• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    高速远程滑坡运动堆积过程中的能量传递机制

    葛云峰 周婷 霍少磊 夏丁 胡勇 钟鹏 张莉

    葛云峰, 周婷, 霍少磊, 夏丁, 胡勇, 钟鹏, 张莉, 2019. 高速远程滑坡运动堆积过程中的能量传递机制. 地球科学, 44(11): 3939-3949. doi: 10.3799/dqkx.2017.589
    引用本文: 葛云峰, 周婷, 霍少磊, 夏丁, 胡勇, 钟鹏, 张莉, 2019. 高速远程滑坡运动堆积过程中的能量传递机制. 地球科学, 44(11): 3939-3949. doi: 10.3799/dqkx.2017.589
    Ge Yunfeng, Zhou Ting, Huo Shaolei, Xia Ding, Hu Yong, Zhong Peng, Zhang Li, 2019. Energy Transfer Mechanism during Movement and Accumulation of Rockslide Avalanche. Earth Science, 44(11): 3939-3949. doi: 10.3799/dqkx.2017.589
    Citation: Ge Yunfeng, Zhou Ting, Huo Shaolei, Xia Ding, Hu Yong, Zhong Peng, Zhang Li, 2019. Energy Transfer Mechanism during Movement and Accumulation of Rockslide Avalanche. Earth Science, 44(11): 3939-3949. doi: 10.3799/dqkx.2017.589

    高速远程滑坡运动堆积过程中的能量传递机制

    doi: 10.3799/dqkx.2017.589
    基金项目: 

    国家自然科学基金青年基金资助项目 41602316

    中国地质大学(武汉)英才工程人才培养计划项目 20161215

    岩土钻掘与防护教育部工程研究中心开放研究基金项目 201502

    详细信息
      作者简介:

      葛云峰(1985—), 男, 副教授, 博士, 从事工程地质研究及相关教学工作, 主要从事高速远程滑坡演化机理、岩体结构面粗糙度评价、地质工程与岩土工程数值模拟等研究

      通讯作者:

      周婷

    • 中图分类号: P642

    Energy Transfer Mechanism during Movement and Accumulation of Rockslide Avalanche

    • 摘要: 高速远程滑坡往往引发灾难性事故,开展运动堆积过程定量研究,对于探究滑坡发生机理及预测致灾范围具有重要意义.基于室内物理模型试验,通过PIV技术分析高速摄像机在试验过程中拍摄的照片,获取了运动过程中滑体颗粒的水平速度、竖直速度与位移等运动参数.从滑体颗粒群和不同位置处单体颗粒角度,分析高速远程滑坡的运动演化规律.结果显示:(1)滑体颗粒前端出现高速区,该高速区随着滑坡停止具有一定的保持性.颗粒间存在明显的碰撞现象;(2)从不同位置单体颗粒来看,前部颗粒位移量最大,速度波动频繁,碰撞频次最高,能量多次补充;中部颗粒位移量其次,速度有波动过程,但不及前部频繁;后部颗粒位移量最小,速度基本呈递降趋势,能量逐渐减小.结合重庆鸡尾山滑坡以及Black Rapids Glacier滑坡实例分析,揭示了高速远程滑坡运动堆积过程中滑体颗粒间存在碰撞及能量传递现象,从而进一步探究高速远程滑坡形成机制,在监测预防、灾害治理等方面具有现实指导意义.

       

    • 图  1  滑体颗粒碰撞过程示意

      Fig.  1.  The collision process of landslip particles

      图  2  滑块碰撞过程运动曲线

      Fig.  2.  The movement curves of sliding block collision

      图  3  滑坡模型实验示意

      Dufresne(2009)

      Fig.  3.  The diagrammatic sketch of physical model experiment of rock avalanche

      图  4  图像互相关匹配

      Thielicke and Stamhuis(2014)

      Fig.  4.  Pattern cross correlation matching

      图  5  滑体前端速度较大且随滑坡停止保持高速

      Fig.  5.  The front particles own high speed and keep it at the end of landslide

      图  6  颗粒速度散点图

      Fig.  6.  The scatter plot of particle velocity

      图  7  颗粒速度反向与滑体前端方向散射现象

      Fig.  7.  Some particles showing reverse directions and the front particle scatter

