The Initial Break-Up between Tethyan-Himalaya and Indian Terrane: Evidences from Late Cretaceous OIB-Type Basalt in Southern Tibet
-
摘要: 长期以来关于喜马拉雅地体是否从印度大陆裂解以及何时裂解的问题存在较大争议,而藏南卡达地区新发现的晚白垩世枕状玄武岩为解决该问题提供了新的证据.卡达玄武岩位于卡达乡北侧,玄武岩呈北西西向不整合于中侏罗统遮拉组之上,锆石SHRIMP U-Pb同位素定年获得的成岩年龄为92.1±1.2 Ma,代表特提斯喜马拉雅地区晚白垩世时期火山活动.卡达玄武岩主量元素、微量元素分析结果显示,玄武岩为碱性玄武岩,轻重稀土明显分馏((La/Yb)N=5.7~7.1),无Nb-Ta、Eu、Zr-Hf负异常,以及高Fe、P、Ti含量,低(La/Nb)PM、(Th/Ta)PM比值特征.锆石εHf(t)值介于9.02~12.97,平均为10.50,地幔模式年龄tDM1为241~399 Ma.地球化学指标以及同位素组成显示卡达玄武岩为未受地壳混染的OIB型玄武岩,岩浆起源于含石榴石、尖晶石二辉橄榄岩的部分熔融.卡达玄武岩形成于特提斯喜马拉雅被动大陆边缘环境,被动大陆边缘的火山岩浆岩通常与大陆裂解有关,结合古地磁研究结果以及新特提斯洋盆演化证据,认为卡达玄武岩与特提斯喜马拉雅和印度地体的裂解有关,代表大陆地壳初始裂解的时间.Abstract: The initial break-up time between Tethyan-Himalaya and Indian terrane has been controversial for a long time.In this study, we report newly discovered pillow basalts which provide new insights to the solution of the problem.The pillow basalts trending northwestward unconformable overlap on the Middle Jurassic Zhela Formation.The zircon SHRIMP U-Pb isotopic dating shows the formation age of 92.1±1.2 Ma, representing the Late Cretaceous volcanic activity of the Tethys Himalaya.The major and trace elements analyses show the basalt is alkaline basalt with (La/Yb)N=5.7~7.1 and without Nb-Ta, Eu, Zr-Hf negative anomalies, and it has high Fe, P, Ti contents, low (La/Nb)PM and (Th/Ta)PM ratios.Zircon εHf(t) values range from 9.02 to 12.97, with an average of 10.50 and tDM1 is 241-399 Ma.Geochemical and isotopic data show that the Kada basalt is OIB-type basalt without any contamination from the crust and the magma originates from partial melting of garnet-spinel bearing lherzolite.Kada basalt is present within Tethyan Himalaya passive continental margin.Mafic volcanics spreading within passive continental margins is usually related with the processes of continental break-up and formation of a new ocean basin.Combined with the latest research result of paleomagnetic and evolution of Neo-Tethys oceanic basin, we suggest that the Kada basalt is related to the initial break-up between Tethyan-Himalaya and Indian terrane.The Kada basalt provides new clues for the study of tectonic evolution of the Tethyan Himalaya.
