geological Characteristics Researches of Southern Tiegelong Epithemal Porphyry Cu-Au Deposit in Tibet.Mineral Deposits, 33(6):1287-1305 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ201406010.htm
      [69] Yang, H.H., Tang, J.X., Zhang, Z., et al., 2016.A Study on Banded Pyrite in Tiegelongnan Copper (Gold-Silver) Deposit, Tibet, China and Its Geological Implications.Acta Mineralogica Sinica, 36(1):70-79 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KWXB201601012.htm
      [70] Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      [71] Zhang, Q., Wang, Y.L., Zhang, F.Q., et al., 2002.Adakite and Porphyry Copper Deposit.Geology and Mineral Resources of South China, 18(3):85-90 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNKC200203011.htm
      [72] Zhang, Z., Fang, X., Tang, J.X., et al., 2017.Chronology, Geochemical Characteristics of the Gaerqin Porphyry Copper Deposit in the Duolong Ore Concentration Area in Tibet and Discussion about the Identification of the Lithoscaps and the Possible Epithermal Deposit.Acta Petrologica Sinica, 33(2):476-494 (in Chinese with English abstract).
      [73] Zheng, W.B., Tang, J.X., Zhong, K.H., et al., 2016.Geology of the Jiama Porphyry Copper-Polymetallic System, Lhasa Region, China.Ore Geology Reviews, 74:151-169. https://doi.org/10.1016/j.oregeorev.2015.11.024
      [74] Zhu, D.C., Li, S.M., Cawood, P.A., et al., 2016.Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction.Lithos, 245:7-17. https://doi.org/10.1016/j.lithos.2015.06.023
      [75] Zhu, D.C., Pan, G.T., Mo, X.X., et al., 2006.Identification for the Mesozoic OIB-Type Basalts in Central Qinghai-Tibetan Plateau:Geochronology, Geochemistry and Their Tectonic Setting.Acta Geologica Sinica, 80(9):1312-1328 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200609008.htm
      [76] Zhu, X.P., Chen, H.A., Liu, H.F., et al., 2015.Zircon U-Pb Ages, Geochemistry of the Porphyries from the Duobuza Porphyry Cu-Au Deposit, Tibet and Their Metallogenic Significance.Acta Geologica Sinica, 89(3):534-548 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201503008.htm
      [77] Zhu, X.P., Chen, H.A., Ma, D.F., et al., 2011.Re-Os Dating for the Molybdenite from Bolong Porphyry Copper-Gold Deposit in Tibet, China and Its Geological Significance.Acta Petrologica Sinica, 27(7):2159-2164 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201107024.htm
      [78] Zhu, X.P., Chen, H.A., Ma, D.F., et al., 2013.40Ar/39Ar Dating of Hydrothermal K-Feldspar and Hydrothermal Sericite from Bolong Porphyry Cu-Au Deposit in Tibet.Mineral Deposits, 32(5):954-962 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201305007.htm
      [79] 丁帅, 唐菊兴, 郑文宝, 等, 2017.西藏拿若斑岩型铜(金)矿含矿岩体年代学、地球化学及地质意义.地球科学, 42(1): 1-23. http://www.earth-science.net/WebPage/Article.aspx?id=3409
      [80] 段志明, 李光明, 张晖, 等, 2013a.西藏班公湖-怒江缝合带北缘多龙矿集区晚三叠世-侏罗纪增生杂岩结构及其对成矿地质背景的约束.地质通报, 32(5): 742-750. http://d.wanfangdata.com.cn/Periodical/zgqydz201305007
      [81] 段志明, 李光明, 张晖, 等, 2013b.色那金矿石英二长闪长岩锆石U-Pb年龄与地球化学特征及其对成矿背景的约束.吉林大学学报(地球科学版), 43(6): 1864-1877. http://www.cqvip.com/QK/91256B/201306/48044842.html