      图  8  颗粒不同位置示意

      Fig.  8.  The different positions of the particles investigated

      图  9  不同位置颗粒水平方向运动图

      Fig.  9.  Horizontal movement of particles in different positions

      图  10  不同位置颗粒竖直方向运动图

      Fig.  10.  Vertical movement of particles in different positions

      图  11  不同位置颗粒能量变化

      Fig.  11.  The energy changes of particles in different positions

      图  12  堆积区中最大的块石

      Fig.  12.  The largest rock block located in the deposit area of landslide

      图  13  滑坡堆积体块石分布

      邹宗兴(2014);单位为m3

      Fig.  13.  The distribution of accumulation body stone in avalanche

      图  14  滑坡堆积区航拍图

      来源于重庆市土地勘测规划院、中国测绘科学研究院

      Fig.  14.  The aerial image of deposit region of landslide

      图  15  Black Rapids Glacier滑坡中的陡坎现象

      Hewitt et al.(2008)

      Fig.  15.  The scarps in the Black Rapids Glacier avalanche

      图  16  鸡尾山滑体位置次序保持现象

      Fig.  16.  The phenomenon of landslide position order retention in Jiweishan

      表  1  前部1号颗粒运动参数

      Table  1.   The movement parameters of the first particle in the front position

      u(m/s) v(m/s) x(m) y(m) Ek(J)
      0.231 0.146 0.084 0.128 0.037
      0.144 -0.022 0.119 0.133 0.011
      -0.387 -0.010 0.154 0.126 0.075
      -0.008 0.484 0.189 0.119 0.117
      -0.377 0.070 0.217 0.112 0.074
      -2.026 0.797 0.252 0.112 2.370
      3.243 -0.313 0.280 0.119 5.306
      1.074 0.129 0.314 0.128 0.585
      2.144 1.295 0.314 0.119 3.136
      0.039 0.077 0.349 0.133 0.004
      0.505 1.706 0.370 0.133 1.582
      2.903 -2.358 0.398 0.133 6.995
      -0.568 -0.089 0.426 0.126 0.165
      -0.077 0.153 0.440 0.119 0.014
      1.180 -0.184 0.468 0.133 0.713
      -0.502 -0.074 0.496 0.147 0.129
      -1.705 -0.023 0.517 0.133 1.454
      0.057 -0.037 0.545 0.133 0.002
      下载: 导出CSV