-
Key words:
- Late Cretaceous /
- OIB-type basalt /
- initial break-up /
- Tethyan-Himalaya /
- U-Pb dating /
- geochemistry /
- geochronology
-
图 1 区域地质简图(a)和卡达地区地质简图(b)
图a据Yin and Harrison (2000)修改.GCT.大反向逆冲断层; STDZ.藏南拆离系; MCT.主中央断裂; MBT.主边界断裂; MFT.主前锋断裂
Fig. 1. Regional geologic map (a) and the geological map of Kada area (b)
图 4 藏南卡达玄武岩样品Nb/Y-Zr/TiO2图解
Fig. 4. Nb/Y-Zr/TiO2 plot of Kada basalt in southern Tibet
图 5 卡达玄武岩样品的球粒陨石标准化稀土元素配分模式(a)和原始地幔标准化微量元素蛛网图(b)
原始地幔、球粒陨石、OIB、E-MORB、N-MORB数据来自Sun and McDonough (1989);措美大火成岩省数据来自夏瑛等(2012);桑秀组玄武岩数据来自朱弟成等(2005)
Fig. 5. Chondrite-normalized REE pattern (a) and primitive mantle-normalized trace element spider diagram (b) of Kada basalt
图 6 藏南地区卡达OIB型玄武岩(Th/Nb)PM-(La/Nb)PM图解
原始地幔、Bunbury Casuarina和Bunbury Gosselin玄武岩数据来自Frey et al.(1996); Rajmahal暗色岩数据来自Baksi et al.(1995)和Kent et al.(1997); Site 747玄武岩数据来自Frey et al.(2002); Site 738玄武岩数据来自Mahoney et al.(1995); Site 1138玄武岩数据来自Neal et al.(2002).UC.上地壳;MC.中地壳;LC.下地壳
Fig. 6. (Th/Nb)PM-(La/Nb)PM plot of OIB-type basalt in southern Tibet
图 10 拉萨地体、特提斯喜马拉雅和印度地体古地磁点位图解
底图来源于Yang et al. (2015b)
Fig. 10. Paleomagnetic points diagram for Indian terrane, Tethyan Himalayan and Lhasa terrane
表 1 藏南卡达玄武岩锆石U-Pb分析结果
Table 1. Zircon U-Pb results of Kada basalt in southern Tibet
样号 元素含量(10-6) 232Th/238U 同位素比值 年龄(Ma) 206Pbc U Th 206Pb* 207Pb*/206Pb* 1σ 207Pb*/235U 1σ 206Pb*/238U 1σ 206Pb/238U 208Pb/232Th KD2-1 0.22 737 525 8.90 0.74 0.0561 6.1 0.1085 6.5 0.01402 2.2 89.8±1.9 90.4±3.7 KD2-2 - 945 764 11.9 0.83 0.0568 6.0 0.1145 6.3 0.01463 2.1 93.6±2.0 99.1±4.5 KD2-3 0.25 661 372 8.48 0.58 0.0567 14 0.116 14 0.01490 2.7 95.4±2.6 108±11 KD2-4 2.43 392 156 4.80 0.41 0.0497 17 0.095 17 0.01392 2.8 9.1±2.5 79±14 KD2-5 0.73 648 331 8.08 0.53 0.0570 7.0 0.1132 7.3 0.01441 2.2 92.2±2.0 105.5±5.4 KD2-6 2.42 869 656 10.8 0.78 0.0468 12 0.092 12 0.01418 2.2 90.8±2.0 90.9±5.8 KD2-7 0.50 991 994 12.5 1.04 0.0506 7.1 0.1022 7.4 0.01465 2.2 93.8±2.0 91.6±4.5 KD2-8 4.99 779 502 9.88 0.67 0.063 20 0.121 20 0.01402 2.5 89.8±2.2 99±13 KD2-9 0.53 1184 760 15.0 0.66 0.0531 9.2 0.107 9.5 0.01465 2.2 93.8±2.0 97.9±6.1 KD2-10 1.22 937 537 12.2 0.59 0.0577 7.1 0.1193 7.4 0.01498 2.2 95.9±2.1 98.6±5.7 KD2-11 10.67 649 402 9.06 0.64 0.053 31 0.105 31 0.01452 3.0 92.9±2.8 117±24 KD2-12 0.39 705 555 8.70 0.81 0.0631 7.6 0.1245 7.9 0.01432 2.3 91.6±2.1 98.3±3.6 KD2-13 0.28 918 515 11.1 0.58 0.0587 5.5 0.1138 5.9 0.01406 2.1 90.0±1.9 96.9±3.9 注:Pbc和Pb*分别代表普通Pb和放射成因Pb. 表 2 卡达玄武岩主量元素(%)、微量元素(10-6)和稀土元素(10-6)分析结果
Table 2. Major elements (%), trace elements (10-6) and rare earth elements (10-6) results of Kada basalt