      [82] 方向, 唐菊兴, 李彦波, 等, 2014.西藏多龙矿集区拿若铜(金)矿床成矿元素空间分布规律及地球化学勘查模型.中国地质, 41(3): 936-950. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201403019
      [83] 方向, 唐菊兴, 宋扬, 等, 2015.西藏铁格隆南超大型浅成低温热液铜(金、银)矿床的形成时代及其地质意义.地球学报, 36(2): 168-176. doi: 10.3975/cagsb.2015.02.05
      [84] 高轲, 唐菊兴, 方向, 等, 2016.西藏多龙矿集区色那铜金矿地质特征、侵入岩地球化学特征及其地质意义.矿物学报, 36(2): 199-207. http://d.old.wanfangdata.com.cn/Periodical/kwxb201602006
      [85] 耿全如, 潘桂棠, 王立全, 等, 2011.班公湖-怒江带、羌塘地块特提斯演化与成矿地质背景.地质通报, 30(8): 1261-1274. http://mall.cnki.net/magazine/Article/ZQYD201108013.htm
      [86] 侯可军, 李延河, 田有荣, 2009.LA-MC-ICP-MS锆石微区原位U-Pb定年技术.矿床地质, 28(4): 481-492. http://mall.cnki.net/magazine/Article/KCDZ200904009.htm
      [87] 侯可军, 李延河, 邹天人, 等, 2007.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报, 23(10): 2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025
      [88] 侯增谦, 莫宣学, 高永丰, 等, 2003.埃达克岩:斑岩铜矿的一种可能的重要含矿母岩——以西藏和智利斑岩铜矿为例.矿床地质, 22(1): 1-12. doi: 10.3969/j.issn.0258-7106.2003.01.001
      [89] 李光明, 段志明, 刘波, 等, 2011.西藏班公湖-怒江结合带北缘多龙地区侏罗纪增生杂岩的特征及意义.地质通报, 30(8): 1256-1260. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201108012
      [90] 李金祥, 2008. 班公湖带多不杂超大型富金斑岩铜矿床的成岩成矿年代学、岩石学及高氧化岩浆-流体成矿作用(博士学位论文). 北京: 中国科学院地质与地球物理研究所. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1625435
      [91] 李金祥, 李光明, 秦克章, 等, 2008.班公湖带多不杂富金斑岩铜矿床斑岩-火山岩的地球化学特征与时代:对成矿构造背景的制约.岩石学报, 24(3): 531-543. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20080313&journal_id=ysxb&year_id=2008
      [92] 李兴奎, 李才, 孙振明, 等, 2015.西藏赛角铜金矿闪长岩LA-ICP-MS锆石U-Pb年龄、Hf同位素和地球化学特征及成矿意义.地质通报, 34(5): 908-918. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201505011
      [93] 李玉彬, 多吉, 钟婉婷, 等, 2012.西藏改则县多不杂斑岩型铜金矿床勘查模型.地质与勘探, 48(2): 274-287. http://d.old.wanfangdata.com.cn/Periodical/dzykt201202009
      [94] 林彬, 陈毓川, 唐菊兴, 等, 2016.西藏多龙矿集区地堡Cu(Au)矿床含矿斑岩锆石U-Pb测年、Hf同位素组成及其地质意义.地质论评, 62(6): 1565-1578. http://d.old.wanfangdata.com.cn/Periodical/dzlp201606017
      [95] 刘敏, 赵洪涛, 张达, 等, 2017.内蒙古西乌旗南部晚古生代侵入岩年代学、地球化学特征及地质意义.地球科学, 42(4): 527-548. http://www.earth-science.net/WebPage/Article.aspx?id=3560
      [96] 刘勇, 李廷栋, 肖庆辉, 等, 2012.湘南宜章地区辉绿岩、花岗斑岩、安山岩的形成时代和成因——锆石U-Pb年龄和Hf同位素组成.地质通报, 31(9): 1363-1378. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201209001
      [97] 曲晓明, 范淑芳, 马旭东, 等, 2015.西藏班公湖-怒江成矿带上的碰撞后铜矿床.矿床地质, 34(3): 431-448. http://d.old.wanfangdata.com.cn/Periodical/kcdz201503001
      [98] 曲晓明, 辛洪波, 2006.藏西班公湖斑岩铜矿带的形成时代与成矿构造环境.地质通报, 25(7): 792-799. https://www.cnki.com.cn/qikan-ZQYD200607005.html
      [99] 曲晓明, 辛洪波, 杜德道, 等, 2013.西藏班公湖-怒江缝合带中段A-型花岗岩的岩浆源区与板片断离.地质学报, 87(6): 759-772. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201306002
      [100] 佘宏全, 李进文, 马东方, 等, 2009.西藏多不杂斑岩铜矿床辉钼矿Re-Os和锆石U-Pb SHRIMP测年及地质意义.矿床地质, 28(6): 737-746. http://d.old.wanfangdata.com.cn/Periodical/kcdz200906003
      [101] 宋彪, 张玉海, 万渝生, 等, 2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评, 48(S1): 26-30. https://www.wenkuxiazai.com/doc/54c17ed4b8f67c1cfad6b862-2.html
      [102] 宋扬, 唐菊兴, 曲晓明, 等, 2014.西藏班公湖-怒江成矿带研究进展及一些新认识.地球科学进展, 29(7): 795-809. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxjz201407006&dbname=CJFD&dbcode=CJFQ