      表  2  不同位置颗粒运动特征

      Table  2.   The motion characteristics of particles at different positions

      颗粒位置 滑行距离(m) 最大动能(J) 最小动能(J) 平均动能(J) 碰撞频次
      前部 0.515 6.007 0.002 1.127 6
      中部 0.175 4.899 0.001 1.227 3
      后部 0.056 4.662 0.0003 1.785 1
      下载: 导出CSV
    • [1] Booth-Gauthier, E. A., Alcoser, T. A., Yang, G., et al., 2012. Force-Induced Changes in Subnuclear Movement and Rheology. Biophysical Journal, 103(12): 2423-2431. https://doi.org/10.1016/j.bpj.2012.10.039
      [2] Chen, Z.G., Ge, Y.F., 2016. Forecast Analysis of Movement Distances of High-Speed and Long-Distance Landsides Based on Statistical Methods. Yangtze River, 47(12): 42-47 (in Chinese with English abstract).
      [3] Dong, Z.B., Yan, D.P., Zhang, Z.L., et al., 2014. Research on Methods of Sandbox Modeling and Case Study Based on Particle Image Velocimetry (PIV). Geoscience, 28(2): 321-330 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201402010
      [4] Dufresne, A., 2009. Influence of Runout Path Material on Rock and Debris Avalanche Mobility: Field Evidence and Analogue Modelling (Dissertation). University of Canterbury, Christchurch.
      [5] Eisbacher, G. H., 1979. Cliff Collapse and Rock Avalanches (Sturzstroms) in the Mackenzie Mountains, Northwestern Canada. Canadian Geotechnical Journal, 16(2): 309-334. doi: 10.1139/t79-032
      [6] Ge, Y.F., Tang, H.M., Li, W., et al., 2016. Evaluation for Deposit Areas of Rock Avalanche Based on Features of Rock Mass Sructure. Earth Science, 41(9):1583-1592 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.117 doi: 10.3799/dqkx.2016.117
      [7] Ge, Y.F., Tang, H.M., Xiong, C.R., et al., 2014.Effect of Sliding Plane Mechanical Parameters on Landslide Stability—A Case Study of Jiweishan Rockslide in Wulong, Chongqing. Chinese Journal of Rock Mechanics and Engineering, 33(Suppl.2):3873-3884 (in Chinese with English abstract).
      [8] Hao, M.H., Xu, Q., Yang, L., 2014. Physical Modeling and Movement Mechanism of Landslide-Debris Avalanches. Rock and Soil Mechanics, 35(Suppl.1):128-132 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx2014z1018
      [9] Hewitt, K., Clague, J.J., Orwin, J.F., 2008. Legacies of Catastrophic Rock Slope Failures in Mountain Landscapes. Earth-Science Reviews, 87(1-2):1-38. doi: 10.1016/j.earscirev.2007.10.002
      [10] Hsü, K. J., 1975. Catastrophic Debris Streams (Sturzstroms) Generated by Rockfalls. Geological Society of America Bulletin, 86(1): 129. https://doi.org/10.1130/0016-7606(1975)86 < 129:cdssgb > 2.0.co; 2 doi: 10.1130/0016-7606(1975)86<129:CDSSGB>2.0.CO;2
      [11] Huang, H., Dabiri, D., Gharib, M., 1997. On Errors of Digital Particle Image Velocimetry. Measurement Science and Technology, 8(12): 1427-1440. doi: 10.1088/0957-0233/8/12/007
      [12] Huang, R.Q., 2007. Large-Scale Landslide and Their Sliding Mechanisms in China since the 20th Century. Journal of Rock Mechanics and Engineering, 26(3):433-454 (in Chinese with English abstract).
      [13] Kent, P. E., 1966. The Transport Mechanism in Catastrophic Rock Falls. The Journal of Geology, 74(1): 79-83. https://doi.org/10.1086/627142 doi: 10.1086/627142
      [14] Luo, W.Q., Li, F.A., Liu, X. S., et al., 2016. Evolution Stage Division of Landslide Based on Analysis of Multivariate Time Series. Earth Science, 41(4): 711-717 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201604017
      [15] Manzella, I., Labiouse, V., 2007. Qualitative Analysis of Rock Avalanches Propagation by Means of Physical Modelling of Non-Constrained Gravel Flows. Rock Mechanics and Rock Engineering, 41(1): 133-151. https://doi.org/10.1007/s00603-007-0134-y doi: 10.1007/s00603-007-0134-y
      [16] Okura, Y., Kitahara, H., Sammori, T., 2000a. Fluidization in Dry Landslides. Engineering Geology, 56(3/4): 347-360. https://doi.org/10.1016/s0013-7952(99)00118-0 doi: 10.1016/s0013-7952(99)00118-0
      [17] Okura, Y., Kitahara, H., Sammori, T., et al., 2000b. The Effects of Rockfall Volume on Runout Distance. Engineering Geology, 58(2): 109-124. https://doi.org/10.1016/s0013-7952(00)00049-1 doi: 10.1016/S0013-7952(00)00049-1