样号 KD2-2 KD2-3 KD2-4 KD2-5 KD2-6 SiO2 48.27 50.28 48.90 49.78 48.99 CaO 9.61 9.71 8.93 10.15 8.23 FeO 7.38 7.42 8.39 6.99 8.14 MgO 5.87 5.22 5.38 4.67 5.39 Na2O 2.10 2.14 2.42 2.19 2.81 TiO2 3.81 3.72 3.80 3.90 3.76 LOI 2.74 2.37 2.91 2.08 2.64 Be 1.36 1.61 1.60 1.60 1.42 Mn 1 280 1 180 1 454 1 363 1 398 Ni 92.1 131.0 179.0 70.8 72.0 Rb 15.1 4.51 10.9 11.6 17.70 Mo 0.75 0.47 0.46 0.57 0.44 In 0.11 0.10 0.11 0.11 0.10 Ba 284 193 473 258 1006 Pb 2.20 1.98 1.80 2.54 1.64 Th 1.88 2.12 1.68 2.18 2.18 Nb 25 26.4 22 30 27 Zr 261 282 279 287 271 Sn 2.09 2.27 2.35 2.25 2.21 Ti 22 422 21 896 22 820 23 542 22 561 As 0.45 0.16 < 0.05 0.68 0.17 La 22.3 25.5 21.4 26.8 25.5 Pr 7.54 8.31 7.54 8.55 8.04 Sm 8.29 8.74 8.78 8.91 8.29 Gd 8.68 8.77 9.00 9.08 8.39 Dy 6.93 6.86 7.00 7.12 6.68 Er 3.17 3.13 3.22 3.24 3.08 Yb 2.68 2.7 2.68 2.74 2.57 Sc 26.6 23.9 25.0 25.2 26.0 (La/Yb)N 6.0 6.8 5.7 7.0 7.1 A/NK 3.02 3.11 2.48 2.89 2.09 TFeO 11.6 11.0 11.4 10.5 10.9 Al2O3 12.97 12.54 12.53 13.15 13.08 Fe2O3 4.72 4.03 3.33 3.86 3.02 K2O 0.77 0.47 0.98 0.87 1.51 MnO 0.16 0.15 0.19 0.18 0.18 P2O5 0.41 0.47 0.47 0.46 0.43 H2O 3.13 2.86 3.18 2.56 3.16 Li 14.6 9.35 14.7 13.1 13.3 Cr 322 256 337 217 223.0 Co 43.9 40.6 48.3 38.5 42.0 Ga 23.5 23.7 24.0 24.5 22.0 Sr 597 618 774 640 874 Cd 0.11 0.11 0.11 0.12 0.09 Cs 1.11 0.57 0.56 0.48 0.41 Tl < 0.05 < 0.05 < 0.05 < 0.05 0.08 Bi < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 U 0.52 0.58 0.48 0.61 0.54 Ta 1.74 1.84 1.50 2.08 1.84 Hf 6.47 7.08 6.92 7.19 6.76 Sb 0.07 0.07 < 0.05 0.37 < 0.05 W 0.20 0.30 0.26 0.28 0.25 V 417 380 392 416 395 Ce 44.1 49.0 43.1 50.9 48.8 Nd 39.1 42.4 40.1 43.4 40.6 Eu 2.86 2.86 2.97 2.94 2.78 Tb 1.23 1.24 1.29 1.30 1.23 Ho 1.33 1.32 1.31 1.36 1.27 Tm 0.46 0.45 0.45 0.46 0.43 Lu 0.39 0.38 0.39 0.40 0.38 Y 30.7 30.6 30.9 31.5 29.9 A/CNK 0.60 0.58 0.59 0.57 0.62 Mg# 47.4 45.7 45.7 44.3 46.9 表 3 藏南地区卡达玄武岩锆石Hf同位素数据
Table 3. Zircon Hf isotope data of the Kada basalt in southern Tibet
样号 176Yb/177Hf 2σ 176Lu/177Hf 2σ 176Hf/177Hf 2σ εHf(t) tDM1(Ma) fLu-Hf KD2-1 0.027 232 0.000 157 0.000 884 0.000 003 0.282 978 0.000 024 9.26 386 -0.97 KD2-2 0.038 056 0.000 274 0.001 153 0.000 004 0.282 981 0.000 021 9.32 386 -0.97 KD2-3 0.035 524 0.000 619 0.001 178 0.000 016 0.283 003 0.000 024 10.12 354 -0.96 KD2-4 0.028 420 0.000 280 0.000 926 0.000 008 0.282 982 0.000 022 9.39 382 -0.97 KD2-5 0.038 303 0.001 019 0.001 205 0.000 026 0.282 986 0.000 026 9.53 378 -0.96 KD2-6 0.038 204 0.001 301 0.001 217 0.000 034 0.282 972 0.000 031 9.02 399 -0.96 KD2-7 0.056 766 0.001 403 0.001 685 0.000 051 0.283 056 0.000 022 11.95 283 -0.95 KD2-8 0.057 206 0.001 348 0.001 789 0.000 041 0.283 078 0.000 027 12.75 250 -0.95 KD2-9 0.043 852 0.000 887 0.001 366 0.000 028 0.282 978 0.000 025 9.23 392 -0.96 KD2-10 0.041 322 0.000 519 0.001 293 0.000 014 0.283 007 0.000 023 10.25 350 -0.96 KD2-11 0.050 842 0.001 608 0.001 538 0.000 041 0.283 040 0.000 024 11.41 304 -0.95 KD2-12 0.052 171 0.001 341 0.001 699 0.000 029 0.283 085 0.000 042 12.97 241 -0.95 KD2-13 0.036 267 0.001 293 0.001 119 0.000 027 0.283 029 0.000 027 11.04 317 -0.97 -