      [103] 唐菊兴, 多吉, 刘鸿飞, 等, 2012.冈底斯成矿带东段矿床成矿系列及找矿突破的关键问题研究.地球学报, 33(4): 393-410. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201204003.htm
      [104] 唐菊兴, 宋扬, 王勤, 等, 2016.西藏铁格隆南铜(金银)矿床地质特征及勘查模型——西藏首例千万吨级斑岩-浅成低温热液型矿床.地球学报, 37(6): 663-690. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqxb201606003&dbname=CJFD&dbcode=CJFQ
      [105] 唐菊兴, 孙兴国, 丁帅, 等, 2014a.西藏多龙矿集区发现浅成低温热液型铜(金银)矿床.地球学报, 35(1): 6-10. http://d.old.wanfangdata.com.cn/Periodical/dqxb201401002
      [106] 唐菊兴, 王勤, 杨超, 等, 2014b.青藏高原两个斑岩-浅成低温热液矿床成矿亚系列及其"缺位找矿"之实践.矿床地质, 33(6): 1151-1170. https://wuxizazhi.cnki.net/qikan-KCDZ201406002.html
      [107] 唐菊兴, 王登红, 2011.西藏甲玛等超大型铜多金属矿床勘查与研究新进展.矿床地质, 30(2): 177-178. http://d.old.wanfangdata.com.cn/Periodical/kcdz201102001
      [108] 唐菊兴, 王登红, 汪雄武, 等, 2010.西藏甲玛铜多金属矿矿床地质特征及其矿床模型.地球学报, 31(4): 495-506. http://d.old.wanfangdata.com.cn/Periodical/dqxb201004002
      [109] 王勤, 唐菊兴, 方向, 等, 2015.西藏多龙矿集区铁格隆南铜(金银)矿床荣那矿段安山岩成岩背景:来自锆石U-Pb年代学、岩石地球化学的证据.中国地质, 42(5): 1324-1336. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201505011
      [110] 王勤, 唐菊兴, 谢富伟, 等, 2017.青藏高原铜矿资源研究进展.科技导报, 35(12): 89-95. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kjdb201712021&dbname=CJFD&dbcode=CJFQ
      [111] 王元龙, 张旗, 王强, 等, 2003.埃达克质岩与Cu-Au成矿作用关系的初步探讨.岩石学报, 19(3): 543-550. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200303021
      [112] 韦少港, 唐菊兴, 宋扬, 等, 2017.西藏改则多龙矿集区地堡那木岗矿床钾玄质二长花岗斑岩锆石LA-MC-ICP-MS U-Pb年龄、地球化学特征及其地质意义.地质论评, 63(1): 189-206. http://d.old.wanfangdata.com.cn/Periodical/dzlp201701017
      [113] 杨超, 唐菊兴, 宋俊龙, 等, 2015.西藏拿若斑岩型铜(金)矿床绿泥石特征及其地质意义.地质学报, 89(5): 856-872. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201505003
      [114] 杨超, 唐菊兴, 王艺云, 等, 2014.西藏铁格隆南浅成低温热液型-斑岩型Cu-Au矿床流体及地质特征研究.矿床地质, 33(6): 1287-1305. http://d.old.wanfangdata.com.cn/Periodical/kcdz201406009
      [115] 杨欢欢, 唐菊兴, 张忠, 等, 2016.西藏铁格隆南铜(金-银)矿床环带状黄铁矿及其地质意义.矿物学报, 36(1): 70-79. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb201601012
      [116] 张旗, 王元龙, 张福勤, 等, 2002.埃达克岩与斑岩铜矿.华南地质与矿产, 18(3): 85-90. http://mall.cnki.net/magazine/Article/DZKT200601000.htm
      [117] 张志, 方向, 唐菊兴, 等, 2017.西藏多龙矿集区尕尔勤斑岩铜矿床年代学及地球化学——兼论硅帽的识别与可能的浅成低温热液矿床.岩石学报, 33(2): 476-494. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201702011
      [118] 朱弟成, 潘桂棠, 莫宣学, 等, 2006.青藏高原中部中生代OIB型玄武岩的识别:年代学、地球化学及其构造环境.地质学报, 80(9): 1312-1328. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200609008
      [119] 祝向平, 陈华安, 刘鸿飞, 等, 2015.西藏多不杂斑岩铜矿斑岩锆石U-Pb年龄、岩石地球化学特征及其成矿意义.地质学报, 89(3): 534-548. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201503007
      [120] 祝向平, 陈华安, 马东方, 等, 2011.西藏波龙斑岩铜金矿床的Re-Os同位素年龄及其地质意义.岩石学报, 27(7): 2159-2164. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107023
      [121] 祝向平, 陈华安, 马东方, 等, 2013.西藏波龙斑岩铜金矿床钾长石和绢云母40Ar/39Ar年龄及其地质意义.矿床地质, 32(5): 954-962. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kcdz201305007&dbname=CJFD&dbcode=CJFQ
    • 加载中
    图(9) / 表(3)
    计量
    • 文章访问数:  3971
    • HTML全文浏览量:  1313
    • PDF下载量:  33
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-12-18
    • 刊出日期:  2018-04-15

    目录

      /

      返回文章
      返回