      [18] Panciroli, R., Porfiri, M., 2013. Evaluation of the Pressure Field on a Rigid Body Entering a Quiescent Fluid through Particle Image Velocimetry. Experiments in Fluids, 54(12): 1630. https://doi.org/10.1007/s00348-013-1630-3
      [19] Piro, V., Piro, N., Piro, O., 2012. Characterization of Intraventricular Blood Flow Using a Microbubble-Contrast Tracking Echo-PIV Technique. Journal of the American College of Cardiology, 59(13): E1139. https://doi.org/10.1016/s0735-1097(12)61140-1 doi: 10.1016/S0735-1097(12)61140-1
      [20] Ryerson, W. G., Schwenk, K., 2011. A Simple, Inexpensive System for Digital Particle Image Velocimetry (DPIV) in Biomechanics. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 317(2): 127-140. https://doi.org/10.1002/jez.725 doi: 10.1002/jez.725
      [21] Sassa, K., 1989. Special Lecture: Geotechnical Model for the Motion of Landslides. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 26(2): 88. https://doi.org/10.1016/0148-9062(89)90311-2 doi: 10.1016/0148-9062(89)90311-2
      [22] Shi, Q., Ghosh, R. P., Engelke, H., et al., 2013. Rapid Disorganization of Mechanically Interacting Systems of Mammary Acini. Proceedings of the National Academy of Sciences, 111(2): 658-663. https://doi.org/10.1073/pnas.1311312110 doi: 10.1073/pnas.1311312110
      [23] Sosio, R., Crosta, G. B., Hungr, O., 2008. Complete Dynamic Modeling Calibration for the Thurwieser Rock Avalanche (Italian Central Alps). Engineering Geology, 100(1/2): 11-26. https://doi.org/10.1016/j.enggeo.2008.02.012 doi: 10.1016/j.enggeo.2008.02.012
      [24] Thielicke, W., Stamhuis, E. J., 2014. Pivlab-towards User-Friendly, Affordable and Accurate Digital Particle Image Velocimetry in Matlab. Journal of Open Research Software, 2(1):1-10. https://doi.org/10.5334/jors.bl
      [25] Xu, L.F., Chen, G., Li, J.Z., et al., 2003. Research Progress on Particle Image Velocimetry. Advances in Mechanics, 33(4): 533-540 (in Chinese with English abstract).
      [26] Yu, M.L., Mei, H.B., Li, J.H., et al., 2016. Landslide Displacement Predction Based on Varying Coefficient Regression Model in Three Gorges Reservior Area. Earth Science, 41(9): 1593-1602 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.118 doi: 10.3799/dqkx.2016.118
      [27] Zhang, M., Yin, Y.P., Wu, S.R., et al., 2010. Development Status and Prospects of Studies on Kinematics of Long Runout Rock Avalanches. Journal of Engineering Geology, 18(6):806-817 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201006001
      [28] Zou, Z.X., 2014. Research on the Evolution Dynamics of the Consequent Bedding Rockslides (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      [29] 陈卓根, 葛云峰, 2016.基于统计方法的高速远程滑坡距离预测分析.人民长江, 47(12): 42-47. http://d.old.wanfangdata.com.cn/Periodical/rmcj201612010
      [30] 董周宾, 颜丹平, 张自力, 等, 2004.基于粒子图像测速系统(PIV)的砂箱模拟实验方法研究与实例分析.现代地质, 28(2): 321-330. http://d.old.wanfangdata.com.cn/Periodical/xddz201402010
      [31] 葛云峰, 唐辉明, 李伟, 等, 2016.基于岩体结构特征的高速远程滑坡致灾范围评价.地球科学, 41(9):1583-1592. doi: 10.3799/dqkx.2016.117
      [32] 葛云峰, 唐辉明, 熊承仁, 等, 2014.滑动面力学参数对滑坡稳定性影响研究——以重庆武隆鸡尾山滑坡为例.岩石力学与工程学报, 32(增刊2):3874-3875. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb2014z2061
      [33] 郝明辉, 许强, 杨磊, 等, 2014.滑坡-碎屑流物理模型试验及运动机制探讨.岩土力学, 35(增刊1):127-132. http://d.old.wanfangdata.com.cn/Periodical/ytlx2014z1018
      [34] 黄润秋, 2007. 20世纪以来中国的大型滑坡及其发生机制.岩石力学与工程学报, 26(3):433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001
      [35] 罗文强, 李飞翱, 刘小珊, 等, 2016.多元时间序列分析的滑坡演化阶段划分.地球科学, 41(4): 711-717. doi: 10.1799/dqkx.2016.060
      [36] 许联锋, 陈刚, 李建中, 等, 2003.粒子图像测速技术研究进展.力学进展, 33(4):533-540. doi: 10.3321/j.issn:1000-0992.2003.04.010
      [37] 喻孟良, 梅红波, 李冀骅, 等, 2016.基于变系数回归模型的三峡库区滑坡位移预测.地球科学, 41(9): 1593-1602. doi: 10.3799/dqkx.2016.118
      [38] 张明, 殷跃平, 吴树仁, 等, 2010.高速远程滑坡-碎屑流运动机理研究发展现状与展望.工程地质学报, 18(6):805-817. doi: 10.3969/j.issn.1004-9665.2010.06.001
      [39] 邹宗兴, 2014.顺层岩质滑坡演化动力学研究(博士学位论文).武汉: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-10491-1014340826.htm
    • 加载中
    图(16) / 表(2)
    计量
    • 文章访问数:  2867
    • HTML全文浏览量:  1008
    • PDF下载量:  53
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-06-19
    • 刊出日期:  2019-11-15

    目录

      /

      返回文章
      返回