[1] Baksi, A.K., 1995.Petrogenesis and Timing of Volcanism in the Rajmahal Flood Basalt Province, Northeastern India.Chemical Geology, 121:73-90.https://doi.org/10.1016/0009-2541(94)00124-q doi: 10.1016/0009-2541(94)00124-Q [2] Chauvel, C., Blichert-Toft, J., 2001.A Hafnium Isotope and Trace Element Perspective on Melting of the Depleted Mantle.Earth and Planetary Science Letters, 190(3-4):137-151.https://doi.org/10.1016/s0012-821x(01)00379-x doi: 10.1016/S0012-821X(01)00379-X [3] Edgar, A.D., 1987.The Genesis of Alkaline Magmas with Emphasis on Their Source Regions:Inferences from Experimental Studies.Geological Society, London, Special Publications, 30(1):29-52.https://doi.org/10.1144/gsl.sp.1987.030.01.04 doi: 10.1144/GSL.SP.1987.030.01.04 [4] Fitton, J.G., 1987.The Cameroon Line, West Africa:A Comparison between Oceanic and Continental Alkaline Volcanism.Geological Society, London, Special Publications, 30(1):273-291.https://doi.org/10.1144/gsl.sp.1987.030.01.13 doi: 10.1144/GSL.SP.1987.030.01.13 [5] Frey, F.A., McNaughton, N.J., Nelson, D.R., et al., 1996.Petrogenesis of the Bunbury Basalt, Western Australia:Interaction between the Kerguelen Plume and Gondwana Lithosphere? Earth and Planetary Science Letters, 144(1-2):163-183.https://doi.org/10.1016/0012-821x(96)00150-1 doi: 10.1016/0012-821X(96)00150-1 [6] Frey, F.A., Weis, D., Borisova, A.Y., et al., 2002.Involvement of Continental Crust in the Formation of the Cretaceous Kerguelen Plateau:New Perspectives from ODP Leg 120 Sites.Journal of Petrology, 43(7):1207-1239. https://doi.org/10.1093/petrology/43.7.1207 [7] Gao, J., Klemd, R., 2003.Formation of HP-LT Rocks and Their Tectonic Implications in the Western Tianshan Orogen, NW China:Geochemical and Age Constraints.Lithos, 66(1-2):1-22.https://doi.org/10.1016/s0024-4937(02)00153-6 doi: 10.1016/S0024-4937(02)00153-6 [8] Gao, R., Lu, Z.W., Klemperer, S.L., et al., 2016.Crustal-Scale Duplexing beneath the Yarlung Zangbo Suture in the Western Himalaya.Nature Geoscience, 9(7):555-560. https://doi.org/10.1038/ngeo2730 [9] Huang, W.T., van Hinsbergen, D.J.J., Dekkers, M.J., et al., 2015.Paleolatitudes of the Tibetan Himalaya from Primary and Secondary Magnetizations of Jurassic to Lower Cretaceous Sedimentary Rocks.Geochemistry, Geophysics, Geosystems, 16(1):77-100.https://doi.org/10.1002/2014gc005624 doi: 10.1002/2014GC005624 [10] Ji, W.Q., Wu, F.Y., Chung, S.L., et al., 2014.The Gangdese Magmatic Constraints on a Latest Cretaceous Lithospheric Delamination of the Lhasa Terrane, Southern Tibet.Lithos, 210-211:168-180.https://doi.org/10.13039/501100001809 doi: 10.1016/j.lithos.2014.10.001 [11] Ji, W.Q., Wu, F.Y., Chung, S.L., et al., 2016.Eocene Neo-Tethyan Slab Breakoff Constrained by 45 Ma Oceanic Island Basalt-Type Magmatism in Southern Tibet.Geology, 44(4):283-286.https://doi.org/10.1130/g37612.1 doi: 10.1130/G37612.1 [12] Kang, Z.Q., Fu, W.C., Tian, G.H., 2015.A Discussion on Mesozoic Volcanic Stratigraphic Sequence in Sangri County, Tibet:Evidence from Zircon U-Pb Ages and Geochemical Compositions.Geologcal Bulletin of China, 34(2-3):318-327 (in Chinese with English abstract). http://www.researchgate.net/publication/282060572_A_discussion_on_Mesozoic_volcanic_stratigraphic_sequence_in_Sangri_County_Tibet_evidence_from_zircon_U-Pb_ages_and_geochemical_compositions [13] Kent, R.W., Saunders, A.D., Kempton, P.D., et al., 1997.Rajmahal Basalts, Eastern India:Mantle Sources and Melt Distribution at a Volcanic Rifted Margin.In:Mahoney, J.J., Coffin, M.F., eds., Large Igneous Provinces:Continental, Oceanic and Planetary Flood Volcanism.Geophysical Monograph Series, 100:145-182. doi: 10.1029/GM100p0145/references;jsessionid=307D53930D9F5FBC2B316DA73CA92A79.f03t02?globalMessage=0 [14] Lassiter, J.C., Depaolo, D.J., 1997.Plume/Lithosphere Interaction in the Generation of Continental and Oceanic Flood Basalts:Chemical and Isotopic Constraints.In:Mahoney, J.J., Coffin, M.F.eds., Large Igneous Provinces:Continental, Oceanic and Planetary Flood Volcanism.Geophysical Monograph Series, 100:335-355. [15] Li, Z.Y., Ding, L., Lippert, P.C., et al., 2016.Paleomagnetic Constraints on the Mesozoic Drift of the Lhasa Terrane (Tibet) from Gondwana to Eurasia.Geology, 44(9):727-730.https://doi.org/10.1130/g38030.1 doi: 10.1130/G38030.1 [16] Liu, X.H., Hsu, K.J., Ju, Y.T., et al., 2012.New Interpretation of Tectonic Model in South Tibet.Journal of Asian Earth Sciences, 56:147-159. https://doi.org/10.1016/j.jseaes.2012.05.005 [17] Liu, X.H., Ju, Y.T., Wei, L.J., et al., 2009.An Alternative Tectonic Model for the Yarlung Zangbo Suture Zone.Science in China (Series D), 39(4):448-463 (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=JDXG201001003&dbname=CJFD&dbcode=CJFQ [18] Liu, Z., Zhou, Q., Lai, Y., et al., 2015.Petrogenesis of the Early Cretaceous Laguila Bimodal Intrusive Rocks from the Tethyan Himalaya:Implications for the Break-Up of Eastern Gondwana.Lithos, 236-237:190-202.https://doi.org/10.13039/501100001809 doi: 10.1016/j.lithos.2015.09.006 [19] Ma, Y.M., Yang, T.S., Yang, Z.Y., et al., 2014.Paleomagnetism and U-Pb Zircon Geochronology of Lower Cretaceous Lava Flows from the Western Lhasa Terrane:New Constraints on the India-Asia Collision Process and Intracontinental Deformation within Asia.Journal of Geophysical Research:Solid Earth, 119(10):7404-7424.https://doi.org/10.1002/2014jb011362 doi: 10.1002/2014JB011362 [20] Mahoney, J.J., Jones, W.B., Frey, F.A., et al., 1995.Geochemical Characteristics of Lavas from Broken Ridge, the Naturaliste Plateau and Southernmost Kerguelen Plateau:Cretaceous Plateau Volcanism in the Southeast Indian Ocean.Chemical Geology, 120(3-4):315-345.https://doi.org/10.1016/0009-2541(94)00144-w doi: 10.1016/0009-2541(94)00144-W [21] Matthews, K.J., Dietmar Müller, R., Sandwell, D.T., 2016.Oceanic Microplate Formation Records the Onset of India-Eurasia Collision.Earth and Planetary Science Letters, 433:204-214.https://doi.org/10.13039/501100000923 doi: 10.1016/j.epsl.2015.10.040 [22] Meng, Y.K., Xu, Z.Q., Ma, S.W., er al.2016.Deformational Characteristics and Geochronological Constraints of Quxu Ductile Shear Zone in Middle Gangdese Magmatic Belt, South Tibet.Earth Science, 41(7):1081-1098 (in Chinese with English abstract).https://doi.org/dqkx.2016.090 http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201607001.htm [23] Menzies, M., 1987. Alkaline Rocks and Their Intrusions: A Window on the Earth's Interior. In: Fitton, J. G., Upton, B. G., Alkaline Igneous Rocks. Blackwell Scientific Publication, London. [24] Mizusaki, A.M.P., Petrini, R., Bellieni, P., et al., 1992.Basalt Magmatism along the Passive Continental Margin of SE Brazil (Campos Basin).Contributions to Mineralogy and Petrology, 111(2):143-160.https://doi.org/10.1007/bf00348948 doi: 10.1007/BF00348948 [25] Neal, C.R., Mahoney, J., Chazey, W., 2002.Mantle Sources and the Highly Variable Role of Continental Lithosphere in Basalt Petrogenesis of the Kerguelen Plateau and Broken Ridge LIP:Results from ODP Leg 183.Journal of Petrology, 43(7):1177-1205. https://doi.org/10.1093/petrology/43.7.1177 [26] Olierook, H.K.H., Jourdan, F., Merle, R.E., et al., 2016.Bunbury Basalt:Gondwana Breakup Products or Earliest Vestiges of the Kerguelen Mantle Plume?Earth and Planetary Science Letters, 440:20-32. https://doi.org/10.1016/j.epsl.2016.02.008 [27] Olierook, H.K.H., Merle, R.E., Jourdan, F., 2017.Toward a Greater Kerguelen Large Igneous Province:Evolving Mantle Source Contributions in and around the Indian Ocean.Lithos, 282-283:163-172. https://doi.org/10.1016/j.lithos.2017.03.007 [28] Song, B., Zhang, Y.H., Wan, Y.S., et al., 2002.Mount Making and Procedure of the SHRIMP Dating.Geological Review, 48(S1):26-30 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000005931 [29] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345.https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/GSL.SP.1989.042.01.19 [30] Tong, J.S., Liu, J., Zhong, H.M., et al., 2007.Zircon U-Pb Dating and Geochemistry of Mafic Dike Swarms in the Lhozag Area, Southern Tibet, China, and Their Tectonic Implications.Geological Bulletin of China, 26(12):1654-1664 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200712019 [31] Tong, Y.B., Yang, Z.Y., Zheng, L.D., et al., 2008.Early Paleocene Paleomagnetic Results from Southern Tibet, and Tectonic Implications.International Geology Review, 50(6):546-562. https://doi.org/10.2747/0020-6814.50.6.546 [32] van Hinsbergen, D.J.J., Lippert, P.C., Dupont-Nivet, G., et al., 2012.Greater India Basin Hypothesis and a Two-Stage Cenozoic Collision between India and Asia.Proceedings of the National Academy of Sciences, 109(20):7659-7664. https://doi.org/10.1073/pnas.1117262109 [33] Volkova, N.I., Budanov, V.I., 1999.Geochemical Discrimination of Metabasalt Rocks of the Fan-Karategin Transitional Blueschist/Greenschist Belt, South Tianshan, Tajikistan:Seamount Volcanism and Accretionary Tectonics.Lithos, 47(3-4):201-216.https://doi.org/10.1016/s0024-4937(99)00019-5 doi: 10.1016/S0024-4937(99)00019-5 [34] Wang, X.X., Zhang, J.J., Wang, J.M., 2016.Geochronology and Formation Mechanism of the Paiku Granite in the Northern Himalaya, and Its Tectonic Implications.Earth Science, 41(6):982-998 (in Chinese with English abstract).https://doi.org/dqkx.2016.082 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201606006 [35] Wilson, M., 1989. Igneous Petrogenesis: A Global Tectonic Approach. Chapman & Hall, London. [36] Winchester, J.A., Floyd, P.A., 1977.Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements.Chemical Geology, 20:325-343. https://doi.org/10.1016/0009-2541(77)90057-2 [37] Xia, Y., Zhu, D.C., Zhao, Z.D., et al., 2012.Whole-Rock Geochemistry and Zircon Hf Isotope of the OIB-Type Mafic Rocks from the Comei Large Igneous Province in Southeastern Tibet.Acta Petrologica Sinica, 28(5):1588-1602 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201205021 [38] Yang, T.S., Ma, Y.M., Zhang, S.H., et al., 2015a.New Insights into the India-Asia Collision Process from Cretaceous Paleomagnetic and Geochronologic Results in the Lhasa Terrane.Gondwana Research, 28(2):625-641.https://doi.org/10.13039/501100004602 doi: 10.1016/j.gr.2014.06.010 [39] Yang, T.S., Ma, Y.M., Bian, W.W., et al., 2015b.Paleomagnetic Results from the Early Cretaceous Lakang Formation Lavas:Constraints on the Paleolatitude of the Tethyan Himalaya and the India-Asia Collision.Earth and Planetary Science Letters, 428:120-133.https://doi.org/10.13039/501100001809 doi: 10.1016/j.epsl.2015.07.040 [40] Yi, Z., Huang, B., Chen, J., et al., 2011.Paleomagnetism of Early Paleogene Marine Sediments in Southern Tibet, China:Implications to Onset of the India-Asia Collision and Size of Greater India.Earth and Planetary Science Letters, 309(1-2):153-165. http://adsabs.harvard.edu/abs/2011E%26PSL.309..153Y [41] Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211 [42] Zhang, J.J., Santosh, M., Wang, X.X., et al., 2012.Tectonics of the Northern Himalaya since the India-Asia Collision.Gondwana Research, 21(4):939-960.https://doi.org/10.13039/501100001809 doi: 10.1016/j.gr.2011.11.004 [43] Zhong, H.M., Tong, J.S., Xia, J., et al., 2005.Characteristics and Tectonic Setting of Volcanic Rocks of the Sangxiu Formation in the Southern Part of Yamzho Yumco, Southern Tibet.Geologcal Bulletin of China, 24(1):72-79 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200501011 [44] Zhu, D.C., Chung, S.L., Mo, X.X., et al., 2009.The 132 Ma Comei-Bunbury Large Igneous Province:Remnants Identified in Present-Day Southeastern Tibet and Southwestern Australia.Geology, 37(7):583-586.https://doi.org/10.1130/g30001a.1 doi: 10.1130/G30001A.1 [45] Zhu, D.C., Mo, X.X., Pan, G.T., et al., 2008.Petrogenesis of the Earliest Early Cretaceous Mafic Rocks from the Cona Area of the Eastern Tethyan Himalaya in South Tibet:Interaction between the Incubating Kerguelen Plume and the Eastern Greater India Lithosphere?Lithos, 100(1-4):147-173. https://doi.org/10.1016/j.lithos.2007.06.024 [46] Zhu, D.C., Mo, X.X., Zhao, Z.D., et al., 2009.Permian and Early Cretaceous Tectonomagmatism in Southern Tibet and Tethyan Evolution:New Perspective.Earth Science Frontiers, 16(2):1-20 (in Chinese with English abstract). http://www.researchgate.net/publication/260835271_Permian_and_Early_Cretaceous_tectonomagmatism_in_southern_Tibet_and_Tethyan_evolution_New_perspective [47] Zhu, D.C., Pan, G.T., Mo, X.X., et al., 2004.Permian to Cretaceous Volcanic Activities in the Central Segment of the Tethyan Himalayas (Ⅰ):Distribution Characteristics and Significance.Regional Geology of China, 23(7):645-654 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD200407002.htm [48] Zhu, D.C., Pan, G.T., Mo, X.X., et al., 2005.Geochemistry and Petrogenesis of the Sangxiu Formation Basalts in the Central Segment of Tethyan Himalaya.Geochimica, 34(1):7-19 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200501002 [49] Zhu, D.C., Pan, G.T., Mo, X.X., et al., 2006.Identification for the Mesozoic OIB-Type Basalts in Central Qinghai-Tibetan Plateau:Geochronology, Geochemistry and Their Tectonic Setting.Acta Geologica Sinica, 80(9):1312-1328 (in Chinese with English abstract). http://www.researchgate.net/publication/279655522_Identification_for_the_Mesozoic_OIB-type_basalts_in_central_Qinghai-Tibetan_Plateau_Geochronology_geochemistry_and_their_tectonic_setting [50] Zhu, D.C., Pan, G.T., Mo, X.X., et al., 2007.Petrogenesis of Volcanic Rocks in the Sangxiu Formation, Central Segment of Tethyan Himalaya:A Probable Example of Plume-lithosphere Interaction.Journal of Asian Earth Sciences, 29(2-3):320-335. https://doi.org/10.1016/j.jseaes.2005.12.004 [51] 康志强, 付文春, 田光昊, 2015.西藏桑日县地区中生代火山岩地层层序——基于锆石U-Pb年龄及地球化学数据.地质通报, 34(2-3):318-327. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201502009 [52] 刘小汉, 琚宜太, 韦利杰, 等, 2009.再论雅鲁藏布江缝合带构造模型.中国科学(D辑), 39(4):448-463. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=JDXK200904008&dbname=CJFD&dbcode=CJFQ [53] 孟元库, 许志琴, 马士委, 等.2016.藏南冈底斯岩浆带中段曲水韧性剪切带的变形特征及其年代学约束.地球科学, 41(7):1081-1098.https://doi.org/dqkx.2016.090 http://earth-science.net/WebPage/Article.aspx?id=3320 [54] 宋彪, 张玉海, 万渝生, 等, 2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评, 48(S1):26-30. http://d.old.wanfangdata.com.cn/Periodical/OA000005931 [55] 童劲松, 刘俊, 钟华明, 等, 2007.藏南洛扎地区基性岩墙群锆石U-Pb定年、地球化学特征及构造意义.地质通报, 26(12):1654-1664. doi: 10.3969/j.issn.1671-2552.2007.12.019 [56] 王晓先, 张进江, 王佳敏, 2016.北喜马拉雅佩枯花岗岩年代学、成因机制及其构造意义.地球科学, 41(6):982-998.https://doi.org/dqkx.2016.082 http://earth-science.net/WebPage/Article.aspx?id=3311 [57] 夏瑛, 朱弟成, 赵志丹, 等, 2012.藏东南措美大火成岩省中OIB型镁铁质岩的全岩地球化学和锆石Hf同位素.岩石学报, 28(5):1588-1602. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201205021 [58] 钟华明, 童劲松, 夏军, 等, 2005.藏南羊卓雍错南部桑秀组火山岩的特征及构造环境.地质通报, 24(1):72-79. doi: 10.3969/j.issn.1671-2552.2005.01.011 [59] 朱弟成, 莫宣学, 赵志丹, 等, 2009.西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化:新观点.地学前缘, 16(2):1-20. doi: 10.3321/j.issn:1005-2321.2009.02.001 [60] 朱弟成, 潘桂棠, 莫宣学, 等, 2004.藏南特提斯喜马拉雅带中段二叠纪-白垩纪的火山活动(Ⅰ):分布特点及其意义.地质通报, 23(7):645-654. doi: 10.3969/j.issn.1671-2552.2004.07.003 [61] 朱弟成, 潘桂棠, 莫宣学, 等, 2005.特提斯喜马拉雅带中段桑秀组玄武岩的地球化学和岩石成因.地球化学, 34(1):7-19. http://d.old.wanfangdata.com.cn/Periodical/dqhx200501002 [62] 朱弟成, 潘桂棠, 莫宣学, 等, 2006.青藏高原中部中生代OIB型玄武岩的识别:年代学、地球化学及其构造环境.地质学报, 80(9):1312-1328. doi: 10.3321/j.issn:0001-5717.2006.09.008